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Quantum error correcting codes protect quantum information, allowing for large quantum com-
putations provided that physical error rates are sufficiently low. We combine post-selection with
surface code error correction through the use of a parameterized family of exclusive decoders, which
are able to abort on decoding instances that are deemed too difficult. We develop new numerical
sampling methods to quantify logical failure rates with exclusive decoders as well as the trade-off in
terms of the amount of post-selection required. For the most discriminating of exclusive decoders,
we demonstrate a threshold of 50% under depolarizing noise for the surface code (or 32(1)% for the
fault-tolerant case with phenomenological measurement errors), and up to a quadratic improvement
in logical failure rates below threshold. Furthermore, surprisingly, with a modest exclusion criterion,
we identify a regime at low error rates where the exclusion rate decays with code distance, provid-
ing a pathway for scalable and time-efficient quantum computing with post-selection. We apply our
exclusive decoder to the 15-to-1 magic state distillation protocol, and report a 75% reduction in the
number of physical qubits required, and a 60% reduction in the total spacetime volume required,
including accounting for repetitions required for post-selection. We also consider other applications,
as an error mitigation technique, and in concatenated schemes. Our work highlights the importance
of post-selection as a powerful tool in quantum error correction.

I. INTRODUCTION

Quantum error correction (QEC) can facilitate large-
scale quantum computations even with relatively noisy
components. Strategies for practical quantum error cor-
rection should have good performance in terms of both
the threshold and the rate that logical failure rates decay
below threshold, as well as modest hardware overheads
such as the number of physical qubits per logical qubit
and the complexity of the circuits used to extract the
error syndrome.

Correcting errors in a quantum code is a complex pro-
cess with significant resource overheads, and some strate-
gies for practical quantum computing make use of the
much easier task of detecting errors, post-selecting the
cases where no errors have occurred [1]. Post-selection
has played a key role in a number of recent experimen-
tal demonstrations of quantum error correction [2–10].
Unfortunately, many direct applications of quantum er-
ror detection and post-selection are not scalable, as the
probability of post-selection in a large circuit becomes
vanishingly small. Scalable approaches typically require
small, fixed-distance codes to ensure a reasonable overall
probability of success.

Here, we investigate how to use the rich information
contained in the error syndrome itself to make better
decisions on how to post-select results, essentially inter-
polating between the extreme cases of error correction
and error detection. Such an approach has been consid-
ered for preparing magic states for state injection, since
the circuits are so small that it is more efficient to restart
the procedure when errors are detected, in order to attain
higher quality final states or to reduce the overheads [11–

FIG. 1: (left) A monolithic attempt at a medium-sized error-
corrected computation, that is guaranteed to return a result
but requires large overheads to reach the desired target ac-
curacy. (right) A collection of lightweight, error-corrected at-
tempts at the same computation. Each attempt is run at
some tolerance, and if the uncertainty associated with any
correction exceeds the tolerance, then the attempt is aborted.
This approach is not guaranteed to return a result but failure
is heralded, and when a result is returned the accuracy can
be very high with low physical overheads.

15]. The numerical simulations required to study this
regime are challenging, and existing tools for QEC sim-
ulations such as the splitting method [16, 17] are not
directly applicable. As a result, little is known about
the impact of such post-selection methods on the perfor-
mance of codes of interest such as the surface code, in-
cluding thresholds and logical failure probabilities, com-
pared with the deterministic case.

We introduce an exclusive decoder that aborts for syn-
dromes for which the uncertainty in decoding exceeds
some tolerance. We develop new numerical methods to
characterise the thresholds and sub-threshold behaviour
of the surface code with the exclusive decoder, demon-
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strating that exclusive decoding can give small surface
codes the logical performance of a much larger code with
a fraction of the overhead.

A common (and well-warranted) criticism of many uses
of post-selection in quantum error correction and fault-
tolerance is that they are not scalable. We numerically
investigate the abort probability of our exclusive decoder
and find—remarkably—that the abort probability of the
exclusive decoder also exhibits threshold behaviour, for
all but the most intolerant instance of the decoder. That
is, there is a threshold error probability, below which the
abort probability decreases exponentially in the distance
of the surface code. This behaviour suggest that an exclu-
sive decoding strategy can find application in large-scale
fault-tolerant quantum computing more broadly.

We investigate the use of exclusive decoding for
medium-sized logical circuits, especially relevant on near-
term devices with limited logical qubits, and for state
preparation and distillation. The main idea is to break up
a medium-sized error-corrected computation into many
light-weight attempts at the computation, which may
or may not succeed but for which failure can be her-
alded; see Fig. 1. The result is that the large-scale
error-corrected computations can be made accessible on
smaller quantum devices and with lower spacetime over-
heads. While the computation may need to be repeated
for success, much like other error mitigation strategies,
the favorable behavior of the abort probabilities for the
exclusive decoder suggests that such an approach will
be useful in near-term implementations of fault-tolerant
logic. We also explore applications of this decoding strat-
egy to concatenated codes, and in quantum communica-
tion.

II. RESULTS

A. Exclusive decoding

Our exclusive decoder generalizes the concept of a de-
coder as used in quantum error correction. A standard
decoder is designed to take syndrome measurement data
and output a logical correction, and its performance is
captured by the accuracy of this correction. However the
full set of syndrome data is a large, rich data set that
contains more information than just the most likely log-
ical Pauli correction [18, 19], and specifically it includes
information about the likelihood of correct decoding [20].
An exclusive decoder takes this same syndrome measure-
ment data, and outputs either (1) a recommended logical
correction; or (2) an abort mode where no logical cor-
rection can be identified as being correct to a sufficient
degree of certainty. The degree of certainty required is a
design choice that will depend on the use-case, and is a
controllable parameter in the exclusive decoder.

Concretely, the system we study here is a generalisa-
tion of the minimum-weight perfect matching (MWPM)
decoder [21, 22], and we study its performance over the

rotated surface code with boundaries, which allows a
distance-d code to be constructed out of n = d2 phys-
ical qubits. The standard MWPM decoder infers errors
by matching defects into pairs, with a minimum-weight
matching corresponding to a most-likely error. However,
on a surface code with boundaries, it is possible to mod-
ify the MWPM decoder so that it returns a minimum-
weight correction for each logical equivalence class (see
Appendix A for implementation details). With this mod-
ification, our exclusive decoder finds a global minimum-
weight correction C, as well as alternate corrections from
each other equivalence class CL̄, where L̄ is an X-type or
Z-type logical operator. Let ∆ be the unsigned weight
difference between the global least-weight correction C
and the next-least-weight alternate correction, C ′ that is
logically inequivalent to C, i.e. such that C ′C is a logical
operator. Then, the exclusive MWPM will abort if

1− ∆

d
> c (1)

where 0 < c ≤ 1 is a tuneable parameter that we call
the exclusive tolerance. We also define the c = 0 case,
which is a decoder that aborts if there is any non-trivial
syndrome data. With this definition, we have that a
small value of c means that C and C ′ must have a
very large weight difference, whereas an exclusive decoder
with c = 1 is the standard MWPM decoder that will at-
tempt to decode all syndrome errors, independent of their
success probability. While the exclusive MWPM decoder
assumes perfect measurements as presented here, it can
be generalised to a fault-tolerant version (see Sec. IID).
The construction we have presented is similar to post-

selection rules that have been studied previously [15, 20],
and is motivated by the fact that alternate corrections
that are close together in weight have a similar likeli-
hood of occurring, making it impossible to be confident
which correction is the right one. In these situations, the
exclusive tolerance is used to tune how much uncertainty
the decoder will tolerate before it decides to abort. Since
the abort condition for the exclusive decoder depends on
∆ as a fraction of the code distance, we expect the choice
of tolerance to have an effect on asymptotic quantities,
such as thresholds and asymptotic overheads. In the fol-
lowing sections, we use sophisticated numerical tools (see
Appendix B) to study the exclusive decoder as we take
large code distances.

