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We explore the practicality of early fault-tolerant quantum algorithms, focusing on ground-state
energy estimation problems. Specifically, we address the computation of the cumulative distribution
function (CDF) of the spectral measure of the Hamiltonian and the identification of its discontinu-
ities. Scaling to bigger system sizes unveils three challenges: the smoothness of the CDF for large
supports, the absence of tight lower bounds on the overlap with the actual ground state, and the
complexity of preparing high-quality initial states. To tackle these challenges, we introduce a signal
processing technique for identifying the inflection point of the CDF. We argue that this change of
paradigm significantly simplifies the problem, making it more accessible while still being accurate.
Hence, instead of trying to find the exact ground-state energy, we advocate improving on the classical
estimate by aiming at the low-energy support of the initial state. Furthermore, we offer quantitative
resource estimates for the maximum number of samples required to identify an increase in the CDF
of a given size. Finally, we conduct numerical experiments on a 26-qubit fully-connected Heisenberg
model using a truncated density-matrix renormalization group (DMRG) initial state of low bond
dimension. Results show that the prediction obtained with the quantum algorithm aligns well with
the DMRG-converged energy at large bond dimensions and requires several orders of magnitude
fewer samples than predicted by the theory. Hence, we argue that CDF-based quantum algorithms
are a viable, practical alternative to quantum phase estimation in resource-limited scenarios.

I. INTRODUCTION

Quantum computers may improve the simulation of
many-body quantum systems in fields ranging from quan-
tum chemistry to condensed-matter and high-energy
physics. While substantial progress has been made to-
wards this goal, there is still a continued need to improve
quantum algorithms for a practical impact [1–5] and for
solving problems paramount to these systems. One such
critical problem is ground-state energy estimation, which
historically has been addressed by two primary classes of
quantum algorithms: variational methods and quantum
phase estimation. The former class includes variational
quantum eigensolvers (VQE) [6], which involve prepar-
ing variational quantum states and optimizing their pa-
rameters to minimize energy expectation values. Despite
its numerous applications [7–18], scaling to larger sys-
tems remains challenging due to the substantial sample
requirements [19, 20] and trainability issues [21–23]. In
contrast, the quantum phase estimation (QPE) [24] al-
gorithm aims to extract the lowest-energy eigenstate by
sampling eigenvalues from a distribution induced by an
initial state.
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Algorithmically, QPE’s strength lies in delivering re-
sults with quantitative confidence but experimentally in-
volves challenges such as gate-intensive operations and
preparing an initial state with sufficient overlap with the
ground state. Consequently, most quantum algorithms
for ground-state energies generally align with either noisy
intermediate-scale quantum (NISQ) [25] computing or
fault-tolerant quantum computing (FTQC). These ob-
servations motivate the exploration of algorithms suit-
able for early-FTQC devices [26] that will still be limited
in width and depth but benefit from quantum error cor-
rection and mitigation.

Numerous adaptations to QPE have been made for the
purpose of easing implementation on early fault-tolerant
quantum computers. Notably, for any system described
by a Hamiltonian H and an initial state |Ψ⟩, we can
mitigate the drawback of large circuit depths by ana-
lyzing the time series ⟨Ψ|e−itH|Ψ⟩, which only requires
one ancilla qubit [27] and the connectivity induced by
the target Hamiltonian. For example, the algorithm pro-
posed by Lin and Tong [28], inspired by Ref. [29], builds
the spectral measure’s cumulative distribution function
(CDF) and identifies the discontinuities with the eigen-
values of the underlying Hamiltonian. In a nutshell, this
algorithm, which we shall refer to as the LT algorithm,
evaluates the expectation value of the Heaviside function
Θ(·) of the Hamiltonian for an initial state ⟨Ψ|Θ(H)|Ψ⟩,
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by writing the Heaviside function as a Fourier series and
computing the Fourier moments on a quantum computer
using the Hadamard test [30, 31].

These methods have been further extended and im-
proved by using an error function instead of a Heaviside
one [32], introducing Gaussian kernels [33], employing the
quantum eigenvalue transform of unitaries (QETU) [34],
or by exploring implementation in real quantum hard-
ware [35, 36]. Even if these methods aim at addressing
the problem of limited resources, they all assume access
to a lower bound η on the overlap between the initial
state and true ground state. It remains unclear how this
algorithm would perform in practice without this infor-
mation. Here, we instead focus on improving the energy
estimation associated with an initial state obtained from
classical methods such as DMRG, rather than solving
for the exact ground state [37], which is known to be a
QMA-complete problem [38–41].

The contributions of this paper are threefold. First, we
identify and address the practical challenges arising when
implementing this algorithm in practice. More specifi-
cally, when scaling to large system sizes, the CDF no
longer resembles a series of step functions but instead
approaches a smooth, monotonically increasing curve.
Since identifying discontinuities becomes challenging in
this scenario, we propose a different approach, based on
signal processing, to find the inflection point of the CDF.
Moreover, concentrating on the inflection point has the
additional advantage of not requiring a tight estimate of
the overlap with the true ground state. Our second con-
tribution consists of quantitative resource estimation for
the maximal number of samples required to identify an
increase of size η. Our third major contribution consists
of numerical simulations on challenging systems up to
N = 26 qubits. Starting with a density-matrix renor-
malization group (DMRG) [42, 43] initial state with a
low bond dimension and using a low-order Trotter-Suzuki
for dynamics, we extract the converged energy of DMRG
with larger bond dimension. We also consider a sparsi-
fied version of the DMRG initial state as a proxy for an
unconverged calculation, which can also be potentially
more efficient to load onto the quantum computer [44].

