
Homological
Quantum Error Correction

with Torsion

Samo Novák
Mathematical Institute and Mansfield College

University of Oxford

A dissertation submitted for the degree of

MSc Mathematics and Foundations of Computer Science

Trinity & Summer 2023

ar
X

iv
:2

40
5.

03
55

9v
1

 [
qu

an
t-

ph
]

 6
 M

ay
 2

02
4

Abstract

Homological quantum error correction uses tools of algebraic topology

and homological algebra to derive Calderbank-Shor-Steane quantum

error correcting codes from cellulations of topological spaces. This work

is an exploration of the relevant topics, a journey from classical error

correction, through homology theory, to CSS codes acting on qudit sys-

tems. Qudit codes have torsion in their logical spaces. This is interesting

to study because it gives us extra logical qudits, of possibly different

dimension.

Apart from examples and comments on the topic, we prove an original

result, the Structure Theorem for the Qudit Logical Space, an application

of the Universal Coefficient Theorem from homological algebra, which

gives us information about the logical space when torsion is involved,

and that improves on a previous result in the literature. Furthermore,

this work introduces our own abstracted and restricted version of the

general notion of a cell complex, suited exactly to our needs.

Acknowledgements

First and foremost, I would like to thank my supervisor, Alex Cowtan,

without whom this project would not have been possible. Thank you for

your support and much advice during this work. I would also like to

thank Cole Comfort for his helpful input at the beginning of the project.

This year would never have been as great as it was without my friends

in MFoCS: Ari, Ben, Clarice, Edwin, Isi, Jean, Mira, Noé, Pali, Satya,

Seb, and Zoe. I will always remember our times together, lunches and

pub nights, Tins & Talks, running and board games, and especially

our trip to Cornwall. Thank you for being my home away from home.

In addition, I would like to acknowledge the MFoCS Counting Society,

current number: 6004.

I would like to thank the members of my college rowing club, with

whom we shared early mornings of splashy rowing, as well as days of

racing: Lorenzo, James, Tomas, Karim, Conor, Ky, Jude, Albi, Sam, Amir,

Fergus, Kat, Bruno, James, Johanna, Maritsa, and Emma.

I would also like to thank my friends outside Oxford who always have

my back: Mart’us, Mišo, Debča, Kika, Kaca, Klára, Katka, Katka, Tia,

Táňa, Marek, Mat’a, Pet’o, Šlojma, Lucretia, Paula, Carina, Orges, Pablo,

Alex, and Alex. A particular thank you goes to Štefka, who set me off on

my academic path.

Na záver sa chcem pod’akovat’ tým, ktorí ma poznajú najdlhšie – svojej

rodine. Ďakujem mamke, ockovi, babke, Ferovi, Martine, Tomášovi a

Lucii za Vašu neustálu lásku a podporu počas môjho roka na Oxforde

i mimo neho.

Babke.

