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The preparation of a given quantum state on a quantum computing register is a typically demand-
ing operation, requiring a number of elementary gates that scales exponentially with the size of the
problem. Using the adiabatic theorem for state preparation, whose error decreases exponentially as
a function of the thermalization time, we report an explicit analytic expression for the dependence
of the characteristic time on the Hamiltonian used in the adiabatic evolution. Exploiting this knowl-
edge, we then design a preconditioning term that modifies the adiabatic preparation, thus reducing
its characteristic time and hence giving an exponential advantage in state preparation. We prove
the efficiency of our method with extensive numerical experiments on prototypical spin-models,
which gives a promising strategy to perform quantum simulations of manybody models via Trotter
evolution on near-term quantum processors.

Introduction.– We are currently living the so-called
Noisy Intermediate-Scale Quantum (NISQ) era [1], in
which actual devices are made of a limited number of
noisy qubits available in a number of different technolog-
ical platforms. Restricting to the realm of digital quan-
tum processors satisfying the DiVincenzo criteria [2],
typically 30 all-to-all connected qubits are available in
trapped ions quantum processors [3] and more than 100
in superconducting quantum circuits with next-neighbor
coupling [4]. The physics of manybody quantum systems
may thus be efficiently simulated through the direct ap-
plication of such devices [5, 6]. A proven advantage in
quantum simulations is yet to be presented, at time of
writing. In fact, in principle one expects NISQ hardware
to overcome known issues in simulating quantum sys-
tems on classical devices, such as the sign problem for
fermionic systems [7, 8]. Nowadays, a substantial limita-
tion resides in the severely restricted hardware resources;
nevertheless first proof-of-concept quantum simulations
of chemical properties have been reported [9–11], as well
as the time-dynamics of manybody Hamiltonians [12–14]
and quantum field theories [15–19].

In quantum simulations on NISQ devices, one of the
most pressing targets is the efficient generation of a de-
sired quantum state of a given model Hamiltonian on a
quantum register, which is essential, e.g., to directly com-
pute expectation values of the observables under study.
This is the focus of the present work. We define H1

as the target Hamiltonian, properly mapped on a quan-
tum computer, and denote with {|Ωn(1)⟩} the set of its
eigenstates. Using a sequence of single- and two-qubit
gates [20], a unitary operator Un acting on a register
of L qubits such that |Ωn(1)⟩ = Un|0⟩⊗L may always be
found, and the number of gates required to exactly imple-
ment Un scales exponentially with L, i.e., with the size
of the system. Currently, the noisy character of state-
of-the art qubits and quantum gates available in NISQ
devices limits the number of operations that can be re-
liably executed on actual hardware. Hence, significant

effort has been devoted to propose efficient algorithms al-
lowing to obtain a well approximated Un within limited
quantum computing resources. For state preparation,
variational quantum eigensolvers have been proposed as
a valid solution, consisting of hybrid quantum/classical
algorithms in which quantum circuits with parametrized
operations are classically optimized to achieve the de-
sired state [21–24]. Despite their usefulness for simple
models, a general strategy to define such circuits for
arbitrary systems is still not available; moreover, they
may involve demanding classical optimizations in high-
dimensional spaces [25]. An alternative approach has
been recently proposed [26], based on imaginary time
evolution, which might prove more effective than varia-
tional eigensolvers on NISQ devices, despite its intrinsic
limitations in the preparation of quantum states with
long correlation lengths.

Here we take a different route, by applying the Adia-
batic Thermalization (AT) [27] to show that any eigen-
state of a target Hamiltonian can be generated, in prin-
ciple, with high fidelity and limited quantum computing
resources. The key idea is to start from a Hamiltonian
H0, different from H1, whose eigenstates are analyti-
cally known and trivial to prepare on a quantum register.
Then, its n-th eigenstate |Ωn(0)⟩ is evolved in time from
t = 0 to t = τ , according to the auxiliary Hamiltonian

H (s) = (1− f (s))H0 + f (s)H1 , s = t/τ , (1)

which is parametrized in terms of a dimensionless vari-
able s ∈ [0, 1]. Essentially, H (s) interpolates betweenH0

and H1 through the time-dependent holomorphic func-
tion f(s) such that f(0) = 0 and f(1) = 1. In what
follows we denote the time evolution operator associated
with H(s) in the time interval [0, τ ] as Uτ . Its appli-
cation to the n-th eigenstate of H0 produces the final
state Uτ |Ωn(0)⟩, which is an approximation of the actual
eigenstate |Ωn(1)⟩ of H1, with a discrepancy quantified
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by the infidelity