B. Exclusive decoder performance

Using simulations, we demonstrate that our exclusive
decoder can lead to logical thresholds that are substan-
tially higher than those of a standard decoder. Equally
striking, we demonstrate that the scaling behaviour of
the logical failure probability below threshold can also
be significantly enhanced by using an exclusive decoder.
Together, these results indicate that post-selection can
provide significant additional power to error correction.
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FIG. 2: Probability of logical failure for the exclusive MWPM decoder used with the rotated surface code, against depolarizing
noise and in the code-capacity setting. Logical failures are computed only on post-selected error configurations. The c = 0
decoder is the zero-tolerance decoder that aborts on non-trivial syndrome data, and the c = 1 decoder is the standard MWPM
decoder with no post-selection. (left) Markers are data points computed using the splitting method. Solid lines are failure
probabilities extracted from a critical exponents ansatz, and dashed vertical lines are the fitted threshold values. For values
of the tolerance c = 0, 2/5, 1/2, 2/3, and 1, we find threshold values pth = 50%, 42%, 38%, 33%, and 15%, respectively.
(left inset) Threshold values plotted against the exclusive tolerance. The horizontal dashed line is the threshold derived from
the zero-rate Hashing bound. (right) Decay of logical failure probabilities below threshold. For each error probability below
threshold, we fit the very general ansatz log(f) = d log Λ(p) + logC(p). The decay constants Λ(p) are plotted with markers for
each error probability. Solid lines correspond to the further ansatz Eq. (2), which can be rewritten log Λ(p) = k log p + logA.
This ansatz is applicable far below threshold and only counts contributions to the failure probabilities from least-weight failing
errors. The parameters k and A are determined by fitting, and in (right inset) we plot the fitted values k against the tolerance
c. The dashed line is Eq. (3). We have that k > 1/2 for the exclusive decoder for all c < 1, whereas standard error correction
techniques can achieve at best k = 1/2.

a. Thresholds. We estimate the threshold for the ro-
tated surface code with the exclusive decoder under a
depolarizing noise channel in the code-capacity setting
(meaning perfect syndrome measurements). Logical fail-
ure probabilities are found by using the splitting method
to extrapolate down from logical failure probabilities de-
termined analytically at p = 75%; see Appendix B for de-
tails. Our results are summarised in Fig. 2. The thresh-
old value is pth = 50% at zero tolerance, and decreases
smoothly down to the standard MWPM decoder value
of pth = 15% as the tolerance increases to one. We re-
mark that the depolarizing channel is known to have zero
capacity for depolarizing strength in excess of p = 25%,
due to the no-cloning theorem [23–25]. The exclusive de-
coder is able to exceed this bound due to the use of post-
selection, and we discuss the exclusive decoder further in
the context of quantum channel capacities in Sec. III.

One can gain some intuition about this improved de-
coder performance as follows. Errors that cause failure
with the exclusive decoder are typically much less likely
than errors that cause failure with a standard decoder, as
will be discussed in Sec. II B. Additionally, there are com-
binatoric factors that attach to standard decoders that
count the number of ways that the d/2 Pauli operators
that make up a least-weight failing error can be placed
onto the support of a least-weight logical operator. This
entropic contribution is not present for a zero-tolerance
exclusive decoder, and is small (relative to standard de-
coding) for low-tolerance exclusive decoders. This means
that both probabilistic considerations and entropic con-

siderations are more favourable towards the exclusive de-
coder. Large error probabilities are therefore required
before entropic factors will favour a failing error config-
uration, and this leads to a large threshold.
b. Sub-threshold scaling of logical failure probabilities.

Along with improved thresholds, our exclusive decoder
provides up to a quadratic reduction in the observed
logical failure probability for error probabilities below
threshold. Since this suppression is more rapid than can
be achieved with standard error correction techniques on
the surface code, we say that errors are super-suppressed
below threshold. Scaling improvements of this type can
be used to reduce resource overheads, since fewer physi-
cal qubits are required to achieve commensurate logical
failure probabilities compared to the standard approach.
The failure probabilities of quantum error correcting

codes well below threshold are determined by the weight
and number of least-weight failing errors. In particular,
if the weight of the least-weight failing error is some frac-
tion k of the code distance, then an ansatz logical failure
probabilities below threshold can be written

f = C(Ap)kd (2)

where Akd counts the number of least-weight failing er-
rors. Since we expect to operate quantum error correc-
tion well below threshold, this ansatz is the key relation
that determines the resource overheads for fault-tolerant
quantum computation. In particular, the least fractional
weight k is a key quantity of interest.
For standard surface code error correction, there is no

decoder that can correct all errors of weight up to and
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including w = ⌈d/2⌉, which sets an upper bound k ≤ 1/2.
To see this, take a logical operator L̄ of weight d. We
can split L̄ into two parts L̄ = E + E′ with weights
w = ⌈d/2⌉ and w′ = ⌊(d − 1)/2⌋. Since E and E′ have
the same syndrome, it is impossible to simultaneously
correct both of them. A signature of this problematic
error configuration is that the two alternate corrections
are very close in weight; in the example above the weight
difference between the alternate corrections was equal to
one. The exclusive decoder safeguards against this by
aborting if there exists minimum weight corrections in
alternate sectors that are close together in weight.

With the exclusive decoder, let w denote the weight
of a failing error E that does not lead to an abort. Let
w′ denote the least-weight correction E′ in an alternate
sector, then the failure condition implies that w − w′ ≥
d(1 − c). Additionally, we must have w + w′ ≥ d, since
E+E′ gives a logical operator. This gives a lower bound
on the weight of failing errors. The exclusive decoder can
abort or correct any error with weight w < wmin, which
expressed as a fraction of the code distance is wmin = kd
with k given

k = 1− c

2
. (3)

We show in Fig. 2 the subthreshold failure probabilities,
and in particular we extract the least fractional weight k
as a function of the exclusive tolerance, which shows the
agreement with Eq. (3).