Contents

1 Introduction 1
1.1 Structure of the dissertation . 3

I Introduction to Error Correction 5

2 Classical Linear Codes 7
2.1 General idea . 7

2.1.1 Error detection . 8

2.1.2 Interpretation of the parity check matrix 9

2.1.3 Characterizing codes . 9

2.1.4 Detection versus decoding . 11

2.2 Examples . 11

2.2.1 A [3,1,3] repetition code . 11

2.2.2 The [7,4,3] Hamming codes 13

2.3 Low-Density Parity-Check (LDPC) Codes 15

3 Quantum Error Correction 17
3.1 Two-state system . 17

3.1.1 Multiple qubits . 19

3.2 Stabilizer states . 19

3.2.1 Error model . 21

3.3 CSS codes . 21

3.3.1 Example: phase-flip code . 23

3.3.2 A wild parity check matrix appears 25

3.3.3 CSS Code from orthogonal classical codes 26

i

II Tools from Algebraic Topology and Homological Algebra 29

4 Rings and Modules 31
4.1 Rings . 31

4.1.1 Quotients . 32

4.1.2 Division . 33

4.2 Modules . 34

4.2.1 Examples of Modules . 35

4.2.2 Free and Finitely Generated Modules 35

4.2.3 Matrices . 37

4.2.4 Quotient . 38

4.2.5 Torsion . 39

4.3 Tensor Product of Modules . 39

4.3.1 Properties of Tensor Product Modules 41

4.3.2 Extension of Scalars . 42

5 Homological Algebra 45
5.1 Chain Complexes and Homology . 45

5.2 Exact Sequences and Resolutions . 47

5.3 Change of ring for homology . 49

6 Cell Complexes 51
6.1 Abstract 2-dimensional cell complexes 51

6.1.1 Definition . 52

6.1.2 Gluing Complexes . 57

6.1.3 Gluing two complexes . 59

6.1.4 Relationship to general cell complexes 60

6.1.5 Other kinds of (abstract) topological complexes 60

6.2 Chain Complexes from Abstract Cell Complexes 61

6.3 Homology of a cell complex . 65

6.3.1 Examples . 66

6.3.2 Homology of a direct sum of complexes 68

6.3.3 0th homology module . 69

ii

III Homological Quantum Error Correction 73

7 CSS codes from cellulations 75
7.1 A simple toric code . 75

7.1.1 Logical space . 77

7.1.2 Syndrome measurement . 80

7.1.3 Error correction . 81

7.1.4 X-type complex . 82

7.2 Qudits and their operators . 83

7.3 Stabilizers of qudit systems . 85

8 Torsion 87
8.1 First homology . 87

8.2 Projective plane . 89

8.2.1 Cellulation . 90

8.2.2 CSS code . 92

8.2.3 Logical space . 94

8.3 Torsion of higher order . 95

9 Conclusion and related work 97
9.1 Regular cellulations . 97

9.2 Fault-tolerant computation and transversals 98

9.3 Code surgery . 99

IV Appendix 101

A Joining Codes 103
A.1 Tensor product . 103

A.1.1 The [3,1,3] classical code as a cell complex 103

A.1.2 Tensor product of complexes 104

A.2 Connected sum . 106

B Jupyter + Sage notebook 107

Bibliography 109

iii

iv

List of Figures

2.1 Syndromes of the [3,1,3] repetition code 12

2.2 Design of the [7,4,3] Hamming code 13

3.1 Quantum phase-flip code . 24

5.1 Visualization of a chain complex . 46

6.1 Gluing two triangles to a frame made of edges 52

6.2 Examples of boundaries of a 2-cell 55

6.3 Example of an abstract 2-dimensional cell complex 56

6.4 Gluing a square to itself in different ways 58

6.5 Cylinder from Figure 6.4b in 3D . 59

6.6 Cylinder complex . 64

6.7 Torus, which has circles that are not homologous to zero 67

6.8 Torus with a hole filled . 68

7.1 Syndrome measurement circuit for the example toric code 77

7.2 Example of Z-type syndrome in the toric presented code 80

7.3 Two of the possible choices of correction for the syndrome 81

7.4 X-type syndrome in a small lattice code 83

8.1 Gluing square representation of the real projective plane 90

8.2 A cellulation of the real projective plane, using the half-sphere model 91

8.3 The complex from Figure 8.2 with faces merged 94

8.4 A complex with torsion Z3 . 96

9.1 A regular cellulation of the real projective plane with Schläfli sym-

bol ⦃3,5⦄ . 98

A.1 Interpretations of the [3,1,3] repetition code as abstract cell complexes104

A.2 Example of the tensor product of cell complexes 105

v

B.1 The custom utility function on_basis_from_dict 107

B.2 Computation of ker∂1 and im∂2 of Figure 8.2 108

vi

Chapter 1

Introduction

Computation in the real world is an inherently physical process. Our computers,

be they classical or quantum, are devices made of physical components, and it

is possible for them to go wrong due to outside interference. An example of this

may be an electrically charged cosmic ray impacting a transistor in a computer,

flipping a bit from 0 to 1 or vice-versa. In the setting of quantum computation,

many architectures are so fragile that they have to be cooled down to extremely low

temperatures and be very well shielded from the environment because they might

get unintentionally entangled with the outside world. What is more, even if it were

physically possible, we cannot completely cut ties between the environment and

the device, because we need a way to control it and extract results. In short, the

influence of the environment is inevitable, and errors are a fact of life. In this work,

we turn to detecting, and if possible correcting the errors that do happen.

We focus on a class of error detection and correction protocols, called codes,
acting on quantum computing systems. These are Calderbank-Shor-Steane (CSS)
codes, a subclass of stabilizer codes which are defined using an abelian group of

operators, called stabilizers, acting on the quantum system in such a way that

error-free states are fixed. A key characteristic of CSS codes is that the generators of

the stabilizer group can be split into two types corresponding to the complementary

bases of a quantum system.[Aar22] The fact that these have to commute allows us

to define a chain complex to represent the code. This is a structure from homological

algebra, and we call codes that can be constructed this way homological.[BH13]

One way of constructing homological codes is to look at various topological spaces

and divide them into cells. Such cellulations also correspond to chain complexes,

and this forms a connection between algebraic topology, homological algebra, and

quantum error correction that allows us to graphically construct CSS codes with

good properties.[DKLP02]

1

Furthermore, we are interested not only in qubit-based computers, where the

basic building blocks can be in a superposition of two distinct basis states but more

generally in qudit systems, with an arbitrary d ≥ 2.[SY23] One reason to think

about qudits is that our ability to build large quantum computers is limited, so we

might as well stuff as much information into the small computers we can build. The

case of qudits is, however, particularly challenging when d is not prime, because

this breaks many nice properties we are used to. However, this introduces torsion
into the logical space of the code. This means, essentially, that we may get more

encoded logical qudits than we normally would. However, these extra qudits are

different, in that their dimension is lower than d.[VCT23]

Our goal is to study homological quantum CSS codes in the qudit systems, with

arbitrary d ≥ 2, such that torsion is possible. As mentioned, this requires tools

from several different areas of mathematics, particularly the theory of modules,

homological algebra, and algebraic topology. These fields were new to the author,

so this is also an exploration of those topics, with the aim of using the material

learned to study homological codes. We invite the reader on this journey with us.

Throughout the work, we explore and introduce the respective topics. We

provide original examples and commentary, and as a useful tool, we define our

own abstract topological construction to help reason about cellulations – this is the

abstract 2-dimensional cell complex from Definition 6.1.4. This is an abstraction and

restriction of the general concept of a cell complex in the literature.

Furthermore, we prove an original result in Theorem 8.1.1 which we call the

Structure Theorem for the Qudit Logical Space in analogy to the Structure Theorem

of Modules over a principal ideal domain (PID). We choose this name because

our theorem is essentially the same as the latter transported to the case of a qudit

logical space, which is a Zd-module. Note that Zd is not necessarily a PID, and

this result is only possible due to the structure of a homological CSS code derived

from a cellulation of a topological space. The proof requires connecting several

non-trivial lemmas and theorems that we collect along the way. Our structure

theorem extends upon a result from ref. [VCT23] about the decomposition of the

logical space, transporting it from rotor codes to qudits. and it allows us to precisely

find out how many logical qudits a code has, and what their dimensions are.

2

1.1 Structure of the dissertation

In Part I, we lay down the basics of error correction. First, we explore classical

codes, specifically those defined using the language of linear algebra, in Chapter 2.

Then we move on to the quantum setting, and we introduce stabilizer and CSS

codes in Chapter 3.