The paper is organized as follows: we start by describ-
ing the LT algorithm in Sec. II, discuss the practicality
of this algorithm in Sec. III, and introduce our modifi-
cation involving a procedure to identify inflection points
in Sec. III C. We give the numerical resource estimation
in Sec. IV and report the numerical experiments on the
capabilities of the LT algorithm in Sec. V. Finally, we
conclude with a discussion of the results and future di-
rections in Sec. VI.

II. REVIEW OF THE LT ALGORITHM

We shall now describe the LT algorithm in more detail.
The purpose of this section is to combine known results
in a single place. We start by setting up the problem
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FIG. 1: CDF for the XXZ model. The exact CDFs
are shown with coloured-solid lines and show a consider-
able smoothening behaviour for the eight-spin case. The
initial state is chosen at random. The dashed-grey lines
show the exact eigenvalues and are being given only for
the four-spin case for readability. We note that the eigen-
values are in one-to-one correspondence with the discon-
tinuities, or jumps, in both the CDFs.

at hand and then describing the techniques developed in
Refs. [28, 32, 33]. We consider a Hamiltonian H with the
following eigendecomposition

τH =
∑
k

λkΠk, (1)

where τ is chosen to normalize H as τ ||H|| < π/2, and
Πk = |Ek⟩⟨Ek| are the projectors onto eigenspace as-
sociated with scaled eigenvalues λk = τEk, ordered as
λ0 ≤ λ1 ≤ · · · ≤ λk. Moreover, we assume access to an
initial state ρ = |Ψ⟩⟨Ψ| and define its spectral measure
for H based on Eq. (1) as

p(x) =
∑
k

pk δ̃(x− λk) =
∑
k

Tr[ρΠk]δ̃(x− λk), (2)

where δ̃(·) is the Dirac delta function and 0 < η ≤ p0 ≡
|⟨E0|Ψ⟩|2 defines a lower bound on the ground-state over-
lap for which we wish to solve the given problem:

Problem 1. Given a precision δ > 0 and lower bound
on the overlap parameter η > 0, we seek to decide if

Tr[ρΠ≤x−δ] < η or Tr[ρΠ≤x+δ] > 0. (3)

In other words, we aim to decide if the ground state
energy obeys λ0 ∈ [x − δ, x + δ]. By answering this
question, an approximation of the ground state energy
can be found via binary search over an energy grid [28].
The LT algorithm does this by first approximating the
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cumulative distribution function (CDF)

C(x) =
∑

i:λi≤x

pi, (4)

of the spectral measure, with error ϵ related to the pre-
cision as ϵ = δ/τ , with a Fourier series whose moments
can be obtained on a quantum computer. We can then
extract the eigenvalues of the Hamiltonian, since they ap-
pear as discontinuities, or jumps, in the CDF, as shown
as an example in Fig. 1 for the periodic four- and eight-
spins XXZ chain with Jx = −Jz = 1, using a random
initial state.

The main observation to draw from this example is
that it is challenging to identify discontinuities for large
system sizes when the spectrum becomes continuous; ad-
dressing this is a core aspect of this work. The com-
putation of the CDF involves convoluting the Heavi-
side step function Θ(x) with the spectral density p(x) =∑

k pk δ̃(x − τλk), which gives C(x) = p(x) ∗ Θ(x). This
quantity can be computed coherently using quantum sig-
nal processing [34, 45]. However, for the early fault-
tolerant regime, we instead compute its approximation
as a Fourier series by evaluating Fourier moments on the
quantum computer and then adding them, weighted by
the Fourier coefficients, on a classical device. To do this,
first, a Fourier series approximation of the error function
erf (·), with precision controlled by the parameter β, can
be found as [32]

F (x;β) =
∑

|k|≤D

Fk(β)e
ikx, (5)

where D is the number of Fourier moments, or runtime,
of the algorithm, determining the precision of the approx-
imation in terms of Chebyshev polynomials with Fourier
coefficients Fk(β) [32]

F0(β) = 1/2,

F2j+1(β) = −i
√

β

2π
e−β Ij(β) + Ij+1(β)

2j + 1
, and

F2d+1(β) = −i
√

β

2π
e−β Id(β)

2d+ 1
.

(6)

Here d is related to D as 2d + 1 = D, and In(β) is the
n-th modified Bessel function of the first kind. In order
to guarantee an approximation error ϵ, one can take [32]

β = max

[
1,

1

4 sin2 δ
W0

(
2

πϵ2

)]
, (7)

where W0(·) is the principal branch of the Lambert-W
function, together with a number of terms scaling as

D = O
(
δ−1 log

(
ϵ−1
))
. (8)

We guide the reader to [32, Appendix 1] for additional
details and an explicit expression. In practice, higher β

1

|0⟩ H I(S†) • H

|Ψ⟩ /N U(jτ)

FIG. 2: Hadamard test. Quantum circuit which can
be used to compute the real and imaginary part of the
overlap ⟨Ψ| U(jτ) |Ψ⟩, where U(jτ) is the time evolution
operator exp{−iHjτ}. The phase gate S is applied on
the ancilla qubit after the first HadamardH for obtaining
the imaginary part. This is adapted from [31].

will lead to a more accurate approximation of the Heavi-
side step function by the error function at the expense of
more contributions from the higher-order terms. Using
these coefficients, an approximate periodic CDF can be
expressed as

C̃(x) =

∫ π/2

−π/2

p(y)F (x− y)dy

=
∑

|k|≤D

Fke
ikx⟨Ψ|e−iτkH|Ψ⟩.

