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Abstract
In this paper we discuss an approach to calculate knot polynomials on a photonic processor. Calculations of knot
polynomials is a computationally difficult problem and therefore it is interesting to use new advanced calculation
methods to find them. Here we present a proof of concept by calculating the simplest knot polynomial of the trefoil
knot in fundamental representation. This approach, however, can easily be generalized to more complex knots and
representations. Same operators can also be realized on a quantum computer with the same effect.

1 Introduction

Coherent photonic processors have recently attracted attention due to capability to significantly improve speed and
energy efficiency of executing a particular kind of operations - unitary matrix multiplication [I]. The principle of
operation is simple: a multimode input light field a‘" undergoes a transformation U imposed by an interferometric
circuit. The output field is then expressed as a;?“t = U;jai". The advance of integrated photonic technologies enabled
fabrication of precisely reconfigurable universal interferometers [2], 3] that provide full control over the unitary matrix
U via the phase modulation inside interferometer arms. Reconfigurable photonic processors find wide application
in boosting routine tasks of machine learning algorithms [4] and in experimental simulation of fundamental physics
models [5]. The perspective of higher signal processing bandwidth and reduced energy consumption provides steady
development of integrated photonics [0].

We want to apply coherent photonic processor to calculations in mathematical physics. The calculations we are
interested in in the context of this paper are the calculations of the knot polynomials or Wilson-loop averages of the
Chern-Simons theory.

Chern-Simons theory with the action
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is usually considered in the literature as potential model for topological quantum computer as it describes non-Abelian
anyons. Though we do not have such physical system yet, topological quantum computer would have radically better
fidelity in comparison to many other quantum computer models as the states are topologically stable [7].

In this paper though, we consider the opposite problem. As Chern-Simons theory itself when employed in knot
theory presents technical interest, we suggest to use an existing quantum computer to calculate interesting quantities
in such a theory and, consequently, in topological theory of knots. In Chern-Simons theory the most interesting and
complex observables are Wilson-loop averages:
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here K is a contour in 3d space along which we calculate Wilson-loop, which is in fact a knot, T is a representation
of the gauge group in which we calculate the Wilson-loop averages. These observables, as it is known [g], are equal to
the knot polynomials from the mathematical knot theory, with the knot being equivalent to the loop K. These knot
polynomials are interesting from the point of view of many theories because of numerous dualities with other theories,
for example conformal field theory [§]-[19], topological string theory [20], integrable theories [21] and matrix models
[22]-[25] and others. In the context of topological quantum computers, knot polynomials are potential observables.
Due to the fact that the knot polynomials on one hand are constructed from a product of unitary matrices and, on
the other hand, their calculations prove to be a difficult task for complex knots, calculations of knot polynomials is a
natural problem for the advanced computing machines, such as quantum computer and photonic processor.

We study Chern-Simons theory with the gauge group sly and calculate the resulting knot polynomials which are
called HOMFLY-PT polynomials [26] 27] on a photonic processor. HOMFLY-PT are polynomials of two variables ¢
and A which are connected to the parameters of the theory
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2 Two-bridge knot calculus

We adopt the Reshetikhin-Turaev approach to knot calculus [29]-[33] and use a simple construction of the two-bridge
knot. Such knots are constructed as a four strand braid (see Fig, closed on each side.
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Figure 1: Trefoil knot as a two-bridge knot.

The polynomials are constructed as matrix elements of the product of operators that correspond to each crossing in
the knot [34)-[37]. Moreover, crossing-operators between different strands are connected via Racah matrices. Important
property of all these operators is that they are represented by the unitary matrices for ¢ from and large enough k.
Such matrices can also be used as universal quantum gates in topological quantum computer [38, [39] 40].

Knot polynomials and operators depend on the representation of the group sly. Chosen representation define the
size of matrices and thus change the size of quantum computer required to calculate corresponding knot polynomial.
For the simplest fundamental representation that we consider in this paper the size of matrices is 2 by 2 and thus
one-qubit quantum computer is needed. For the fundamental representation required operators are equal to
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The knot polynomial is then given by the matrix element of the product of aforementioned operators. For the



simplest trefoil knot the answer is given by the following formula (see also Fig:
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Actually the simplest way to calculate this polynomial is to use non-diagonal operators:
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Then the trefoil polynomial is a matrix element of T3d~ In general powers of T,,4 will give different two-strand knots
and links.

3 Experiment and results

Coherent photonic processors have recently drawn attention due to ability to perform computation of specific mathe-
matical functions effectively in terms of time and energy. The most vivid example is matrix multiplication implemented
simply by transmitting light through an optical interferometer and detecting output power. In this work we devised
a method to map the problem of computing the knot polynomial to a coherent photonic platform.
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Figure 2: a) Schematic of the photonic processor. The emission of a diode laser is coupled into one of the input ports of
the integrated Mach-Zehnder interferometer. The relative phase 6 between the arms is controlled by a thermooptical
phaseshifter, driven by a programmable current source connect to a personal computer. The output power distribution
is registered by a pair of detectors D1 and Ds. The measured values are normalized to a sum of output power in both
ports. b) The result of the T,:Lo’d,11 measurement. The value of the matrix element is estimated as the normalized output
power, measured by the detector D;. The dots represent the experimental results, the solid violet curve represents
theory.

Our photonic processor implements multiplication of 2 x 2 unitary matrix and a two-dimensional complex field
amplitude vector. The schematic of the processor can be found in Fig. [2} We use the femtosecond laser writing method



to fabricate a reconfigurable Mach-Zehnder interferometer. The photonic waveguides are inscribed by a tightly focused
beam of the ytterbium-fiber femtosecond laser (Avesta Antaus) inside the volume of a fused silica sample mounted
on the 3D air-bearing stage (Aerotech FiberGlide 3D). The phase modulation of one the interferometer arms is
implemented using a thermo-optic phaseshifter. The phaseshifer is engraved on top of the photonic circuit after the
NiCr metal film is sputtered onto the top surface of the chip. The electrical connection is established via spring-
loaded electric contacts soldered onto the interface PCB board. We drive the circuit with constant current set by a
programmable current source.

The input light field is generated by a diode laser (Toptica CTL 950) and injected into port X of the circuit through
a single-mode fiber array. The output of the chip is coupled to another single-mode fiber array which is connected to
a pair of PIN-diode-based photodetectors which measure the output power.

Using photonic processor, we have implemented @ Then we measured the absolute value of the corresponding
matrix elements for different values of ¢ (different k). As a result we get graph on Fig. On this graph we present
experimental measurements, depending on the values of k. As we can see it coincides with theoretical curve, which
shows that we can indeed measure knot polynomials, using this approach.

4 Conclusion

This paper should be considered as a proof-of-concept for calculating knot polynomials on a quantum computer
or photonic processor. We used the simplest case of fundamental representation for the 2-bridge knots which can
be calculated using a one qubit quantum computer or similar photonic processor. We show that corresponding
matrix element calculated on a photonic processor indeed reproduces the analytical answer. This approach should be
also expanded to higher representations and more involved knots which would require higher dimensional photonic
processors or multiqubit quantum computers.
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