C. Abort probabilities

A key quantity of interest for an exclusive decoder is
the probability with which it will abort. The behavior
of the abort probability will capture the trade-off being
made for reduced logical failure probabilities and boosted
logical thresholds, in terms of (say) an increased time
cost in a ‘repeat until success’ approach. Our analysis
shows that the abort probabilities for non-zero tolerance
exhibits threshold behaviour, meaning that the proba-
bility of aborting decreases exponentially as a function
of the code distance for error probabilities less than the
abort threshold. The existence of such an abort threshold
suggests that the exclusive decoder may find application
in scalable approaches to fault-tolerance as well as near-
term uses.

a. Abort thresholds. In Fig. 3, we demonstrate nu-
merical evidence of abort thresholds for non-zero toler-
ance c > 0. For the case of zero-tolerance, the exclu-
sive decoder does not have an abort threshold, and we
characterize the abort probabilities for the zero-tolerance
decoder in App. C.

For all tolerances c > 0, the value of the abort thresh-
old is much smaller than the value of the logical thresh-
old, and also for the value of the logical threshold for
standard MWPM decoding. This is as expected; the ex-
clusive decoder will definitely abort on any low-weight

error that causes standard MWPM decoding to fail, but
additionally will also abort on some errors that would
have been successfully corrected by standard MWPM de-
coding, since the exclusive decoder can be quite cautious.
This fact is significant, and has consequences for the use-
fulness of the exclusive decoder for large codes. There
are two regimes in which we can imagine operating the
exclusive decoder: (i) below the abort threshold; and
(ii) above the abort threshold but still below the logi-
cal threshold. In the first regime, the exclusive decoder
can be used on large codes since the time-cost does not
blow up with the size of the code, and we discuss these
asymptotic overheads in Sec. III A. In the second regime,
the practical usefulness of the exclusive decoder is likely
limited to small codes. We further discuss the scope of
use-cases in Sec. III.
b. Scaling of abort probabilities. As with logical fail-

ure rates, the abort thresholds only tell part of the story,
and we also investigate the scaling of the abort probabil-
ity as a function of code distance both above and below
the abort threshold. Below the abort threshold, we study
the decay of abort probabilities asymptotically. Above
the abort threshold, we develop an empirical ansatz to
calculate abort probabilities for finite-size codes.
In the regime of error probabilities below the abort

threshold of the protocol, we can expect a similar ansatz
to Eq. (2) to hold. That is, we expect to describe abort
probabilities by

g = C̃p(Ãp)k̃d . (4)

Here, k̃d is one less than the weight of the least-weight
error that will lead to an abort, which gives rise to an
additional factor p as compared to Eq. (2). The factor

Ãk̃d counts the number of least-weight aborting errors.
To find k̃, take an error E of weight w ≤ d/2 that leads
to an abort, and let w′ denote the weight of the least-
weight correction E′ that is inequivalent to E. We have
w′−w < (1−c)d and w+w′ ≥ d holding simultaneously,
which gives 2w > cd, or equivalently

k̃ =
c

2
. (5)

We remark that the more exclusive the decoder is, in
terms of being intolerant of uncertainty, the more slowly
the abort probability decays in the code distance. In
Fig. 3, we show the scaling of the abort probabilities
with the code distance, and in particular we see good
agreement with Eq. (5).
We are also interested in the abort probabilities for

finite-size codes for error probabilities that are larger
than the abort threshold, but smaller than the logical
threshold. It is less clear a priori how abort probabilities
will behave above the abort threshold. However, we em-
pirically observe that the acceptance probability, defined
h = 1− g, decays exponentially in the number of qubits
n in the code. That is, we have

h = C̃h(p)Λ̃h(p)
n (6)
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FIG. 3: Probability that the exclusive MWPM decoder over the rotated surface code will abort. The noise model is depolarizing
noise in the code-capacity setting. (left) Markers are data points computed using direct Monte Carlo estimation, and crossings
indicate the existence of a threshold with respect to abort probabilities. Solid lines are abort probabilities extracted from
a critical exponents ansatz, and dashed vertical lines are the fitted threshold values. For tolerances c = 2/5, 1/2, 2/3, we
observe abort threshold values p̃th = 1.3(1)%, 2.1(1)%, 4.5(1)%, respectively. Note that only data for tolerances in the range
0 < c < 1 are shown. The zero-tolerance case is omitted because it does not possess a threshold for aborts, and the standard
MWPM case is omitted because there are no aborts. (left inset) Threshold values for the abort probability plotted against
the exclusive tolerance. (right) Decay of abort probabilities below threshold. For each error probability below threshold, we

fit the very general ansatz log(g) = d log Λ̃(p) + log C̃(p). The decay constants Λ̃(p) are plotted with markers for each error
probability. Solid lines correspond to the further ansatz Eq. (5), applicable far below threshold, which can also be written

log Λ̃(p) = k̃ log p+ log Ã. The parameters k̃ and Ã are determined by fitting, and in (right inset) we plot the fitted values of k̃
against the tolerance c. The dashed line is Eq. (5). We remark that the abort probability decays more slowly as the tolerance
to uncertainty is decreased.

where C̃h can be interpreted as a finite-size offset, and
Λ̃h < 1 is the decay factor, and n is the number of qubits
with n = d2 for the rotated surface code. In Fig. 4, we
extract decay factor Λ̃h for a range of error probabilities
and exclusive tolerances. Since above the abort thresh-
old, the practical use of the exclusive decoder is limited
to finite-size codes, Eq. (6) can be useful to apply to small
code instances.

D. Fault tolerant syndrome measurements

We now turn to the question of fault-tolerance and
imperfect measurements. The general idea of an ex-
clusive decoder maps straightforwardly into the fault-
tolerant case, and in particular the MWPM-based de-
coders used for the surface code are naturally made fault-
tolerant [21].

There are a few subtleties that offer challenges for char-
acterising the fault-tolerant case numerically. A common
setting in which decoders are numerically benchmarked
in the fault-tolerant setting involves taking periodic time-
like and space-like boundary conditions. A minor diffi-
culty arises when generalizing exclusive MWPM to this
setting, since it involves fixing the parity of matches over
an arbitrary subset of edges in the decoding graph. This
should be compared to the code-capacity regime with
rough and smooth boundaries, where we only needed to
fix the parity of matches between bulk and boundary
vertices (see Appendix A). This problem is still solvable
in the fault-tolerant setting, since the decoder studied
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FIG. 4: The decay of acceptance probabilities as a function of
the number of qubits in the code, above the abort threshold.
Data is for the exclusive decoder with depolarizing noise on
the rotated surface code, in the code-capacity setting. For
each error probability above the abort threshold, we fit the
ansatz Eq. (6), which can also be written log h = n log Λ̃h(p)+

log C̃h(p), where n is the number of qubits and in this case we
have n = d2. Details of these fits can be found in Appendix D.
We extract and plot Λ̃h as a function of the error probability
and for each value of the tolerance.

in Ref. [26] utilizes a heuristic solution to this problem
that can find low-weight corrections in alternate sectors,
and this subroutine can be used to implement a fault-
tolerant version of exclusive MWPM. Then, the abort
condition can treat time-like errors in exactly the same
way as space-like errors.
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We do study the exclusive decoder at zero-tolerance
and with imperfect measurements in Appendix C. There,
we set faulty measurements to occur with probability
pm = 2p/3, and we report a fault-tolerant threshold value
p = 32(1)%. As well as this, we develop a sophisticated
ansatz that captures subthreshold failure probabilities,
and observe the scaling relationship f ∝ pd, as expected.
Additionally, we introduce in Appendix E the exclusive
union-find decoder, which also generalizes to the fault-
tolerant regime straightforwardly. We expect Eq. (3)
and Eq. (5) to still hold for the fault-tolerant exclusive
MWPM decoder, and the fault-tolerant exclusive union-
find decoder.