(9)

Noting that g−k = g∗k, F2k = 0, Fk = −i|Fk| for k > 0
and Fk = i|Fk| for k < 0, the approximate CDF can be
written as

C̃(x) =
1

2
+ 2

d∑
k=1

|Fj |
(
Re[gj ] sin jx+ Im[gj ] cos jx

)
,

(10)

where j ≡ 2k + 1 and gj are the Fourier moments,

gj =
∑
k

pke
−iEjτj = ⟨Ψ|e−iHτj |Ψ⟩. (11)

The real and imaginary part of the diagonal terms in
Eq. (11) can be computed with a Hadamard test, visu-
alized in Fig. 2. We use U(jτ) = exp{−iHjτ} to denote
the time evolution operator and define the Hadamard
gate H and phase gate S as

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
. (12)

We note that the computation of Fourier moments can
be performed without a direct control on the evolution
operator U , e.g., by using control reversal gates [28, 34],
which turns out to be always economical compared to
the standard approach [30]. Moreover, such gates also
enjoy fast forwarding by a factor of two, thus dividing
the maximal circuit’s depth by the same amount.

Finally, to bring the convergence from O(ϵ−2) down to
O(ϵ−1), and therefore reach the Heisenberg scaling limit,
the sum can be computed using importance sampling
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FIG. 3: Workflow of the algorithm: The procedure takes as inputs the Hamiltonian H, initial state |ψ⟩ and
tolerance parameters δ and η. The Fourier moments, see Eq. (11), are computed on the quantum computer with
time indices j sampled based on the Fourier coefficients of the approximate error function. The approximated CDF
is built by summing the moments with the coefficients, as shown in Eq. (10). Finally, the ground state energy Ẽ0 is
predicted by first finding the inflection point using ruptures, validated by the ANOVA scheme, as an initial guess and
improving upon it with the point with the maximal gradient in its δ-neighbourhood (Sec. III C).

[28]. More precisely, a set of M values {k1, . . . , kM} ⊂
{1, 2, . . . , ⌈(D−1)/2⌉} is first sampled, where k ∼ |Fk|/F
and the normalization factor F =

∑d
k=1 |F2k+1|. The ap-

proximate CDF (ACDF) is then given by the average

G(x) =
1

2
+

2F
M

M∑
i=1

[
Re[gki(τ)] sin (kix)

+ Im[gki(τ)] cos (kix)
]
.

(13)

Following the same steps as in [28], one can easily show
that the variance of G is bounded by 2F2/M . Once an

estimate Ẽ is found, we can refine it by computing the
derivative of the ACDF and take the maximum on an
interval [Ẽ − δ, Ẽ + δ] of the CDF’s derivative [35]

G′(x) =
2F
M

M∑
i=1

ki

[
Re[gki

(τ)] cos kix

− Im[gki
(τ)] sin kix

]
.

(14)

We note that this is similar in spirit to identifying the
maxima of a Gaussian kernel placed around the energy
guess Ẽ [33]. An overview of the whole algorithm is
shown in Fig. 3, with input parameters, reconstruction
of ACDF and the detection of inflection point, which we
cover in greater detail in the next section.

III. THE LT ALGORITHM IN PRACTICE

The LT algorithm is a candidate ground-state en-
ergy estimation algorithm for early fault-tolerant quan-
tum computing (FTQC) devices. Even though it is
proven that this algorithm can find the ground-state en-
ergy using M = O(1/η2) samples and maximal depth
D = O(δ−1 log δ−1η−1) [28], several challenges must be
overcome for it to be useful in realistic settings. In this
section, we identify these practical problems and propose
implementable solutions. Most of them arise from the as-
sumption that we have access to an initial state with at
least η overlap with the actual ground state, with η large
enough. However, this is not realistic in general for the
following reasons: (i) it is difficult to prepare initial states
with significant overlaps, and (ii) there is a lack of tech-
niques to estimate the bound η on the overlap parameter
p0.

A. Initial state preparation

The quality of the initial state significantly constrains
the efficacy of quantum phase estimation (QPE) and its
variants, specifically its overlap with the true ground
state. Therefore, the method employed to prepare the
initial states plays a pivotal role. In this regard, the two
primary approaches involve evolving a known quantum
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state via quantum techniques or directly loading a wave
function obtained via classical methods.

Adiabatic state preparation (ASP) methods have been
widely studied to prepare ground-states [46]. They en-
compass advancements such as shortcuts to adiabaticity
[47], counterdiabatic driving techniques [48–50], or hy-
brid approaches like counterdiabatic optimal local driv-
ing [51, 52]. Additionally, VQE [6] and dissipative [53–57]
methods have some prospects. However, the scalability
of these techniques to large system sizes remains to be de-
termined. For instance, ASP demands an evolution time
inversely proportional to the spectral gap, which can be
exponentially small. Conversely, VQE is plagued by is-
sues of trainability [22], particularly concerning the bar-
ren plateau phenomenon [21, 23] and high sample com-
plexity [58]. Finally, dissipative methods require coupling
to a bath or transformations of the Hamiltonian using
quantum signal processing, which can be expensive to
implement.

The second category comprises techniques that load
state vectors, given in a classical representation obtained
by methods such as DMRG [42, 43] and coupled clus-
ter (CC) [59], directly on the quantum computer. These
techniques offer a crucial advantage by introducing cutoff
parameters, such as the bond dimension χ for DMRG or
the number of interacting orbitals for CC. Despite their
steep scaling with system size, it is always feasible to
identify an affordable cutoff that makes these methods
implementable in practice. Generally, this yields a state
far superior to a random guess or a mean-field state like
Hartree-Fock, enabling the extraction of low-lying eigen-
state components using approaches like LT or QPE. An
important step when using classical techniques is the
loading of the obtained state onto the quantum com-
puter. In fact, if the state vector is arbitrary, the cost
is typically exponential in the number of qubits, e.g., us-
ing the scheme by Möttönen et al. [60]. Better scaling
can be achieved if the state exhibits some special prop-
erties. For example, Refs [37, 61] developed a method
to load multi-Slater determinants and CC states, respec-
tively. On the other hand, states obtained via DMRG
can be loaded with overhead at most polynomial in the
bond dimension [62–65]. As an extra step, we note that
techniques have been introduced to further enhance ini-
tial state overlap, for example by optimizing the set of
orbitals [66], or filtering out undesirable contributions
[67], while heuristics are provided in Ref. [68].