I(τ) ≡ 1− |⟨Ωn(1)|Uτ |Ωn(0)⟩|2 . (2)

The present work is based on the observation that an ap-
propriate choice ofH0, or equivalently ∆ = H1−H0, may
lead to computational speed up. Starting from known
analytical results on the exponential convergence of this
procedure [29], we hereby focus on the analytic evalua-
tion of the error in quantum state preparation as a func-
tion of the thermalization time, which we then use to
formulate a novel strategy to select H0 such that the
residual thermalization effect is further reduced when
computing the approximate quantum state. To support
our formal result, we show the effectiveness of this ap-
proach by explicitly analysing the Heisenberg model in
either one or two dimensions, and demonstrating by nu-
merical simulations the suppression of residual thermal-
ization effects at a fixed quantum circuit depth. Given
the known limitations of the AT to prepare singly tar-
geted eigenstates [28], we hereby extend our protocol also
to the preparation of eigenspaces spanned by more than
one eigenstate. These results are considerably relevant
for prospective quantum simulations of manybody mod-
els on NISQ hardware with unprecedented system size,
possibly towards quantum advantage.

Exponential scaling.– Let σ0(s) be a subset of the
full spectrum σ(s) of H(s), and H the Hilbert space of
the system configurations. We address the problem of
preparing a state belonging to the subspace V (s) ⊂ H
spanned by those eigenstates with eigenvalues in σ0(s).
Let P (s) be the projector on V (s), our aim is then to ef-
ficiently evolve the subspace P (0)H into P (1)H through
AT. In what follows, the thermalization error is quanti-
fied as the operator norm

ϵAT(τ) ≡ ∥(1− P (1))UτP (0)∥ , (3)

which is the generalization of Eq. (2) to the case of
dim (V (s)) > 1, where the norm of an operator A acting
on the Hilbert space H is defined as

∥A∥ ≡ sup|Ψ⟩∈H
∥A |Ψ⟩∥
∥|Ψ⟩∥ . (4)

Our starting point is the result presented in Ref. [29],
which guarantees the exponential falloff of ϵAT as a func-
tion of τ , provided thatH(s) is holomorphic, the gap d(s)
between σ0(s) and σ1(s) = σ(s)\σ0(s) is positive, and
the bandwidth D(s) of σ0(s) is finite for any s ∈ [0, 1],
as schematically represented in Fig. 1. The existence of
a finite and positive C, g(s) ∈ R such that, for τ large
enough,

ϵAT(τ) ≤ C

∫ 1

0

ds exp (−⌊τ/g(s)⌋) , (5)

in which ⌊·⌋ is the floor operation, has been proved in
Ref. [29]. For finite-dimensional Hilbert spaces, the pa-

σ0(s) σ1(s)

D(s)

d+(s)

d−(s)

σ(s)

H(0) H(1)H(s)

FIG. 1: Schematic illustration of the adiabatic evolu-
tion of the spectral features related to a time-dependent
Hamiltonian H(s), in which σ(s) is the full spectrum,
partitioned into the subsets of eigenvalues σ0(s) and
σ1(s). Here, D(s) denotes the bandwidth of σ0(s), while
d(s) = min [d+(s), d−(s)] defines the minimal gap be-
tween the two subsets of eigenvalues.

rameter D is inherently finite, which guarantees the ex-
ponential falloff of the error just by the conditions that
H(s) is holomorphic and d(s) > 0. By defining the char-
acteristic decay time as

g̃ ≥ sups∈[0,1]g(s) , (6)

the exponential bound

ϵAT ≤ C exp (−⌊τ/g̃⌋) (7)

is straightforwardly obtained. Clearly, any reduction of
g̃ exponentially reduces the error bound in Eq. (7). The
purpose of this work is then to find an analytic expression
for g(s) that will ultimately allow us to define an efficient
optimization strategy. In particular, we hereby report
our extension of the result of Ref. [29] which relates g(s)
to the metrics {∥∆∥, D(s), d(s)}, therefore providing a
concrete way to control g̃. For the purposes of the present
manuscript, it is relevant to notice that these metrics can
be efficiently estimated by classical means, e.g., via the
Lanczos Algorithm [31, 32]. Given the functions

W (d,D) =

[
28

(
1 + 2

D

πd

)2 (
π2

3
+

4

d

)]7/3

, (8)

and

ϱ
(
s, d

∥∆∥

)
= supρ∈C

[
|ρ| : |f(s+ ρ)− f(s)| < d

4∥∆∥

]
(9)

in the case of H(s) defined according to Eq. (1), we ob-
tain that the ratio

g(s) = 4
W (d(s), D(s))