Then in Part II, we introduce the mathematical tools needed to reason about

homological CSS codes on qudits. In Chapter 4, we review some theory of rings

and modules. We follow with an introduction to homological algebra in Chapter 5,

where we study chain complexes and homology in the abstract, without any topo-

logical meaning. Finally, in Chapter 6, we define our original notion of the abstract
2-dimensional cell complex, and explore how it relates to other topological complexes

in the literature, and to homology.

In Part III, we use those tools to construct homological quantum error correcting

codes from cellulations of spaces. In Chapter 7, we explain this first in the case

of qubits by constructing a simple example of a toric code. Then we prove that

generalizing to qudits still allows us to use the same methodology, and this leads

into Chapter 8, where we cellulate the real projective plane to obtain codes with

torsion in their logical space. We provide a practical guide on how to construct a

cellulation. This is where we also prove our original Theorem 8.1.1.

Finally, in Chapter 9, we conclude and reflect on related work that one might

study in the future. Outside of the main body, we give a brief introduction to

merging two homological codes in Appendix A.

As a supplement to one of the computations in Chapter 8, we provide an ex-

cerpt from a Jupyter[KRKP+16] notebook, using Sage[Sag23], a Computer Algebra

System, to help us compute properties of matrices in a chain complex. This can be

found in Appendix B.

3

4

Part I

Introduction to Error Correction

5

Chapter 2

Classical Linear Codes

The transfer and processing of information is a physical process, and as such it is

subject to unwanted outside influence. This means that random errors may occur

during transfer of some signal, or during some computation. Ideally, we want

to detect when this happens, and also correct the error, so that we may read the

message, or carry on with the computation.

A protocol for encoding information in such a way that error can be detected,

and perhaps corrected, is called an error correcting code. There are multiple different

classes of codes: in this work, we focus on linear (block) codes, protocols defined

using linear algebra. The word block refers to partitioning a sequence of information

bits into blocks of fixed size and encoding each separately – we will not care much

for this, because our aim will be to encode a fixed number of (qu)bits, so we refer to

them as just linear codes.1

We start in the classical (i.e. not quantum) setting, and then move to quantum

codes in Chapter 3. To describe classical codes, we follow ref. [RL09] with some

minor changes to conventions, in particular using column instead of row vectors,

and largely omitting generator matrices.

2.1 General idea

We work with binary systems, where the unit of information is one bit. The natural

setting is then the finite field of two elements Z2 B Z/2Z = {0,1}.2 We represent

words of information bits by vectors with entries in Z2.

1The partition into blocks may, in fact, be relevant if we want to encode a larger system: in this
case, we just split the system into disjoint partitions, and encode each separately (see Section 6.1.2
and Appendix A.2).

2Formally, these should be [0] and [1] as they are equivalence classes. We abuse notation to
unburden ourselves.

7

▷ Definition 2.1.1 (words). We call logical the bits of actual information, which

form logical words of length k ∈ N. They are vectors from Zk2 which we call the logical
space. We call physical the bits and words used to encode the logical words. These

have length n ≥ k, and they live in the physical space Zn2. We encode logical words

into physical words. The physical words obtained this way are called codewords and

live in a codespace C ⊆ Zn2. ◁

Note 2.1.2 (linearity). We have defined the words as elements of linear spaces. This

is no accident, and the linearity is a desirable feature. In particular, it means that a

linear combination of codewords is again a codeword.

We require that the encoding is invertible: we can always uniquely decode a

codeword to the corresponding logical word. This implies that there is an iso-

morphism C � Zk2, i.e. C has dimension k. This further means that there exists a

monomorphism Zk2↣ Zn2. We represent this by a matrix, called the generator matrix
of the code. This is what encodes logical words into codewords. Generator matrices

are important in the classical error correction literature, however, we have no use

for them, so we only briefly mention them.

2.1.1 Error detection

We have a monomorphism Zk2↣ Zn2 that encodes logical words in physical words.

We can always decode a codeword. However, there are possibly many more physical

words than just codewords. These are word where bits have been randomly flipped

– errors have occurred. Our aim is to find out that this is the case, and ideally correct

the error, thus successfully recovering logical information.

▷Definition 2.1.3 (parity check, syndrome). We define a morphism P : Zn2→ Zm2 ,

for m ∈ N, that takes a physical word v and tells us whether this contains an error.

We call is the parity check matrix. By definition, P v = 0 if and only if v is a codeword.

Otherwise, the nonzero vector P v tells us about the kind of error that happened.

We call P v the syndrome of v. We use this term in both cases, if v is a codeword, or

if there is an error. ◁

If no error has occurred, and only then, we want the syndrome to be the zero

vector. This means that we require the kernel to be exactly the codespace: kerP = C.

Using the rank-nullity theorem, we see that m, the dimension of the codomain of P ,

must satisfy:

m ≥ dimimP = dimdomP −dimkerP = n− k, (2.1.1)

where domP = Zk2 is the domain of P , and imP is the image of P .

8

2.1.2 Interpretation of the parity check matrix

The parity check matrix P sends a physical word v ∈ Zn2 to its syndrome s B P v

which is a vector ofm components. We interpret these as the outcomes of individual

parity checks, or measurements of the physical word. Concretely, the component si ,

for i ∈ {1, . . . ,m}, is

si =
n∑
α=1

Pi,αvα = ⟨P i ,v⟩, (2.1.2)

where P ⊤i is the ith row of P , seen as a row vector, P i its transpose (column vector),

and ⟨−,−⟩ is the usual inner product in Zn2.

The parity check matrix describes a procedure for performing error detection.