We instead choose to address this challenge by spar-
sifying (or truncating) the classical wavefunction and
using the sparse quantum state preparation proposed
by Gleinig and Hoefler [44]. The sparsification proce-
dure consists of retaining only the S largest components,
setting all others to zero, and renormalizing. This S-
sparsified state, denoted as |ΨS⟩, can be efficiently loaded
on the quantum computer, using only O(SN) two-qubit
gates and O(S logS+N) single-qubit gates, circumvent-
ing exponential scaling. Even if DMRG states can be
loaded with only a polynomial overhead in the bond di-

Algorithm 1: Find smallest breakpoint

Input: signal {yi}ni=1, failure probability α ∈ [0, 1]

FindBP(y, α) ; ▷ Finds breakpoint (Eq. 17)

1 b← n ;

2 significant ← True ;

3 while significant do

4 b̃ = FindBP(y[: b], α) ; ▷ Optimization

5 significant = ANOVA (y, b, α) ; ▷ Validation

6 if significant then

7 b← b̃ ; ▷ Upon successful validation

Output: b

mension [62–65], the sparsification procedure might be
useful in the case that the prefactor is still significantly
high. Moreover, sparsifying the state enables us to probe
the regime where DMRG does not converge and serves
as a proxy to study the LT algorithms would perform in
this scenario.

B. Hamiltonian simulation

It’s customary to quantify resource requirements in
terms of calls to the time evolution oracle U(nτ). How-
ever, a practical implementation necessitates an under-
standing of how to drive the dynamics efficiently. In or-
der to keep the Heisenberg scaling, it is necessary to use
asymptotically optimal methods based on linear combi-
nations of unitaries (LCU) and qubitization [69, 70], gen-
erally scaling as O(∥H∥1τD+log ϵ−1) queries to the LCU
decomposition. However, they come with significant
drawbacks, such as requiring multiple ancillary qubits,
high connectivity and a usual high pre-factor. Therefore,
we opt to utilize product formulas (PF) based on p-order
Trotter-Suzuki decomposition [71], with an error scaling
as ϵ ≤ C(τD)p+1/rp, and r the number of Trotter steps
and C a prefactor depending on the commutators [72],
which can be determined specifically for each system, e.g.
spins [4], the Hubbard model [73] or neutrinos [74]. This
choice is motivated by two key factors: firstly, PFs do
not entail ancilla overhead or costly control operations,
and they often outperform what is theoretically guaran-
teed, even when limited to the low-energy regime [75].
To contain the error below ϵ, we can choose

r =
⌈
C1/p(τD)(1+1/p)ϵ−1/p

⌉
. (15)

By doing so, we lose the Heisenberg scaling but retain
quantum circuits that are resilient to the restrictions of
early FTQC devices in the sense that they do not require
expensive operations. In fact, for d-local Hamiltonians,
PFs can leverage vanishing commutators and achieve bet-
ter scaling than using qubitization, at least when the de-
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Algorithm 2: ANOVA

Input: signal {yi}ni=1, breaking point b ∈ [1, n],

failure probability α ∈ [0, 1]

1 ȳ = 1
n

∑n
i=1 yi ; ▷ Mean of signal components

2 ȳ0 = 1
b

∑b
i=1 yi ; ▷ Mean of first segment

3 ȳ1 = 1
n−b

∑
i≥b yi ; ▷ Mean of second segment

4 SSw =
∑n

i=1(yi − ȳ)2 ; ▷ Sum of squares

within segments

5 SSb =
∑

i<b(yi − ȳ0)2 +
∑

i≥b(yi − ȳ1)2 ; ▷ Sum

of squares between segments

6 f = (n− 2)SSb/SSw ; ▷ F-ratio

7 significant ← False ;

8 if F (f, 1, n− 2) > (1− α) then
9 if ȳ1 > ȳ0 then

10 significant ← True ; ▷ Successful F-test

& monotone function

11 end

12 end

Output: significant ∈ {True, False}

sired error is above some threshold. Moreover, since the
Fourier coefficients decay as 1/x, we are more likely to
run short-time simulations, which is the strong suit of
PFs. This intuition is supported by our numerical ex-
periments in Sec. V, where good energy estimation is
obtained even for circuits constrained to relatively low
depths.

Although we do not explicitly delve into these tech-
niques, various enhancements for product formulas ex-
ist, including but not limited to randomization [76–78],
multi-product formulas [79, 80], qDRIFT compilation
[81–84], and composite formulas [85, 86]. Since those
techniques trade the circuit’s depth with additional mea-
surements, they are well suited for early FTQC, warrant-
ing further investigation in more targeted studies.