ϱ
(
s, d(s)

∥∆∥

) (10)
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satisfies Eq. (5) (our proofs will be reported elsewhere).
Since g(s) is a non-increasing function of d(s) and
1/D(s), we fix g̃ to

g̃ = 4
W (dmin, Dmax)

infs∈[0,1]ϱ(s,
dmin

∥∆∥ )
, (11)

where

dmin = infs∈[0,1]d(s) , Dmax = sups∈[0,1]D(s) . (12)

For the commonly employed linear holomorphic function
f(s) = s, the expression above reduces to

g̃ = 16
∥∆∥
dmin

W (dmin, Dmax)) . (13)

Given a target Hamoltonian H1, the naive choice for H0

is the diagonal part of H1, such that its eigenstates are
manifest. In what follows we present a universal method
to select a more convenient auxiliary Hamiltonian, H0, in
the context of digital quantum simulations, where Uτ is
constructed using the Trotter-Suzuki approximation [33].
Our proposal may not lead to the absolute best choice
for specific problems, but it guarantees an exponential
advantage, in the quantum state preparation of a target
Hamoltonian H1, over the naively picked H0. The most
generic starting Hamiltonian can be expressed in terms
of its matrix elements with respect to the computational
basis as

⟨i|H0 |j⟩ ≡ δij ⟨i|H1 |j⟩+ ⟨i|M |j⟩ , (14)

in which M denotes a parameterized Hermitian operator
(called the preconditioner) to be optimized in order to
minimize g̃. We impose three conditions on M : (i) H0

should be diagonal, such that its eigenstates are the el-
ements of the computational basis and it is then trivial
to initialize them on a quantum computing register; (ii)
the additional computational cost for the implementa-
tion of UM (θ) = exp (−iθM) at each Trotter step (where
θ ∈ R) should not frustrate the cost reduction stem-
ming from the minimization of g̃; finally, (iii) the number
of real parameters needed to describe M should not in-
crease exponentially with the number of qubits, L. The
first condition is satisfied by any diagonal operator. We
hereby propose the extremely “cheap” form

⟨i|M |i⟩ = ΣL−1
j=0 αj binj (i) , (15)

in which |i⟩ is the i-th element of the computational basis,
and binj (i) is the j-th digit of i once expressed in binary
notation. The key idea behind the choice of Eq. (15)
will be reported elsewhere. Most importantly, this choice
allows to fulfill both conditions (ii) and (iii). In fact,
the number of free parameters is L in this case, thus
increasing linearly with the system size. This result is
essential to reduce the quantum computational cost of
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FIG. 2: Ground state preparation for the 9 sites 1D
and 2D Heisenberg models with periodic boundary con-
ditions, schematically illustrated in panels (a) and (b),
respectively, where the error dependence is plotted as a
function of thermalization time, τ , for Jx = 5Jz.

this procedure. In particular, the corresponding time
evolution operator is

UM (θ) =

L−1⊗
j=0

Pj(αjθ) , (16)

in which Pi is the single-qubit phase gate, applied to
the i-th qubit. Notice that the quantum circuit depth of
UM (θ) corresponds to a single qubit gate, independently
from the size of the system. Essentially, we propose to
interpolate between H0 (Eqs. (14)-(15)) and the targeted
H1 by AT, after classically minimizing g̃ through a scan-
ning of the free parameters {αj} in H0. This simple
protocol will guarantee an exponentially faster quantum
state preparation.

Numerical results.– Here we apply the AT to the
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FIG. 3: Characteristic times gfit obtained from fitting
the numerical curves ϵAT(τ) (as the ones in Fig. 2) with
a single exponential (see text), for different values of the
ratio Jx/Jz of the 1D Heisenberg model. Standard de-
viations of the fit are plotted as error bars.