Finally, we remark that future work is still required to
generalize homology-based decoders, such as maximum-
likelihood decoding or exclusive decoding, to the fault-
tolerant setting with open time-like boundaries in a
sliding-windows fashion [27, 28].

III. DISCUSSION

The post-selection scheme presented here is a promis-
ing approach to protecting against noise in the nascent
era of fault-tolerance, where logical qubits may be lim-
ited in size. Post-selection can enable more reliable cal-
culations out of early-stage logical qubits that may not
be sufficient for a particular use-case using standard de-
coders. They can also allow for a reduction in resource
overheads. We now explore these applications in some
detail.

A. Resource overheads

The exclusive decoder filters out the noisiest shots in
a quantum computation. In the regime of limited log-
ical qubits, this decoder allows access to deeper logi-
cal circuits, and can reduce footprints for fault-tolerant
primitives. We view this regime of circuits as a natural
sequel to NISQ (noisy intermediate-scale quantum) cir-
cuits, where logical encodings are combined with post-
selection to access early-stage fault tolerance on noisy
intermediate-scale devices.

a. Deeper logical circuits. We analyze this trade-off
in the low-error-probability regime. A circuit volume q
can be executed using logical qubits at failure probability
f , up to a target accuracy ϵ = qf . In the non-exclusive
case, the scaling of f in the code distance is at best f =
pd/2. In the exclusive case, the scaling is improved to
f = pkd for some 1/2 ≤ k ≤ 1. However, this comes at
the cost of repetitions that must be performed

R = (1− pk̃d)−q (7)

where k̃ = 1−k, since the computation must be restarted
if any error correction cycle returns an abort mode.

If we take a fixed number of physical qubits, then using
surface codes of a certain distance will set an accessible

circuit volume q0 = ϵp−d/2. This can be increased to
q = ϵp−kd using exclusive decoding techniques. If we only
attempt to achieve a constant factor improvement, then
we can set a fixed a =

√
ϵq/q0. We also define the rescaled

circuit volume x = q0/
√
ϵ. We can rewrite the number

of repetitions required by Eq. (7) in terms of x and a,
giving R = (1−a/x)−ax ≈ exp

(
a2
)
. This approximation

is accurate provided that q is small compared to q20/ϵ.
Finally, we can re-arrange to express the factor increase
in circuit depth achievable in terms of the number of
repetitions we are willing to perform

q =

√
logR

ϵ
q0 . (8)

For an entire algorithm where we might consider ϵ ≈ 1,
then this trade-off allows, for instance, a 2X increase in
the accessible circuit depth, in exchange for repeating
the circuit approximately 55 times. We remark that this
trade-off is only available up to an upper bound q ≤ q20/ϵ
that arises from the fact that the maximum boost to
logical failure probabilities is quadratic, which is achieved
by the zero-tolerance decoder.
b. Reduced qubit overheads. An alternative but

equivalent view is that we may want to execute a fixed
size circuit, but using a smaller number of physical
qubits, i.e., using a smaller distance code. We start with
a fixed circuit of size q, executed using surface codes of
distance d0, and with m0 physical qubits. Using a exclu-
sive decoder with tolerance c = 1 − 2k, this circuit can
alternatively be implemented using distance d = d0/(2k)
codes, and requiring m = m0/(4k)

2 physical qubits. The
target accuracy ϵ remains unchanged.
If we assume that the number of repetitions required is

not unreasonably large, so that logR is small compared
to q, then we can rewrite Eq. (7) in terms of circuit quan-
tities as

logR = ϵ2
√

m/m0−1q2(1−
√

m/m0) . (9)

This equation suggests that the exclusive decoder will
allow large footprint reductions, at a modest time-cost,
when applied to circuits with low target accuracy ϵ, but
that also have a small number of gates q.
c. Key application: distilling magic states. Moti-

vated by conclusions drawn from Eq. (9), we consider the
exclusive decoder applied to medium-sized state prepara-
tion circuits. The exclusive decoder is well-suited to this
use-case, since the output of a state preparation circuit is
a quantum state that needs to be extremely high fidelity,
since it will get consumed in a much larger circuit. This
small target accuracy allows an exclusive decoder to be
used for a footprint reduction, without also incurring a
large overhead in terms of repetitions required.
As an example, we do a rough analysis of the 15-to-1

magic state distillation circuit [29], in the fault-tolerant
setting. We simulate the zero-tolerance exclusive decoder
using a distance d = 4 code in the fault-tolerant regime,
and compare to a standard decoder using a distance d = 8
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code. We assume the decoders have similar logical perfor-
mance, since the weight of the least-weight failing error
is equal to four in both cases. If anything, we expect this
assumption to be quite generous towards the standard de-
coder since there are many more failure mechanisms on
the distance-8 code compared to the distance-4 code. We
use values for q and ϵ based on the 15-to-1 construction
from Ref. [30], that has q ≈ 90 error correction cycles, an
output accuracy limited by ϵT ≈ 10p3 ≈ 10−11, due to er-
rors that occur during faulty T measurement. We set an
error probability p = 10−4. Using the detailed ansatz in
Appendix C, we have an expression for f and g, and can
compute the total failure probability of the circuit with
the zero-tolerance decoder, ϵ = fq ≈ 5.8 × 10−14. This
means approximately one in two hundred failures will
be due to surface code failures, as opposed to faulty T
measurement failures, so surface code failures contribute
negligibly to the total circuit accuracy with these pa-
rameters. We can also compute the amount to circuit
repetitions required using Eq. (C3) with R = (1 − g)−q,
and report that only 3.2 circuit repetitions are required
on average due to the use of the zero-tolerance decoder.
We compare to the case of a standard decoder using a
distance d = 8 code with no repetitions, and assume this
comparison gives equal logical performance. Making this
comparison, we report that the exclusive decoder requires
25% of the physical qubits used by the standard decoder,
and also requires 40% of the total spacetime volume, in-
cluding with repetitions, in order to achieve commensu-
rate logical performance with the standard decoder. We
remark that the logical performance of the zero-tolerance
decoder was better than it needed to be, since the logical
accuracy of the distillation protocol is bottlenecked by
faulty T measurement, not by surface code failures. We
could have chosen a non-zero tolerance in order to reduce
the number of repetitions, at the expense of larger log-
ical failure probabilities, provided we maintain ϵ ≪ ϵT .
In general the optimal tolerance will balance savings that
result from using a small code distance, with the repeti-
tions that are required when the decoder aborts.