C. Detection of discontinuities

The second main challenge we face is the detection of
the discontinuities in the ACDF, which is directly re-
lated to the difficulty of computing a tight lower bound
η on the overlap with the true ground state. The prob-
lem is twofold: (i) having access to an upper bound η
that describes the size of the jump and is required to
invert the CDF as described in [28] is difficult, and (ii)
since the number of jumps grows exponentially with the
system size, the CDF becomes quasi-continuous, mak-
ing any jump detection difficult. This can already be
seen from Fig. 1, where the CDF with eight qubits looks
much smoother than with four. This is tightly related
to the orthogonality catastrophe [2, 87, 88], stating that

the overlap between a random initial state and any eigen-
state vanishes exponentially fast for larger systems. We
note that the continuous nature of the CDF is driven by
the size of the support of the initial state in the eigenba-
sis. Hence, bound states, or more generally states which
are sparse in this basis, will lead to clear step functions.
However, since preparing initial states of this quality re-
mains an open problem, it is important to consider states
with exponential support.

We adopt a different perspective, seeking to under-
stand the practical implications of employing LT with
an initial state of unknown quality. Rather than striv-
ing for the exact determination of the ground state en-
ergy, we focus on enhancing the energy estimate of the
initial state. To this end, we aim to locate the inflec-
tion point of the CDF, which is generally lower than the
energy expectation value of the initial state yet still pro-
vides an upper bound on the ground-state energy. We
address this new task by identifying a statistically sig-
nificant increase in the ACDF comprised of small contri-
butions from neighbouring eigenstates. More precisely,
we replace the overlap with the true ground state by the
overlap’s accumulation in the low-energy regime

η =
∑
i<m

|⟨Ei|Ψ⟩|2, (16)

where m is a truncation parameter related to the desired
resolution.

We propose a procedure based on a kernel change-point
detection method [89, 90]; this is a signal processing tech-
nique to detect changes in the mean of a given signal, im-
plemented with the software package ruptures [91]. De-
spite its simplicity, the technique can be used to perform
complex time series analysis, yielding great results across
multiple scientific domains [92–95]. In this scenario, we
execute an iterative procedure (Algorithm 1) that com-
prises two primary steps: (i) dividing the signal into two
segments, which entails identifying the breakpoint that
optimally separates the time series, and (ii) evaluating
the statistical significance of the split using the ANOVA-
based scheme. If so, we repeat these steps on the early
(left) part of the signal up to the recently detected split,
finding new breakpoints closer to the initial point with
every iteration until one is rejected. In other words, we
aim to find the inflection point of the CDF, i.e., the zero
of its second derivative.

To find the breakpoint, the signal y is first mapped
onto a reproducing Hilbert space with ϕ : R → H, im-
plicitly defined as ϕ(y) = K(y, ·). The kernel function
K, typically chosen to be Gaussian, induces the metric
on the Hilbert space. We then solve the following mini-
mization problem to find the smallest breakpoint:

min
b∈{1,...,n}

b∑
t=1

∥ϕ(yt)− ȳ1:b∥+
n∑

t=b+1

∥ϕ(yt)− ȳb+1:n∥,

(17)
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where ȳa:b =
∑b

x=a yx/(b − a) is the mean of the signal
between a and b. We guide the reader to Ref. [89] for an
in-depth description of this technique.

The ANOVA algorithm (Algorithm 2) decides if the
breakpoint is statically significant by computing the
mean of the two segments, as well as their standard de-
viations and their ratio f . The breakpoint is accepted
if the p value of an F-test [96] with input (f, 1, n− 2) is
greater than 1−α, with α being a small permissible fail-
ure probability. We recall that the F-test is a statistical
test for comparing the variances or standard deviations
from two populations using the F-distribution. Since we
require the CDF to be monotone increasing, the break-
point b is only accepted if ȳ1:b > ȳb+1:n, in addition to
passing the F-test.

Furthermore, we avoid overshooting by stopping the
procedure if the left part of the breakpoint is, on average,
smaller than a threshold. To this end, we stop the point
search if ȳb−l:b > kσ+ ϵ̃, for k ∈ N, l a small window (for
example, l = 20), and σ and ϵ̃ are the empirical standard
deviation and error, respectively, of the signal computed
on the energy region −π ≤ x < −π/2, where we know
that no eigenvalues are present. Using these empirical
estimates has the advantage of being closer to the truth
than the theoretical upper bounds while being available
at no additional cost. The value of k sets the confidence
of the predictions and is usually chosen as k ∈ {1, 2, 3}.
In order to make the scheme more robust, we repeat the
above procedure multiple times using different data for
the ACDF and compute the median of means. Once the
inflection point b̃ is known, the energy guess is chosen as
the maxima of the gradient of the ACDF around a small
window δ around the inflection point, [b̃− δ/2, b̃+ δ/2],
as depicted in Fig. 3.

In summary, the signal is processed using ruptures to
find a breakpoint, which is then validated according to
a statistical test subject to a monotone function condi-
tion. If accepted, we perform the same analysis on the
early part of the signal up to the breakpoint and dis-
card the rest. We repeat these steps until a breakpoint
is discarded and take the last valid breakpoint as a guess
for the inflection point of the CDF. Since the eigenvalue
is situated at the middle of the jump, it is important
to look at the gradient of the CDF. The first signifi-
cant maximum of the gradient exactly corresponds to
an eigenvalue, while the secondary peaks are due to the
approximation with the Fourier series. The whole pro-
cedure described in this section can be summed up as
following steps -

Step 1. Prepare the best possible ground state |Ψ⟩ us-
ing the available methods in your toolbox, e.g.,
DMRG [42], coupled cluster (CC) [59], etc.

Step 2. Load the state on the quantum computer, e.g.,
by sparsification [44], or by encoding them as
sums of Slater determinants or matrix-product
states (MPS) [37].

Step 3. Sample M time indices from the coefficients of
the Fourier series [Eq. (6)].

Step 4. Use a product formula to compute one sample
of the corresponding Fourier moment with a
suitable number of steps [Eq. (15)].

Step 5. Build the approximate CDF (ACDF) using M
samples [Eq. (13)].