Each row P ⊤i defines a single measurement of the physical word, essentially listing

which individual bits of the physical word to measure. The interpretation as

measurements is perhaps strange in the context of classical codes. However, it is

important, because in Section 3.3, when dealing with quantum codes, this is what

will tell us how to measure a quantum system.

2.1.3 Characterizing codes

We now introduce a handy way to quickly characterize an error correcting code.

First, we need the following definitions:

▷ Definition 2.1.4 (Hamming weight). Let m ∈ N, and let v = (v1, . . . , vm) ∈ Zm2 .

Define the Hamming weight (or just weight) of v, denoted w(v), to be the number of

non-zero components of v. Note that defining the vectors as elements of Zm2 and

reasoning in terms of tuples, we implicitly use the standard basis. ◁

▷ Definition 2.1.5 (Hamming distance). Let v = (vi)i ,w = (wi)i ∈ Zm2 . Define the

Hamming distance (or just distance) of v and w, denoted d(v,w), to be the number of

components where v and w differ. ◁

Note that Hamming distance is a metric on Zm2 . This means that d(v,w) = 0 for

v = w, and d(v,w) > 0 otherwise; it is symmetric (d(v,w) = d(w,v)), and it satisfies

the triangle inequality
d(u,v) + d(v,w) ≥ d(u,w)

for all u,v,w ∈ Zn2.

Notice also that Hamming weight is a kind of norm on Zm2 .3 Similarly to other

pairs of metric and norm, the distance between two vectors is the weight of their
3It is only a norm in the case of vector spaces over Z2, where the only possible non-zero value of

components is 1.

9

difference:

d(v,w) = w(w − v). (2.1.3)

▷Definition 2.1.6 (code distance). The minimum Hamming distance between two

different codewords in C ≤ Zn2 is called the code distance (name from [CB23]), and

we denote it

d = d(C)Bmin
{
d(v,w) : v,w ∈C,v , w

}
. ◁

Using eq. (2.1.3), we can rewrite the definition above as

d = min
{
w(w − v) : v,w ∈C,v , w

}
= min

{
w(x) : x ∈C,x , 0

}
,

so the code distance is, in fact, the minimum Hamming weight of a non-zero vector

in the codespace.

The code distance is a property of the code, and together with the dimensions of

logical and physical space, they describe the code:

▷Definition 2.1.7 (code metrics, code rate). Suppose we have a code that encodes

words of length k into words of length n, and its code distance is d. These numbers

are called the code metrics, and we write that this is an [n,k,d] code. Sometimes, we

may omit the distance. Additionally, define the code rate k/n, interpreted as the

average amount of information carried by a physical bit. ◁

This characterization is not unique, and there may be multiple codes that have

the same metrics. For example, if G : Zk2↣ Zn2 is a generating matrix of a code, then

there are in general many composites of the form

Zk2 Zk2 Zn2 Zn2,
Gϕ

∼
ψ
∼

where ϕ and ψ are isomorphisms (i.e. changes of basis). There are corresponding

changes of basis for the parity check matrix P .

There is a decision to be made whether to consider such composites separate

codes. This is clear if the code distance is changed by the change of basis. However,

suppose that the code distance is unchanged, and ψ = idZn2 . Then the codespaces

im(ε◦ϕ) ⊆ Zn2 are the same for any ϕ. As such, the codes arising could be considered

essentially the same. A similar argument could be made for the case when ψ is not

necessarily the identity – the codespaces may be different, but isomorphic. On the

other hand, in either case, the encoding and error detection are actually different

for different choices of ϕ,ψ.

▷ Convention 2.1.8. We follow the convention of ref. [CB23]: we declare that codes

are only the same if their encoding, and the parity check matrices, are equal. ◁

10

2.1.4 Detection versus decoding

We now have all the machinery needed for error detection, and perhaps correction.

What is the difference, though?

If the syndrome is non-zero, that means the code detected some kind of error.

There exist, of course, undetectable errors: if an error takes a codeword to another

codeword, the code has no way to notice. However, if an error is detectable, we will

always know when it occurs.

Knowing whether an error occurred, however, may not always be enough infor-

mation. If the syndrome uniquely determines the kind of error that happened, then

we may undo, or correct it. This is also called decoding, because it gives us back the

logical information.

On the other hand, some syndromes may correspond to more than one kind of

error. Then we can either assume one of the possibilities is much more probable,

and take a leap of faith; or we can declare that an error has been detected, and leave

it there. The choice always depends on the specific code. We will see an example of

this in the following section.

2.2 Examples

2.2.1 A [3,1,3] repetition code

We show a [3,1,3] repetition code that copies the single logical bit three times. The

code rate is k/n = 1/3. The only non-zero codeword is (1,1,1)⊤, which gives the

code distance d = w(1,1,1)⊤ = 3. The codespace is one-dimensional, and it is the

span of (1,1,1)⊤.

We will now derive the parity check matrix P . By definition, the codespace is

equal to the kernel of P , which means P (1,1,1)⊤ = 0. This parity matrix must always

measure exactly two bits (otherwise the syndrome is nonzero even for (1,1,1)⊤). We

require at least two measurements to compare all three bits this way. This gives us

the following matrix P :

P =
(
1 1 0
1 0 1

)
(2.2.1)

Note that we make a choice here. The rows could be swapped, and the columns

could be also swapped. Parity matrices with such swaps would formally correspond

to different codes under Convention 2.1.8, though they would be essentially the
same.

11

The physical space is Z3
2, meaning it has 8 elements. Thus it is convenient enough

to enumerate all possible syndromes. We display them in the table in fig. 2.1.

word v ∈ Zn2 syndrome P v error
(0,0,0)⊤

(0,0)⊤ no error, or three errors
(1,1,1)⊤

(0,0,1)⊤
(0,1)⊤ error on bit 3, or two errors on bits 1,2

(1,1,0)⊤

(0,1,0)⊤
(1,0)⊤ error on bit 2, or two errors on bits 1,3

(1,0,1)⊤

(1,0,0)⊤
(1,1)⊤ error on bit 1, or two errors on bits 2,3

(0,1,1)⊤

Figure 2.1: Syndromes of the [3,1,3] repetition code.