We emphasize the usefulness of exclusive decoding
applied to a range of medium-sized state preparation
tasks, beyond magic state distillation. Especially, the
exclusive decoder is well suited to quantum comput-
ing paradigms that involve breaking large computational
tasks into smaller and independent state preparation
tasks, such as with error-correcting teleportation [1] or
quantum dynamical programming [31]. These paradigms
can be cheap in terms of the on-line part of the compu-
tation [32, 33], and the off-line part of the computation
can be done using low-distance codes with exclusive de-
coding.

B. Other applications

The exclusive decoder could also prove useful in
schemes that use code-concatenation to achieve higher

encoding rates, such as Refs. [20, 34]. In this setting,
we envision the abort mode of the exclusive decoder as
heralding a logical erasure that is dealt with by an outer
code. The exclusive decoder can then be viewed as a
gadget that converts Pauli noise into erasure noise. This
is similar in spirit to previous work on erasure conver-
sion via qubit engineering [35–37], or using concatena-
tion with small inner codes [38]. An exclusive-style de-
coder that extracts soft information about logical Pauli
noise for code-concatenation was also studied in Ref. [20].
The success of this approach is based on the fact that
structured or biased noise can be exploited to achieve
very large performance gains [39]. The quantum erasure
channel, in particular, is arguably the easiest-to-correct
source of noise that can affect a quantum computation—
it has non-zero capacity up to p < 50% [40], it requires
a weight-d erasure error to fail a distance-d code, and it
admits high performing and accurate decoders [41]. The
erasure channel is also conceptually straightforward rel-
ative to Pauli noise. Insights gained from first consider-
ing erasure are often found also to be useful in the more
general noise setting, both in the context of designing de-
coders [41–44], and designing error correcting codes [45–
47]. The conversion of Pauli noise to erasure noise at the
surface code level by the exclusive decoder may help to
simplify the decoding problem faced by the outer code in
a concatenated scheme. If the outer code is a more ex-
otic kind of code, for which decoding is more challenging,
then this will be an especially useful approach.

Another use-case of the abort mode is to signal the
level of sophistication of the decoder that should be used
to correct the error. A common design paradigm for high-
performance real-time decoders involves hierarchical de-
coding [48–56], and we point the reader to Ref. [57] for
a recent perspective. In this paradigm, the first decod-
ing stage is fast and efficient, but may make mistakes
more readily due to a lack of global syndrome informa-
tion, for example. This first stage is designed to correct
the majority of sparse error configurations. The second
stage is powerful but costly, correcting the difficult cor-
rections that are leftover by the first stage. The exclusive
techniques explored here are capable of filtering the easy
errors from the difficult errors, allowing sophisticated de-
coding to be called only when needed. As an example,
the pre-decoder studied in Ref. [56] is fast and efficient,
but can in rare circumstances grow the weight of an ad-
versarial error by a factor 3/2. This leads to failure at the
second stage of decoding, and reduces the effective code
distance. However, when combined with suitable exclu-
sive decoding, the protocol can correct up to the full code
distance, whilst also correcting typical sparse errors with
high performance, maintaining the best of both worlds.

We also consider how our exclusive decoder fits into the
existing framework that describes quantum communica-
tion through noisy channels. In that framework, a chan-
nel with capacity Q can be used to transmit m qubits
with n uses of the channel, provided that m/n ≤ Q, and
with error vanishing in n (see Ref. [58, 59] for two sur-
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veys). However, the capacity depends on the presence
or absence of free classical communication. A forward
classical side-channel from sender to receiver will not
increase the capacity [60]. A backwards classical side-
channel will increase the capacity to QB ≥ Q [61], and a
two-way classical side channel will increase the capacity
further to Q2 ≥ QB ≥ Q [40, 60]. A quantum error-
correcting memory with post-selection can be viewed as
a communication protocol with two-way classical com-
munication via error-correcting teleportation [1, 62]. In
this setting, transmission of a qubit is achieved by first
establishing a high-fidelity logical Bell pair shared be-
tween sender and receiver, and then a logical qubit can
be teleported through the Bell pair, requiring some for-
ward classical communication to pick a suitable Pauli
correction [63]. Many attempts can be made at establish-
ing this Bell pair, since the receiver can ask the sender
to keep trying until an exclusive decoder does not re-
turn an abort on the receivers half of the Bell pair. In
this picture, QEC techniques are directly used to protect
against noisy channels. This approach complements the
approach of Ref. [64, 65], where QEC techniques are used
to fault-tolerantly implement encoding and decoding cir-
cuits for communication with noisy local gates. Since we
have used the surface code in the current work, which
has zero rate, we cannot hope to learn anything about

the region QB > 0. However, it does raise an interest-
ing question: is there a separation between QB > 0, and
the region where communication is not possible. Put an-
other way, is it possible to pass a constant number of
qubits through a channel that has zero capacity? Un-
fortunately, the zero-tolerance surface code protocol is
not an example, since the 50% depolarizing channel with
a backward side-channel is known to have positive ca-
pacity [60]. However, the numerical tools we have devel-
oped allow us to study the asymptotics of error-correcting
codes with huge amounts of post-selection, and future
work could explore better-performing codes to transmit
information through very noisy channels.
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Appendix A: Implementing exclusive MWPM
decoding

Here we describe how to construct a matching graph
so that the matching returned by a MWPM algorithm
will correspond to a least-weight logical operator within
a specified logical sector. We follow the construction of
Ref. [66], and focus on matching graphs for one sector of
the surface code, with boundaries.

The matching graph used for standard MWPM is
shown in Fig. 5. It has bulk vertices that correspond to
defects in the code. Each pair of bulk defects is connected
with an edge, with a weight that reflects the probability
of an error chain leading to a creation of the defect pair.
The standard matching graph also has boundary vertices
that allow defects to be matched to the boundary of the
code. The connectivity of the boundary vertices allows
every bulk node the freedom to be matched to its near-
est boundary, whilst placing no further constraint on the
matching.

We want to modify this graph in order to fix the parity
of matches that connect defects to a particular boundary.
Very generally, if we choose some subset of the vertices
of a graph V ′, then the parity of matches included in a
perfect matching that pair vertices in V ′ with vertices
not in V ′ is fixed by the size of V ′. We therefore need to
modify the matching graph to fix the number of virtual
boundary nodes at each boundary. A matching graph
that does this is shown in Fig. 5.

Note the small detail that, for every bulk defect, it is
now necessary to include an edge between the defect and
both boundaries. This inclusion is important because,
in the exclusive setting, it can sometimes be optimal to
match a defect to the more distant boundary. This can
be necessary in order to satisfy the parity constraints on
that boundary, so that other bulk defects are free to be
matched with each other in a low-weight correction. This
is contrasted to the standard MWPM decoder, where it
is never optimal to match a defect to the more distant
boundary.