Step 6. Identify the inflection point x of the ACDF us-
ing ruptures [Eq. (17)].

Step 7. The energy estimate is the maxima of the
ACDF’s derivative in an δ-window around x.

IV. RESOURCES ESTIMATES

In light of the challenges that stem from implementing
the LT algorithm in practice, especially obtaining tight
lower bounds η, and the potentially small overlap be-
tween the initial state and the target ground state, we
strive to find what is the best that can be done using
limited resources. More precisely, we tackle the following
problem.

Problem 2. Given a maximal depth D and a maxi-
mal shot budget M , what is the best upper bound on
the ground-state energy that can be provided by the al-
gorithm?

In this section, we provide quantitative resource esti-
mates of the LT algorithm, which falls into two categories
— the highest Fourier moment D, which is related to the
maximal evolution time of the Hamiltonian simulation
via Tmax = τD, responsible for the bias in approximat-
ing the ACDF, and the number of samples M , which is
associated with the variance of the output energy. We
note that D is directly linked to the maximal depth of
the quantum circuits, which is why we also relate to it as
maximal runtime.

Theorem 1. For a given accuracy ϵ ∈ (0, 1), the maxi-
mal runtime D required to approximate the error function
erf (·) with ϵ-error is given by

D = 2 ·
⌈√

f
(
β, min

[
1, 4e−w(ϵ)/2

])
· w(ϵ)

⌉
+ 1, (18)

where β is chosen according to Eq. (7) and

w(ϵ) =W0

(
18

πϵ2

)
,

f(β, ϵ) = − ln ϵ+ β

W0 (− [1 + β−1 ln ϵ] e−1)
,

(19)

with W0(·) being the principal branch of the Lambert-W
function.
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FIG. 4: Estimating the resolution. Estimation of the
resolution η of a jump that can be resolved for the case
of 26 spins fully connected Heisenberg model discussed
in Sec. VB, using a given number of samples M with
1−ϑ = 95% confidence for different precision parameters
ϵ.

Proof. The proof of this theorem can be based on Ref. [32,
Theorem 3, Appendix A], which describes a Fourier ap-
proximation to the Heaviside function as max |Θ(x) −
F (x;β)| ≤ (ϵ1 + ϵ2 + ϵ3)/2 = ϵ [32, Eq. (A12)], where
ϵ{1,2} are the errors due to finite truncation d and scal-
ing parameter β, respectively, in approximating the error
function using Eqs. (5, 6), and ϵ3 is the error in approx-
imating the Heaviside function with an error function.
For the choice ϵ1 = ϵ2 = ϵ3 = 2ϵ/3 in this approxi-
mation, and using the values of β and d such that of
−(ϵ1+ϵ2)/2 ≤ Fd(x, β) ≤ 1+(ϵ1+ϵ2)/2 [32, Eq. (A13)],

we get d ≥
√
t · w(ϵ) [32, Eq. (A6)] for an integer t where

t =

{
f(β, 4e−w(ϵ)/2) for w(ϵ) ≥ 2 ln 4

β for w(ϵ) < 2 ln 4
, (20)

with the function f(·, ·) defined above. Since f(β, 1) = β
and ϵ ∈ (0, 1), one can rewrite Eq. (20) as t =
f(β, min

[
1, 4e−w(ϵ)/2

]
) and obtain the minimum max-

imal runtime D = 2d+ 1 as 2
⌈√

t · w(ϵ)
⌉
+ 1.

One can then use this maximal runtime for the estima-
tion of the number of samples that are required to resolve
an accumulation of size η. It is important to note that η
is no longer a lower bound on the overlap but a parameter
chosen by the user, quantifying the desired resolution.

Theorem 2. For a given maximal runtime D and ac-
curacy ϵ ∈ (0, 1), the number of samples M required to

guarantee the correct result with probability 1− ϑ is

M =

⌈
2 ·
[
2.07π−1(log 4D + γ) + 1

η − 2ϵ

]2
·

[
log log

(
1

τϵ

)
+ log (ϑ−1)

]⌉
,

(21)

where η > 2ϵ is the accumulation on the low-energy part
of the spectrum and γ is the Euler-Mascheroni constant.
The last assumption is required since a jump smaller than
the error threshold cannot be resolved.

Proof. We make use of E[G] = C̃(x) from Eq. (10) to
decide the Problem 1 from Eq. (3) as:

G < ζ ⇒ Tr[ρΠ≤x−δ] < η

G ≥ ζ ⇒ Tr[ρΠ≤x+δ] > 0.
(22)

We use ζ = η/2 to attune for errors in estimating G(x)

from sampling (Eq. (13)) and decide whether C̃(x) = 0

or C̃(x) ≥ η. Consequently, we can define the above as

the probability P[G < η/2] < κ conditioned on C̃(x) <
η − ϵ which implies C(x− δ) < η, and use the one-sided
Chebyshev inequality to find

P[G < η/2] < P[G ≤ η/2]
= P[G ≤ C̃ − η/2 + ϵ]

≤ Var[G]

Var[G] + (η/2− ϵ)2

<
Var[G]

(η/2− ϵ)2
.

(23)

Using the upper bound on the variance of G discussed
after Eq. (13) above we finally obtain

P[G < η/2] <
8F2

M(η − 2ϵ)2
, (24)

and in order to guarantee that this probability will be
bounded by κ we can then take

M ≥
(
2
√
2F

η − 2ϵ

)2(
1

κ

)
. (25)

We can improve the dependence on κ by using the fact
that the individual summands in the average that defines
G are bounded by 2F/M which allows us to employ the
Hoeffding inequality as follows

P[Ḡ < η/2] < exp

(
− 2 · (η/2− ϵ)2
M · (2F/M)2

)

⇒M ≥
(
2
√
2F

η − 2ϵ

)2

log

(
1

κ

)
.