The table displays all the possible physical words, and all the possible ways to

interpret their syndromes. We follow with a few observations. First, we focus on

knowing about errors with certainty:

• The extreme case: three simultaneous errors make v look like a codeword.

Such errors are called undetectable, because the code has no way to find them.

Undetectable errors are all those that take one codeword to another – in other

codes, this may not require every bit to get an error.

• Secondly, the present [3,1,3] code cannot tell apart whether one or two errors

occurred. This means also that it cannot tell with certainty what the logical

word is meant to be, or in other words, it cannot decode the physical word.

For example, suppose the logical word is u = 0, and a single bit error

occurs, giving us the physical word v = (0,0,1)⊤. The physical word (1,1,0)⊤

has the same syndrome. We detect that an error occurred, either on the third

bit only, or on the other two bits only. This is not enough to decide whether

the logical word is supposed to be 0 or 1.

However, probability is an important part of error correction. Usually, we

assume that a bit can randomly change value (random bit-flip) with probability p,

independently of others. Then no error occurs with probability (1− p)3, a single

error with probability p(1− p)2, two simultaneous errors with p2(1− p), and finally

a three-bit error with probability p3.

If p is low enough so that p3 is small, then we may declare three-bit errors

unlikely and assume they never occur. Then we decode a codeword as the corre-

sponding logical word. Furthermore, if p is low enough to make p2(1 − p) small,

12

u4

u1

p1

u2

p2 u3
p3

Figure 2.2: Design of the [7,4,3] Hamming code.

then we may assume the only errors that happen are single bit-flips. If we only get

single errors, then we can also successfully correct them.

2.2.2 The [7,4,3] Hamming codes

In this section, we show a different way to construct a code. We introduce a family of

codes called the [7,4,3] Hamming codes. They encode 4 logical bits using 7 physical

bits, meaning their code rate is k/n = 4/7, which is higher than the code rate of

1/3 of the [3,1,3] repetition code from section 2.2.1. The members of this class

are all essentially the same, but considered different under Convention 2.1.8. For

convenience, we choose a representative and refer to it as the [7,4,3] Hamming code.

The code is based on the Venn diagram in fig. 2.2. Each region corresponds

to a bit in the physical word v = (u1, . . . ,u4,p1, . . . ,p3)⊤, where u = (u1, . . . ,u4)⊤ is a

logical word, and p1, . . . ,p3 are called parity bits. Values of the parity bits are chosen

to make the sum of each circle in the diagram even. In other words, the three circles

give us a system of equations that have to be satisfied, and this determines the

parity bits:
u1 +u2 +u4 +p1 = 0
u1 +u3 +u4 +p2 = 0

u2 +u3 +u4 +p3 = 0
(2.2.2)

In the system of equations, each pi is completely determined by the values

of {uj}j which allows us to determine the codewords: for a logical word u =

(u1, . . . ,u4)⊤, the corresponding codeword is v⊤ = (u⊤|p⊤), where we write the

transpose v⊤ just for convenience of notation, and where

p =

u1 +u2 +u4
u1 +u3 +u4
u2 +u3 +u4

 .
Furthermore, the system of equations (2.2.2) gives us the parity matrix. Each

row corresponds to one of the equations. There are ones in columns corresponding

13

to the variables present in the particular equation:

P =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .
Single-bit error syndromes

The [7,4,3] Hamming code can detect and correct single-bit errors. Here, we show

what the syndromes of single-bit errors look like.

Suppose u is a logical word, and v⊤ = (u⊤|p⊤) is its codeword, as above. We add

a single-bit error on bit i ∈ {1, . . . ,7}, giving us the physical word x = v + ei , where ei
is a vector of the standard basis. Then we compute the syndrome:

P x =��P v + P ei = P ei ,

where we note that, by definition, P v = 0. This means that the syndrome of a

single-bit error is P ei , the ith column of the matrix P . For example, if i = 2, then

P e2 = (1,0,1)⊤; if i = 7, then P e7 = (0,0,1)⊤.

All columns of P are nonzero, hence P ei , 0. This means that all single-bit errors

are detectable. Furthermore, all columns are different, so we can always determine

where the error occurred, and correct it.

Two-bit error syndromes

The code at hand can also detect two-bit errors, but not correct them. Here we show

why both of those are the case. Take the physical word x = v + ei + ej , where again

v is a codeword, and i , j.4 As before, the codeword part cancels, and we are left

with the error terms:

P x =��P v + P (ei + ej) = P (ei + ej).

The error syndrome is a sum of two columns of P . Under the assumption that i , j,

i.e. we add two different columns, this is always nonzero. This means that there are

no undetectable 2-bit errors.

However, if we allow two-bit errors, we lose the ability to perform correction.

For instance, take the two-bit error e1 +e2 and a single-bit error e3. Their syndromes

4Depending on what we choose to model, we might also allow two errors to occur in the same
place. In the case of bits, this undoes the error. However, from Section 7.2 onward, we work with
(qu)dits, with possibly d > 2, meaning two errors in the same place may still be an error.

14

are the same:

P (e1 + e2) =

1
1
0

+

1
0
1

 =

0
1
1

 = P e3.

We conclude that decoding (with certainty) is not possible in this case, and in fact,

any sum of two columns of P is equal to another column of P .