Appendix B: Numerical methods

In this work, we develop new numerical methods that
are used to compute the post-selected failure probabilities
and acceptance probabilities presented in the main text.
These methods make use of the splitting method [16, 17]
as a subroutine, which we review briefly in subsection B 1.
In subsection B 2 we show how the splitting method is
used to develop the numerical methods that are used in
this work.

FIG. 5: (a) The matching graph for standard MWPM for
defects created by X-type Pauli errors that condense on the
smooth boundaries. There are three bulk defects, and there-
fore three boundary defects, with each bulk defect connected
to its nearest boundary. The boundary defects are fully
connected with each other, with some connections wrapping
around the figure, as indicated by edges that terminate in
dots. A minimum weight perfect matching is indicated in
red. (b) A subset of a graph containing an odd parity of
vertices. The parity of matches between the subset and its
complement is fixed to be odd. (c) The exclusive matching
graph has one set of boundary nodes for each boundary. On
the right boundary, there is one boundary vertex for every de-
fect in the code, which fixes an odd parity of matches to the
right boundary. On the left boundary, there is one boundary
vertex for every bulk defect, plus an additionally boundary
vertex to fix an even parity of matches to the left boundary.

1. The splitting method

The splitting method allows for the simulation of ex-
tremely rare events by computing and multiplying to-
gether the ratios of probabilities of a sequence of increas-
ingly rare events. We give only a high-level overview of
aspects of the splitting method that are relevant to this
work, and we point the interested reader to Ref. [16] or
Ref. [17] for a more detailed explanation of this method
applied to quantum error correction.

The splitting method is very useful, for instance,
for computing failure probabilities of quantum error-
correcting codes at small error probabilities. In particu-
lar, denote by Pj a family of error models, where we may
imagine large j corresponding to a low-error probability
regime, and denote by F the set of error configurations
that will cause a given decoder to fail. The splitting
method makes use of the acceptance ratio method from
[67], for estimating the free-energy difference between two
canonical ensembles. The acceptance ratio method pro-
vides a means to compute the ratio

Rj =
Pj+1(F)

Pj(F)
. (B1)
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provided samples of failing errors, i.e., samples drawn
from Pj(E|F) and from Pj+1(E|F). Then, provided that
one has access to the direct probability P0(F), for exam-
ple by direct Monte-Carlo estimation, then the probabil-
ity of failure at any error probability can be computed as
a product of these ratios:

Pj(F) =

j−1∏
j′=0

Rj′P0(F) (B2)

The quantity P0(F) may be computed using standard
Monte-Carlo techniques at some error probability where
it is feasible to do so. This will likely be close to thresh-
old, where the failure probability does not vanish in the
code distance, and in practice a rough estimate of the
threshold can be found by a preliminary sweep. Alterna-
tively, P0(F) may be calculated using analytic methods
where possible.

We remark that the splitting method was used to com-
pute abort probabilities of the exclusive decoder below
the abort threshold. The method was used as described,
except with the failing error set F replaced with the
abort set A. Direct Monte-Carlo methods were used to
compute abort probabilities close to the abort threshold.
More sophisticated methods were required to compute
post-selected failure probabilities, as well as for accep-
tance probabilities above the abort threshold, and these
methods are developed in the next section.

2. Splitting individual logicals

In this section, we develop a new method that is used
to compute the post-selected failure probabilities and ac-
ceptance probabilities presented in the main text.

The splitting method cannot be directly applied in the
current setting, for two reasons. The first reason is that
post-selected failure probabilities are conditional on the
decoder accepting the syndrome history. That is, if we
denote by A the set of errors that lead to aborts, then
post-selected failure probabilities are given f = P(F|Ac).
To use the splitting method, we would need to compute
the ratios of conditional probabilities, and this would re-
quire being able to efficiently compute the conditional
probability density function Pj(E|Ac), which we cannot
do. The second problem is that it is difficult to even
sample from Pj(E|Ac) for low error probabilities. If only
local steps are used by a sampler, the sampler is no longer
ergodic because it cannot couple failing errors from dif-
ferent logical sectors without passing through some error
that causes the decoder to abort. On the other hand, if
non-local steps are used by a sampler, then a step that
couples logical sectors is going to occur with a probability
that is exponentially small in the code distance.

To overcome these difficulties, we introduce a method
that samples from each logical sector separately, and at
the end combines this sample data using a normaliza-
tion procedure to give the probabilities of failure due to

each logical sector. Denote by L the set of all error con-
figurations E that are accepted by the decoder and are
corrected by a Pauli correction C resulting in a logical
operator EC = L̄. We then have, for instance, that
F = X ∪ Y ∪ Z for a code that contains only one logi-
cal qubit. Applying the splitting method to each logical
sector separately allows us to calculate the unconditional
sector probabilities:

P̃j(L) = cLPj(L) , (B3)

where cL are as-yet unknown constants of proportionality
that do not depend on j.
We now make use of our knowledge of the noise model,

which in the main text was a depolarizing noise model,
with P0 corresponding to a depolarizing parameter p =
75%. At this error probability, the noise model has a
symmetry, which is that all Pauli operators are equally
likely to occur. This fact can be exploited to relate the
constants of proportionality. In particular, it guarantees
that P0(L) is independent of L. If we fix P̃0(L) = 1
without loss of generality, then inspecting Eq. (B3) leads
us to conclude that cL must also be independent of L,
and we drop the subscript and write cL = c.
Finally, since post-selected failure probabilities involve

ratios of unconditional sector probabilities, the constant
of proportionality cancels out, and we have:

fj =

∑
L≠I P̃j(L)∑
L P̃j(L)

. (B4)

Acceptance probabilities above the abort threshold can
be computed up to a constant of proportionality:

hj := 1− gj =
1

c

∑
L

P̃j(L) , (B5)

and the constant of proportionality can be removed by
fixing to direct Monte-Carlo estimates of the abort prob-
ability taken near threshold.
We made special use of properties of the depolariz-

ing noise channel at p = 75%. We remark that this
is not a significant limitation on the flexibility of the
method. In general, any splitting-style numerical method
for computing probabilities of rare events will require
some regime where the probabilities of events can be cal-
culated directly, either by analytic methods or by Monte-
Carlo estimation. All that is required is that a path of
noise models is constructed that connects a target noise
model to some ‘nice’ noise model, such as the completely
depolarizing channel, and that samples are collected from
every noise model along the path.

Appendix C: Additional numerical results

In this section, we expand on results relating to the
zero-tolerance decoder. The additional results that we
show are:
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FIG. 6: Fault-tolerant logical failure probabilities for the
zero-tolerance exclusive decoder. The decoder is used with
the rotated surface code with n = d2, and with t = d rounds
of syndrome measurement. The noise model is depolarizing
noise of strength p, with measurement errors occuring with
probability pm = 2p/3. (top) We plot the logical failure prob-
ability against the code distance for a range of error probabil-
ities near threshold, observing a threshold value of p ≈ 32%
(bottom) We show the scaling of logical failure probabilities
below threshold. Markers correspond to data points, and the
solid lines are the low-error probability ansatz Eq. (C1), along
with Eq. (C2).