(26)
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FIG. 5: Six spins, random initial state. ACDF (top row), zoom ACDF (middle row) and its gradient (∇ACDF,
bottom row) computed with different number of samples (each column). The first 20 eigenvalues obtained from exact
diagonalization are reported with dashed vertical lines, while the thick blue vertical line shows the energy of the initial
state. The coloured line represents the energy found with the ruptures procedure. The black line shows the ACDF
(and its gradient) computed with infinite statistics, while the shaded area is a 95% confidence interval computed with
ten repetitions.

We can now use the upper bound for the norm of the
Fourier coefficients F computed as [32]:

F =
∑
|j|≤d

|F̂j(β)| ≤
2.07

2π
(HD + 2 ln 2) +

1

2

≈ 2.07

2π
(log(4D) + γ) +

1

2
,

(27)

whereHk denotes the kth Harmonic number, which can
be estimated as done above using the Euler-Mascheroni
constant γ = 0.57721567 [97].
Finally, we can get the provided result by noting

that Algorithm 1 needs to be run O(log δ−1) times to
solve Problem 1 [28], and if it fails with probability at
most κ then to successfully estimate the ground state
of the system with probability 1 − ϑ we would have
κ−1 ≤ ϑ−1 log δ−1, with δ = τϵ as before.

It is important to note that these estimates are meant
to be used in estimating the error tolerance and reso-
lution which can be achieved using limited resources D

and M . For instance, we use the Theorem 2 in Fig. 4 to
show the inflections of size η that can be resolved for dif-
ferent error tolerances ϵ with a given sample budget M .
We observe that the resolution which can be achieved
plateaus after a certain sample budget, meaning that for
further refined resolution, we need to increase the simula-
tion time (i.e., decrease ϵ). In particular, this means that
we can not trade depth with samples indefinitely, and
that to reach higher resolution, it is required to increase
the depth. As stated in Theorem 1, the maximum depth
D is primarily determined by the error ϵ when approxi-
mating the step function. This implies that considerable
depth is required to detect even a minor accumulation
in the CDF. However, if the initial state predominantly
occupies the lower-energy eigenstates, the accumulation
may be significant enough to be identified within a con-
strained maximum depth. For instance, aiming for a 1%
error ratio may be sufficient for most applications and
can be detected within a realistic maximum depth. We
will now delve deeper into this observation by conducting
numerical simulations on a challenging system.
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V. NUMERICAL SIMULATIONS

We consider a fully connected Heisenberg model with
random couplings over N spins

H =
1

N

∑
i<j

∑
a∈{x,y,z}

J ij
a · σi

aσ
j
a, where J

ij
a ∼ N (0, 1).

(28)

Here, σi
a is the corresponding Pauli matrix applied to the

i-th qubit. This model is gapless in general and universal,
in the sense that it can approximate any two-local Hamil-
tonian [98]. Moreover, the tensor network techniques are
not expected to perform well due to the high number of
connections, making it a good testbed for quantum algo-
rithms. For this system, we simulate the dynamics using
a second-order Trotter-Suzuki formula [71] with time step
∆t = τ/r, with r = 8 being the number of Trotter steps,
and a SWAP networks-based [99, 100] circuit construc-
tion to obtain the most compressed circuits as possible.

Using a product formula for approximating the time

evolution has the advantage of keeping the circuit shal-
low, being, therefore, more suited for early FTQC de-
vices. For instance, the depth of the quantum circuits
used in the following reads 2NrD. We note that we
did not use any of the potential improvements to Hamil-
tonian simulation with product formulas discussed in
Sec. III B, which are likely to decrease the maximal depth
at the expense of additional samples.

A. Small system sizes

We start with a small system with six spins (N = 6).
We choose a random initial state with p0 = 0.0014 and
p1 = 0.015. Note that this is a state of poor quality,
compared to DMRG. We also set ϵ = 0.055 and therefore
require D = 350 Fourier moments for constructing the
ACDF.
Both the ACDF and its gradient are shown in Fig. 5 for

different numbers of samples. The continuous black line,
referred to as the infinite statistics limit, corresponds to
the infinite samples regime, where the moments are ex-
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FIG. 7: 26 spins, sparsified DMRG (χ = 10). ACDF (top row), zoomed ACDF (middle row) and its gradient
(∇ACDF, bottom row) computed with the different numbers of samples (each column). The energies obtained with
untruncated DMRG states with different bond dimensions 5 ≤ χ ≤ 2000 are reported with dashed vertical lines, while
the thick blue vertical line shows the energy of the sparsified initial state with S = 13. The coloured line represents
the energy found with the ruptures procedure. The black line shows the ACDF (and its gradient) computed with
infinite statistics, while the shaded region is a 95% confidence interval computed with ten repetitions.

act, and all of them, up to D, are included in the approx-
imation. The ground-state energy is estimated with the
procedure introduced in Sec. III C, in which we first find
an approximate guess for the inflection point and then
refine it by taking the maximum of the gradient around
it. We observe that we are not able to find the ground
state, which is due to the approximation error of the step
function ϵ being larger than the overlap. However, we are
able to find the first excited-state energy using only 104

shots and a random initial state. We note that we are
able to find the energy of the true ground state using
a better initial state, e.g. a DMRG state of low bond
dimension.

B. Large system sizes

We then move to a larger model composed of N = 26
spins. Since exact diagonalization is too expensive, in
this regime, we refer to DMRG with bond dimension
χ = 2000 to obtain the target energy. We choose ϵ =
0.019, translating into D = 6600. We perform two ex-

periments: the first starting from |Ψ⟩ = DMRG(χ = 10),
and the second from its sparsification with S = 13. The
motivation to use DMRG with low bond dimension is to
have a good initial state, which can be computed even
for large system sizes.