preparation of the ground state for the Heisenberg model
in either one- or two-dimensional (1D, 2D) square lat-
tices with periodic boundary conditions. The purpose
is to numerically confirm the previous theoretical result
in case models of practical relevance for quantum simu-
lations. The corresponding quantum circuits are imple-
mented and executed on the Qiskit qasm simulator [34].
To focus only on ϵAT, we use sufficiently short Trot-

ter steps, to suppress the systematic error coming from
the Trotter-Suzuki approximation. In the following, the
state preparation is performed by applying three dif-
ferent approaches, all with the same adiabatic function
f(s) = s. The first is the standard AT, where M is
set to zero in Eq. (14). Since the calculation of ∥∆∥ is
computationally cheap and independent from the cho-
sen target subspace V (s), we consider a second approach
where the parameters αj are chosen to minimize ∥∆∥ in
Eq. (13). Notice that this does not guarantee that g̃ is
minimized. In fact, we finally consider a third approach
consisting in the full classical evaluation of g̃ in Eq. (13)
involving the estimation dmin and Dmax. Despite yield-
ing a significantly better scaling for our case studies, for
more complicated models it may be less practical, since
this approach requires the knowledge of the spectrum at
several intermediate values of s.
The XZ Heisenberg model is a prototypical manybody

model describing systems of spin-1/2 particles on a lat-
tice, defined by the interacting Hamiltonian

H1 = −1

2
Σ⟨i,j⟩ (J

zZiZj + JxXiXj) , (17)

where the sum runs over next-neighboring sites, while Xi

and Zi are the Pauli matrices acting on the i-th qubit,
conventionally defined as

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (18)

In this work we consider real and positive coupling con-
stants, Jz and Jx. The AT process is then described by
the operator

H(s) = −1

2
Σ⟨i,j⟩ (J

zZiZj + sJxXiXj)+(1−s)M . (19)

At s = 0 the Hamiltonian is diagonal and, in the un-
preconditioned case (M = 0), has a degenerate ground

state. The corresponding eigenstates, |0⟩⊗L
and |1⟩⊗L

,
are orthonormal and invariant under translations. It is
possible to preserve the translational invariance of the
AT process by imposing the condition αi = α (∀ i) in
Eq. (16). This choice, albeit not unique, allows to reduce
the number of parameters to a single one. The effect of
the preconditioner (M) on the physical system is equiva-
lent to the introduction of an external uniform magnetic
field along the z axis, with field intensity α. The results
for the ground state preparation of this model are re-
ported in Fig. 2, for either the 1D or the 2D models. The
outcome is quite striking: independently on the dimen-
sionality of the model or the parameters regime, the AT
provides a way of determining the ground state of the
XZ Heisenberg model with an error that scales almost
exponentially with the thermalization time. In addition,
by comparing the three different approaches above, we
notice a significant reduction in the required thermaliza-
tion time to achieve a given error, with the third (most
optimal) approach allowing to obtain the shortest τ . The
performance differences between the different approaches
become more and more evident on increasing Jx/Jz, as
shown in Fig. 3. Here, the characteristic time obtained
by fitting “ln {ϵAT(τ)}” with the function “Cfit − τ/gfit”
is reported as a function of Jx/Jz. In particular, the
gfit values obtained with the three approaches are nearly
indistinguishable when Jx ≪ Jz, while they exhibit a
clear advantage after applying our preconditioning strat-
egy for Jx ≫ Jz, i.e. when the target Hamiltonian is
significantly different from the starting one. The peak in
the plot occurring around Jx/Jz ≃ 1 corresponds to the
critical point where, for an infinite number of spins, the
system would exhibit a phase transition. In that region
the preparation of the ground state is still a rather expen-
sive task and our proposal is less effective. Similar results
have been obtained for the Ising model in a transverse
magnetic field, in both one and two dimensions, and will
be reported elsewhere.

Conclusions.– We have applied the theory of Adia-
batic Thermalization (AT) to the framework of quan-
tum simulations on NISQ devices, specifically focusing
on the efficient preparation of a given quantum state.
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Starting from the seminal result of Nenciu [29], we have
reported an exponential boundary for the AT error (an-
alytical proof reported elsewhere), with an explicit ex-
pression for its characteristic time in terms of quantities
that can be classically estimated. Using this improved
analytic control, we propose a universal preconditioning
term, denoted as M and tailored for NISQ computing,
which can be effectively optimized by using the aforemen-
tioned formulation. Upon incorporation into the Hamil-
tonian model to be simulated on quantum hardware, M
allows to exponentially suppress the AT error. Finally,
we have tested our protocol by numerical simulations
performed for the representative Heisenberg and Ising
models (only the former were explicitly shown), in either
one or two dimensions. Our results demonstrate an ex-
ponential improvement, particularly notable under more
strenuous computational scenarios. Despite performing
numerical tests on simple spin models, we expect similar
behaviours to occur for more complicated systems. We
expect that our work will significantly enhance the effi-
ciency of quantum state preparation, thereby boosting
the prospective achievement of quantum utility in state-
of-art digital quantum devices.
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