1. We demonstrate fault-tolerant thresholds for logi-
cal failure probabilities using the zero-tolerance de-
coder, and show the subthreshold scaling behaviour
of the failure probability.

2. We provide data on abort probabilities in the fault-
tolerant regime.

3. We provide data on abort probabilities in the code-
capacity regime, which was omitted from the main
text on account of there being no thresholds for
aborts.

1. Zero-tolerance fault-tolerant performance

In this section we look at the fault-tolerant version of
the exclusive decoder. We choose periodic time-like and
rotated periodic space-like boundary conditions, which
are often convenient for numerical work. We repeat t = d
rounds of syndrome measurement. The noise model is

Sector Multiplicity Probability

II00 (x1) 1 (1− p)d
2t(1− pm)d

2t

XI00 (x4) dt
2

(
d

d/2

)
( p
3
)d

II10 (x2) d2

2
( 2p

3
)d

XX00 (x2) dt ( d
3
)d

XZ00 (x2) dt ( p
3
)d

FIG. 7: Analytic data used for the low-error probability
ansatz Eq. (C2), which sets the failure probability of the zero-
tolerance decoder in the fault-tolerant regime as per Eq. (C1).
Sectors are labelled first by a logical Pauli on each qubit, and
then by the parity of Z-type (then X-type) measurements in
any time-slice. (top) Example error configurations from each
sector that contains a minimum-weight error. Red balls de-
note Pauli X-type errors or measurement faults on Z-type sta-
bilizers. Yellow balls denote Pauli Y-type errors. (bottom)
Tabulated data for each sector that contains a minimum-
weight failing error. The times symbol next to each sector
label counts the number of other sectors that are equivalent
to the given sector by a combination of transversal hadamard
and/or rotation.

depolarizing noise of strength p, with measurement errors
occuring with probability pm = 2p/3.

In Fig. 6, we demonstrate a fault-tolerant threshold
value of 32%. This is smaller than the code-capacity
threshold, which is to be expected as a general prin-
ciple since there are more failure mechanisms in the
fault-tolerant regime than there are in the code-capacity
regime.

In the regime of small error probabilities, the logical
failure probability is determined by the number of least-
weight failing errors, and we propose the ansatz

f = A(d)pd (C1)
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where A(d) is related to the number of least-weight fail-
ing errors, and will be discussed momentarily. In Fig. 8,
we plot failure probabilities below threshold, and demon-
strate good agreement with Eq. (C1). We observe that
failures scale with pd instead of pd/2, as would be the case
with a standard decoder. In the fault-tolerant regime,
just as in the code-capacity regime, the zero-tolerance de-
coder attains a quadratic improvement to logical failure
probabilities below threshold, as compared to standard
decoders.

We now look more closely at the combinatoric pre-
factor A(d). We remark that the ansatz Eq. (C1) is
slightly more general than, for instance, Eq. (2), since
the form of A(d) is as-yet unspecified. This more general
ansatz is necessary, since an ansatz of form A(d) = CAd

was not observed to satisfactorily fit the data for small
code distances, and we require an accurate ansatz for
fault-tolerant overhead estimation in Sec. IIIA. We now
construct a sophisticated ansatz for A(d) by explicitly
counting least-weight failing errors.

In the zero-tolerance regime, a logical failure must re-
sult from either a logical operator in the code, or a time-
like string of measurement errors that wraps around the
time-like direction. It is possible to count the number
of least-weight failing errors in this setting exactly, and
derive an ansatz for the post-selected failure rates that
becomes exact in the low-error rate regime. For example,
we consider the logical sector that involves no errors on
the logical qubits, but with a non-trivial string of faulty
Z-type measurement outcomes, as shown in the top right
of Fig. 7. These error chains must be straight in order
to be least-weight. Therefore, there are only d/2 least-
weight errors in this sector, one for each Z-type stabi-
lizer in the code. Each of these least-weight errors has
probability pdm = (2/3)dpd of occurring, since they are
made up of measurement errors. Therefore, failure mech-
anisms from this sector contribute a term (d/2)(2/3)d to
the function A(d). All the least-weight failing errors are
tabulated in Fig. 7, and a careful consideration of all
the failure mechanisms in the code leads to the following
ansatz

A(d) =
4d2

2

(
d

d/2

)(
1

3

)d

+ d2
(
2

3

)d

+ 4d2
(
1

3

)d

(C2)

We plot subthreshold failure probabilities in Fig. 6, and
see good agreement with the ansatz for error probabilities
p ≤ 10−3.

2. Zero-tolerance fault-tolerant abort probabilities

The fault-tolerant exclusive decoder at zero-tolerance
does not possess a threshold for aborts, since increasing
the code distance will always increase the probability that
a single error will result in an aborted outcome. Despite
the lack of threshold, the abort probability is still an
important quantity that sets the cost of the scheme.
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FIG. 8: Fault-tolerant abort probabilities for the zero-
tolerance decoder. The decoder is used with the rotated sur-
face code with n = d2 qubits, and with t = d rounds of syn-
drome measurement. The noise model is depolarizing noise
of strength p, with measurement errors occurring with prob-
ability pm = 2p/3. Data points are markers, and the solid
line is the ansatz Eq. (C3) . (inset) A zoomed in view of the
inverse of the acceptance probability (1 − g0)

−1. This is the
factor increase in the time cost of the protocol as a result of
exclusive decoding for one decoding cycle, since the compu-
tation may need to be repeated until the decoder accepts.

A first-order expression for the abort probability at
zero-tolerance is given by the probability that any error
occurs in the code. To first order, we have that the abort
probability is given:

g = 1− (1− p)td
2

(1− pm)td
2

≈ td2(p+ pm) (C3)

where the approximation in the second equality holds
when pd2t ≪ 1. The abort probabilities for the zero-
tolerance case are sufficiently high that they can be stud-
ied effectively using pure Monte Carlo sampling, and we
compare Eq. (C4) to numerical data in Fig. 8. We ob-
serve that in this heavily post-selected regime, the abort
probability increases quadratically with the code distance
at all error probabilities.

3. Zero-tolerance code-capacity abort probabilities

The zero-tolerance exclusive decoder in the code ca-
pacity setting does not possess a threshold for aborts.
We remark that abort probabilities in the code-capacity
setting for the zero-tolerance decoder are qualitatively
identical to the abort probabilities in the fault-tolerant
regime, which were discussed in the previous section.
A first order expression for the abort probability is

given by considering the probability of any error occur-
ring in the code:

g = 1− (1− p)d
2

≈ pd2 (C4)

where the approximation in the second equality holds
when pd2 ≪ 1. We study the abort probabilities using
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FIG. 9: Code-capacity abort probabilities for the zero-
tolerance decoder. The decoder is used with the rotated sur-
face code with n = d2 qubits, and the noise model is depolar-
izing noise of strength p. Data points are markers, and the
solid line is the ansatz Eq. (C4). (inset) A zoomed in view
of the inverse of the acceptance probability (1 − g0)

−1. This
sets the time-overhead of the exclusive decoder, since a com-
putation may need to be repeated until the decoder accepts.