More simultaneous errors

Finally, we briefly note that simultaneous errors on more than two bits may be

undetectable. Inspired by the previous example of a 2-bit error, suppose we have a

physical word x = v + e1 + e2 + e3:

P x =��P v + P (e1 + e2 + e3) =

1
1
0

+

1
0
1

+

0
1
1

 = 0.

An error like the above takes a codeword to another codeword, without the possi-

bility of detection that this happened.

2.3 Low-Density Parity-Check (LDPC) Codes

In this section, we briefly mention an interesting class of linear codes, though we do

not go into too much detail. The class is called Low-Density Parity-Check, or LDPC,

codes. The parity check part is what we have already seen in the previous sections:

these are linear codes, and we specifically describe them by using parity matrices.

The low-density is the new part. It means the parity matrix P has a low density

of non-zero values. This can be formulated in terms of Hamming weights of rows

and columns of P :

▷Definition 2.3.1 (LDPC). A code is called a low-density parity-check (LDPC) code
if the density of ones in the corresponding parity matrix, defined using Hamming

weights of each row and each column, is bounded by a constant. ◁

The above definition can be interpreted two different ways. It can be a statement

about the weights of rows and columns of individual parity matrices. In this case,

one would choose a small constant and say that the density of ones in the matrix

is, e.g. 1 %.[RL09] The other view is that if we have a family of codes, for example,

if we have a scheme to generate a code given k or n, then the boundedness of the

weights can be understood as the density of ones not increasing as we scale the

code. In particular, LDPC codes have a constant code rate, as we scale them.[CB23]

15

The rows of the parity matrix correspond to measurements of bits of the physical

words. If each of them has a bounded Hamming weight, this means that there is a

bound on the number of bits that are involved in any measurement. Similarly, the

columns of the parity matrix correspond to physical bits. If the rows have bounded

weight, this means that each bit is measured only a bounded number of times.

In the classical world, measuring many bits, or having a bit be a part of many

measurements, is not really a problem. However, we aim to do quantum error

correction, where every operation and measurement is precious. This means that

the constraint posed by the LDPC condition is a useful one. In this work, we will

design quantum LDPC codes using cellulations of spaces.

16

Chapter 3

Quantum Errors Correction

Quantum computation (and transmission of information) works in a fundamentally

different way to classical computation. While in classical error correction, we

measure the state of the message (which is a fancy way of saying we look at it), this

cannot be done in the quantum setting without also destroying the computation

state. Any superposition we may have had would collapse, and any entanglement

would be destroyed. This means we have to find a clever way to measure an error

syndrome. The way to do this will be to perform partial measurements on a state

enlarged by ancillae.

In this chapter, we assume knowledge of basic quantum mechanics and of

quantum computation. An unfamiliar reader may find out more in [BDD21, NC00].

In introducing quantum error correction, we follow [NC00, Aar16, Aar22, DMN13].

3.1 Two-state system

In classical (non-quantum) computation, the basic unit that we can use is, usually,

a two-state system called a bit. Analogously, in quantum computation, at least on

the basic level, works with qubits, a quantum analogy of a bit. This is our starting

point. Note, however, that in the quantum computing world, building blocks that

are systems of more than two possible states are quite common, more so than in the

classical case. We reach these in Section 7.2.

▷Definition 3.1.1 (spin). A two-state quantum system lives in a two-dimensional

complex Hilbert space H = C2. It is conventionally called a spin. In the context of

quantum computation, it is called a qubit. ◁

▷Definition 3.1.2 (standard basis). We choose the standard basis of a single-qubit

state space to be the eigenbasis of the Z Pauli operator (see Definition 3.1.3). We

17

denote |0⟩ the spin up eigenstate, and we denote |1⟩ the spin down eigenstate. The

basis is written in ordered form (|0⟩ , |1⟩), so that we can write matrices. ◁

▷ Definition 3.1.3 (Pauli matrices). If H is the state space of a two-state system,

written in the standard basis, then we represent the Pauli operators as the following

Pauli spin matrices:

X = σ1B

(
0 1
1 0

)
, Y = σ2B

(
0 −i
i 0

)
, Z = σ3B

(
1 0
0 −1

)
. ◁

▷Definition 3.1.4 (Pauli group). The above matrices generate a group called the

Pauli group P1, where the subscript means these act on a single qubit. The elements

of P1 are the Pauli matrices along with the identity 12, and their multiples by ±1

and ±i. ◁

▶ Lemma 3.1.5 (product, commutation). For Pauli matrices σj and σk, their product

is

σjσk = δjk12 + i
∑
l

εjklσl ,

where δjk is the Kronecker delta, with value 1 if j = k and 0 otherwise. The Levi-Civita
symbol εjkl has values equal for cyclic permutations of indices, ε123 = 1, ε213 = −1,

and is zero if indices repeat. Consequently, the commutation relation of Pauli

matrices is

σjσk = −σkσj (3.1.1)

if j , k. Obviously they commute if j = k. ◀

This is a standard fact, so for the interest of brevity, we omit the proof. We prove

a generalization of this later, in Lemma 7.2.4. An interested reader may verify the

present Lemma by explicitly multiplying the matrices – this is more efficient if one

writes:

σj =
(

δj3 δj1 − iδj2
δj1 + iδj2 −δj3

)
.

▷Definition 3.1.6 (X-basis). There is another common basis. It is the one made of

eigenstates of Pauli X, with eigenstates |+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩), in

the order (|+⟩ , |−⟩). ◁

▷Definition 3.1.7 (Hadamard). The change of basis between Z- and X-eigenbases

is called the Hadamard operator H , written in the standard basis as

H =
1
√

2

(
1 1
1 −1

)
.