The results with the DMRG state are shown in Fig. 6,
which displays the ACDF computed with 102, 103 and
104 samples. The data displays the two main contribu-
tions from low-level energy eigenstates and a continuous
contribution from higher states. With our procedure, we
can recover the ground-state energy equivalent to DMRG
with χ = 2000 from the gradient of the ACDF. An impor-
tant point to make at this stage is that the CDF clearly
exhibits two jumps on the low-lying part of the spec-
trum. This is due to the high quality of the initial state,
which consists of two bound states of low energy and a
tail of high-energy residuum. Therefore, the left part of
the CDF exhibits a step-like shape, while the right part
is continuous. However, as seen in Fig. 7, the CDF ob-
tained from the sparsified DMRG state looks continuous,
and we only unravel discontinuities when magnifying by
a factor of one hundred. The important point is that
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in both cases, we improve on the DMRG estimate (blue
dotted vertical line), by 5% and 32% respectively.

The key difference with respect to the above case, is
that the ACDF does not display any clear steps and, as
such, we have to rely on finding the inflection point. This
results in the need of more samples to find the ground
state energy, requiring 105 and 107 samples to recover the
energy of DMRG with χ = 1000 and χ = 2000, respec-
tively. To study the quality of the sparsified initial state
|ΨS⟩, we show the L2 distance and the overlap with the
true DMRG initial state as a function of the truncation
parameter k in Fig. 8. We observe that the quality in-
crease slows down after S = 13, which is the reason this
truncation was chosen. Furthermore, we note that the
overlap squared p0 between the (sparsified) initial state
and the converged DMRG state reads (2×10−5) 7×10−6,
requiringM = 1013 (using Theorem 2) samples to distin-
guish the exact ground state with 95% certainty. This is
why we should instead search for inflection points since it
requires several orders of magnitude less resources than
what is expected theoretically from detecting discontinu-
ities while achieving similar performance. The important
point here is the change of paradigm, going from aim-
ing at the true ground-state energy, which is challenging
and costly, to detecting a relevant accumulation, which
is much cheaper and is usually good enough for most
applications.

Finally, we show the energy predictions as a function
of the number of samples and maximal depth in Fig. 9.
We observe that with only a fifth of the depth considered
in the previous experiments, we can already obtain the
same energy estimates using just 103 and 105 samples,
respectively, for the full and sparse initial states. This
hints that finding the inflection point requires less preci-
sion than a jump, thus that fewer moments are required,
in practice.
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FIG. 9: Energy predictions using the method introduced
in Section III C taking the maxima of the gradient of the
ACDF in a δ = 0.01 window. The horizontal lines de-
pict the values predicted by DMRG with different bond
dimensions χ. The different colours refer to the maxi-
mum time evolution used to compute the ACDF, while
the x-axis depicts the number of samples. The error bars
represent one standard deviation computed over ten ex-
periments. The infinity symbol refers to the regime of
infinite samples.

VI. CONCLUSION

In this paper, we examine the practical performance
of early fault-tolerant algorithms for ground-state en-
ergy estimation. Specifically, our focus here has been
on the Lin and Tong (LT) algorithm [28], which approxi-
mates the cumulative distribution function (CDF) of the
spectral measure and associates its discontinuities with
the eigenvalues of the corresponding Hamiltonian. No-
tably, this algorithm requires only one ancillary qubit
and the ability to perform real-time evolution, making it
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a promising candidate for the intermediate-scale quan-
tum hardware. We have summarized the current state-
of-the-art setup of this algorithm and make three distinct
contributions there to enhance its practicality: the iden-
tification of the relevant challenges appearing in practice
and how to address them; quantitative resource estima-
tion in terms of maximal shot budget and evolution time
for Hamiltonian simulation; and numerical simulation on
a non-trivial system. We advocate using product formu-
las for time evolution, even if we lose the Heisenberg scal-
ing by doing so. Hence, they enjoy low implementation
overhead and are likely better for the short-time evolu-
tion of local Hamiltonian, rather than the asymptotically
optimal but more expensive techniques.

In light of the numerical simulation performed on
the challenging fully-connected, fully-random Heisenberg
model, LT-type algorithms emerge as a viable option for
early fault-tolerant quantum (FTQ) devices. The key
point was to change our mindset from aiming at the ac-
tual ground-state energy, which requires high depth and
a number of samples, to instead concentrating on finding
the spectral CDF’s inflection point. Moreover, suppose
the initial state is of high enough quality, as seems to
be the case for a (sparsified) DMRG state of low bond
dimension. In that case, the inflection point lies close
enough to the true energy and is usually precise enough
for most applications. This paradigm change has the
advantage of relaxing the requirement in the approxima-
tion error, which is responsible for scaling the depth and
number of samples. While quantum phase estimation is
still likely outperforming the LT algorithm in the FTQ
computing era, our findings suggest that LT algorithms
are able to improve on classical solutions, using only lim-
ited quantum resources (104 − 105 samples), orders of
magnitude less than what is predicted by the theory. In
conclusion, the LT algorithm emerges as a robust and
efficient quantum algorithm, bridging the gap between
NISQ and FTQ computing eras.

CODE

We use Tenpy [101] for the DMRG calculations,
PennyLane [102, 103] and Qsim [104] for the dynamics
and Ruptures [91] for the breakpoint detection. Com-
plete code is available upon request to the authors. Nu-
merical experiments were performed on the CERN Open-
lab GPU cluster.
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