Monte Carlo sampling, and compare Eq. (C4) in Fig. 9.
As for the fault-tolerant case, there is no threshold be-
haviour and the abort probability increases quadratically
with the code distance. The key difference between the
fault-tolerant regime and the code-capacity regime is that
abort probabilities are an order of magnitude smaller in
the code-capacity regime, since there are fewer locations
for errors to occur.
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Appendix D: Supporting figures

This section does not contain any additional results not
explored in the main text. This section provides a more
in-depth detailing of some of the data analysis and fit-
ting procedures that support the main text figures. This
section contains the following figures.

1.

• Critical exponent plots of logical threshold values

• Goodness of fit of exponential decay of failure prob-
abilities below threshold

• Plot of offset C(p) for failure probabilities below
threshold.

• Critical exponents plots of abort threshold values

• Goodness of fit of exponential decay of aborts below
threshold

• Plot of offset C̃(p) for abort probability below
threshold

• Goodness of fit of exponential decay of acceptance
probability above the abort threshold.

• Plot of offset C̃h(p) for acceptance probability
above the abort threshold.
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FIG. 10: Critical exponent plots for threshold values of failure. For each tolerance, we fit an ansatz near threshold f =
Ax2 +Bx+C, where x = (p− pth)d

−ν is the re-scaled error probability, and A,B,C, pth, ν are all extracted from fits. Markers
are data points, plotted as a function of the re-scaled error probability, and black lines are the ansatz. The fitted parameter
pth is the abort threshold that we report in the main text.
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FIG. 11: Goodness of fit of a model describing an exponential decay of failure probabilities below the failure threshold, ie, the
ansatz log f = d log Λ(p)+logC(p). (top) For each error probability, we plot the coefficient of correlation resulting from a linear
fit log f against d. (bottom) We plot the failure probability f against the code distance d at a subthreshold error probability
p = 10−3. Markers are data points and the solid lines are the ansatz log f = d log Λ + logC, for Λ and C extracted by fitting.



17

10−5 10−4 10−3 10−2

Error probability p

100

O
ff

se
t
C

Tolerance

0
2
5

1
2

2
3

1

FIG. 12: The offset function C(p) is plotted, which is extracted from a linear fit of form log f = d log Λ(p) + logC(p), where
f is failure probabilities of the exclusive decoder, with the same code and error model as studied in the main text. Markers
denote fitted values. We remark that low-error probability ansatz of Eq. (2) assumes that C(p) ≡ C is a constant, and we plot
this low-error probability ansatz using solid lines.
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FIG. 13: Critical exponent plots for threshold values of abort. For each tolerance, we fit an ansatz near threshold g =
Ãx2 + B̃x+ C̃, where x = (p− p̃th)d

−ν̃ is the re-scaled error probability, and Ã, B̃, C̃, p̃th, ν̃ are all extracted from fits. Markers
are data points, plotted as a function of the re-scaled error probability, and black lines are the ansatz. The fitted parameter
p̃th is the abort threshold that we report in the main text.
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FIG. 14: Goodness of fit of a model describing an exponential decay of abort probabilities below the abort threshold, ie, the
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fit log g against d. (bottom) We plot the failure probability f against the code distance d at a subthreshold error probability
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FIG. 15: The offset function C̃(p) is plotted, which is extracted from a linear fit of form log g = d log Λ̃(p) + log C̃(p), where
g is abort probabilities of the exclusive decoder, with the same code and error model as studied in the main text. Markers
denote fitted values. We remark that low-error probability ansatz of Eq. (4) assumes that C̃(p) = C̃p is proportional to the
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FIG. 16: Goodness of fit of a model describing an exponential decay of acceptance probabilities above the abort threshold,
ie, the ansatz log h = n log Λ̃h(p) + log C̃h(p), where n is the number of data qubits with n = d2 for the rotated surface code.
(top) For each error probability, we plot the coefficient of correlation resulting from a linear fit log g against n. (bottom) We
plot the acceptance probability h against the number of qubits n at an error probability p = 50%. Markers are data points and
the solid lines are the ansatz log g = n log Λ̃ + log C̃, for Λ̃ and C̃ extracted by fitting.
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Appendix E: Exclusive Union-Find

The notion of a exclusive decoder is not restricted to
MWPM-based decoding, and is sufficiently general to be
applied to a range of underlying standard decoders from
QEC. Here, we define a exclusive variant of the union-
find (UF) decoder [42].

The first stage of the standard union-find algorithm is
syndrome validation, whereby an initial error consisting
of a Pauli part E and erasure part σ is mapped to a final
erasure σ′. If the Pauli part E is contained in the final
erasure, and the final erasure does not include a logical
operator, then a correction can be assured.

To generalize this, we define the survived distance
dsurv, which will measure the amount of uncertainty in
a correction. The survived code distance is defined with
reference to the final erasure σ′. If we take a logical op-
erator L̄, then it can be decomposed into a part with
weight w that shares no support with the final erasure,
and a part with weight w′ that is entirely supported on
the final erasure, so that w + w′ ≥ d. The surviving dis-
tance is then the minimum weight w taken over all logical
operators L̄. We propose a decoder that aborts whenever

1− dsurv
d

> c . (E1)

We show now that this decoder can either successfully
correct, or abort, all errors consisting of a weight s Pauli
part E, and a weight t erasure part σ, provided (2s +
t)/2 < kd, with k given

k = 1− c

2
. (E2)

The UF decoder breaks the initial erasure σ up into
connected components, called clusters, and iteratively
updates each cluster. Let l denote the sum of the di-
ameters of the clusters at some point in the algorithm,
and let w′ denote the weight of E supported on the clus-
ters at that point. The growth of a cluster is always
accompanied by the discovery of at least one new qubit
in the support of E, and its inclusion into the cluster.
This leads to a lower bound w′ ≥ (l − t)/2. Further, if
(E, σ) results in failure, then we must also have the lower
bound w ≥ dsurv, where w is the weight of E not sup-
ported on the final clusters. Writing s = w + w′, we can
write

2s+ t ≥ 2dsurv + l ≥ dsurv + l ≥ 2d
(
1− c

2

)
. (E3)

The first inequality above is the application of the bounds
discussed in the previous paragraph, which assume that
the result of the UF algorithm is a non-trivial logi-
cal operator. The second inequality uses the bound
dsurv + l ≥ d, which is true since the minimization in
the definition of dsurv can be carried out without loss of
generality by considering only logicals that do not en-
ter or exit each final cluster more than once. The last
inequality follows from the assumption that the decoder
does not abort, and is the negation of Eq. (E1).
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