We can write the change of basis explicitly as |+⟩ =H |0⟩ and |−⟩ =H |1⟩. ◁

18

3.1.1 Multiple qubits

Obviously, a single qubit cannot do that much computation. If we have n ∈ N
qubits, then these live in a tensor product space H = (C2)⊗n, which is isomorphic to

C2n . Similarly to the 1-qubit case, it will be useful to us to have a group of Pauli

operators that act on multiple qubits.

▷Definition 3.1.8 (Pauli group on n qubits). Recall that P1 is a group of operators

acting on one qubit. We use the tensor product to define operators acting on

a system of n qubits. We denote Pn the group of all n-fold tensor products of

single-qubit Pauli operators. Explicitly, PnB {P1 ⊗ · · · ⊗ Pn : Pi ∈ P1} . ◁

Multiple qubits, without a way to let them interact, would be only as useful as

classical bits. We need another ingredient, an that is an entangling operation, one

that acts on multiple qubits, previously perhaps in a product state (not entangled),

and creates entanglement between them. The canonical one is the controlled X gate:

▷ Definition 3.1.9 (CNOT). Let H be the state space of a 2-qubit system. A con-
trolled X, also called a controlled NOT (CNOT), is an operator that sends

|0⟩ ⊗ |ψ⟩ 7→ |0⟩ ⊗ |ψ⟩ and |1⟩ ⊗ |ψ⟩ 7→ |1⟩ ⊗X |ψ⟩,

where |ψ⟩ is a qubit. ◁

Apart from superposition, entanglement is one of the main advantages of quan-

tum computing. The non-locality exhibited by joint systems is of great use to

computation, and specifically in our case, to error correction.

3.2 Stabilizer states

In this section, we define the model of quantum computation, and the correspond-

ing errors that we allow. We restrict our computers to use Clifford gates, a specific

group of quantum operators on multi-qubit systems. As such, the allowed states

are stabilizer states. We define these notions below.

▷ Definition 3.2.1 (stabilizer subgroup). Let H be a state space of a quantum

system, and let G be a group of operators H→H that act on this space. For a state

|ψ⟩ ∈ H, define the set of stabilizers of |ψ⟩ with respect to G as

StabG |ψ⟩B
{
A ∈G : A|ψ⟩ = |ψ⟩

}
.

19

Equivalently, it contains all operators for which |ψ⟩ is an eigenstate with eigen-

value +1. We extend this to a subspace K ≤H as

StabGKB
{
A ∈G : ∀|ψ⟩ ∈ K, A|ψ⟩ = |ψ⟩

}
, (3.2.1)

that is, StabGK contains operators that stabilize every state in K. The above sets are

clearly subgroups of G, and we call them the stabilizer subgroups. ◁

▶ Theorem 3.2.2 (Pauli stabilizers are abelian). Let K ≤ H = (C2)⊗n be some non-

trivial subspace of a state space of n qubits. Then the group StabPn
K is abelian. ◀

Proof. Following [Aar22, §3.4.2]. From Lemma 3.1.5, we know that single-qubit

Pauli matrices always either commute or anticommute (i.e. σjσk = −σkσj). This

extends to tensor products of Pauli matrices, because each factor acts only on its

corresponding qubit. Suppose A,B are stabilizers from StabPn
K, and assume that

they do not commute – then they anticommute (AB = −BA). As StabPm
K is a group,

it contains both AB and BA, meaning that these products must also stabilize every

state |ψ⟩ in K. Then

|ψ⟩ = AB|ψ⟩ = −BA|ψ⟩ = −|ψ⟩,

which is only possible if |ψ⟩ = 0. The state |ψ⟩ ∈ K was chosen arbitrarily, so this

implies K = 0. This contradicts the hypothesis that K is non-trivial. We conclude

that A and B must commute, and that StabPn
K is abelian. ■

▷ Definition 3.2.3 (Clifford group). Define the Clifford group on n qubits as the

normalizer of Pn. This is a group that consists of unitary operators that commute

with all of Pn. The Clifford group is generated, for example, by the Hadamard H ,

the CNOT, and the phase gate

S =
(
1 0
0 i

)
.

◁

An element A of the Clifford group is called a Clifford gate if we can perform A

atomically, as a gate that our computer can do (e.g. the Z gate, or the CNOT). In

general, including composites, we call A a Clifford circuit.

▷ Definition 3.2.4 (stabilizer state). A quantum state of n qubits |ψ⟩ ∈ (C2)⊗n is

called a stabilizer state if it can be obtained from |0⟩⊗n by applying a Clifford

circuit.5 ◁
5Originally, the definition of a stabilizer state requires that the cardinality of its stabilizer

subgroup with respect to Pn is 2n. We define them in terms of Clifford circuits, secretly applying
the Gottesman-Knill theorem which states that these are equivalent.[Aar22]

20

3.2.1 Error model

▷ Convention 3.2.5 (computation model). The quantum computers we consider are

only allowed to perform Clifford gates, and thus every state is a stabilizer state. ◁

This is a standard convention often taken when reasoning about quantum error

correction. Specifically, it allows us to use stabilizers to describe error correcting

codes. We remark that this model of computation is not universal, but in this work

we do not need it to be.

Similarly to the classical (non-quantum) case, we have random errors appearing

in our quantum computation. These are operators on the state space that get

randomly applied without our intent and knowledge. In this work, we assume that

only the following errors are possible:

▷ Convention 3.2.6 (quantum errors). We assume that an error is a random ap-

plication of an element of the group Pn. In particular, this implies that errors are

discrete, and they act on qubits independently, without any new entanglement being

created. ◁

The above is justified by the digitization of quantum errors. This is a result

stating that considering only the above errors is in fact viable, and by doing this,

we can correct any error.[Bac06]

3.3 CSS codes

Unlike in the classical world, where we can look at the state of a system and figure

out whether an error has occurred, we cannot measure a quantum system during

computation. That would destroy any superposition and entanglement we may

have had, and effectively halt the computation.

However, only qubits that are measured are destroyed. We are able to perform

partial measurements, which means we only measure some of the qubits. Of course,

this still impacts the whole system, but unmeasured qubits can be used even after

the partial measurement.

The way to detect errors in a quantum computer is to entangle the system with

new helper qubits, called ancillae, initialized with known states, usually |0⟩ or

|+⟩ = H |0⟩. This way, we enlarge the state space, but we also spread information

about the state to the ancillae. Then we measure the ancillae, collapsing the state

space back to original. This process gives us information about the state without

destroying it completely. It may not be full information, but if we entangled the

21

system with the ancillae in a clever way, we learn enough to detect errors of certain

kinds.

The aim of the theory of quantum error correction is to figure out concrete

protocols to perform the above. Similarly to Chapter 2, instead of covering quantum

error correction in general, we immediately specify to the class of codes of our

interest. These are called stabilizer codes, and they use the stabilizer framework to

describe error correcting protocols.

▷Definition 3.3.1 (stabilizer code). LetH = (C2)⊗n be the state space of n physical

qubits. A quantum error correcting code that describes the codespace C ≤ H,6 as

well as the error detection measurements, using the stabilizer subgroup StabPn
C is

called a stabilizer code. Concretely, a particular code is a choice of generators of the

stabilizer group. ◁

Following from Lemma 3.1.5, we know that all elements of Pn either commute

or anticommute. In our model, errors are also members of that group. Let A ∈ Pn
be some operator. If A anticommutes with at least one stabilizer in StabPn

C, then it

is a detectable error. On the other hand, if A commutes with all stabilizers, then

it preserves the codespace, and it is a stabilizer itself. This could mean that is it a

logical operator, but it could also be an undetectable error. In this sense, logical

operators and undetectable errors are the same, and the difference is whether we

intended to apply them

We are interested in a subclass of stabilizer codes, the Calderbank-Shor-Steane
(CSS) codes. They are defined by a partition on the generating set of their stabilizer

group to two types of Pauli operators:

▷ Definition 3.3.2 (X-type, Z-type Pauli operators). Suppose A =
⊗n

i=1Ai is a Pauli

operator from Pn. If each Ai is either the identity 1 or X, we call A an X-type
operator. Similarly, if each Ai is either 1 or Z, we call A a Z-type operator. ◁

Note that we do not pay any mind to Y -type operators. This is exactly because

Y = iXZ. Assigning importance specifically to the pair X and Z, in contrast to e.g.

X and Y , is a choice – one made by convention. In any case, we do need exactly two

of these, because they are complementary.

▷ Definition 3.3.3 (CSS code). Suppose we have a stabilizer code defined by a

stabilizer group S. If we can find sets SX and SZ such that SX contains only X-type

6We use the different notation C ≤ (C2)⊗n to distinguish the Hilbert space corresponding to
correct physical words from the abstract representation of a codespace C ≤ Zn2. The elements of C
correspond to the basis vectors in C.

22

Pauli operators, and likewise SZ contains only Z-type operators, and such that S is

generated by SX ⊔ SZ , then we call this a Calderbank-Shor-Steane (CSS) code. ◁

The nice idea behind making this definition is that we can take two classical error

correcting codes, use one of them to define X-type stabilizers, and the other one

for Z-type stabilizers. That is, we use two classical codes to define the generating

sets SX and SZ , one each. Recall from Theorem 3.2.2 that StabPn
K is abelian for a

nontrivial space K. This means that not every two classical codes can be used for

this: the stabilizer generators we obtain from them must all commute with each

other, otherwise the codespace is trivial.

The stabilizers describe the encoding; and more concretely, they tell us how to

perform syndrome measurements. We illustrate this on an example.

3.3.1 Example: phase-flip code

One of the basic quantum error correcting codes is the phase-flip code. It encodes a

single logical qubit (k = 1) as three physical qubits (n = 3). It can correct a random

application of a Pauli Z, a phase flip, to a single physical qubit. It is one of the

quantum versions of the [3,1,3] repetition code from Section 2.2.1, the other being

a bit-flip code that corrects X errors.

In general, we want to define a code by the stabilizer group. This determines

the encoding as well. However, in this example, we start with an encoding, find the

stabilizers, and then perform error correction.

Encoding

Due to the No cloning theorem, we cannot copy an arbitrary quantum state. Thus we

cannot perform encoding as |ϕ⟩ 7→ |ϕ⟩⊗3. Instead, we use the circuit in Figure 3.1a

to create an entangled state. This generates the following codeword physical states:

|0⟩ 7→ |0⟩B |000⟩ , and |1⟩ 7→ |1⟩B |111⟩ .

Above, we use the overline notation to indicate that |0⟩ is a physical state corre-

sponding to the logical qubit |0⟩. We also use the notation |000⟩ to mean the tensor

product |0⟩ ⊗ |0⟩ ⊗ |0⟩, and similarly for |111⟩.

Stabilizers

With this encoding, a codeword physical state is a superposition α |000⟩+ β |111⟩ .
This defines a two-dimensional subspace C ≤ (C2)⊗3, which is the codespace. We

23

|0⟩
|0⟩

X

X

(a)

|0⟩1 s1

|0⟩2 s2

H

H

X X

X X

H

H

(b)

Figure 3.1: Quantum phase-flip code. The encoding circuit is shown in (a), and the
detection circuit in (b).

compute the group StabP3
C. If A is a stabilizer from this group, it is a tensor

product of Pauli matrices A1 ⊗A2 ⊗A3 such that

A1 ⊗A2 ⊗A3

(
α |000⟩+ β |111⟩

)
= α |000⟩+ β |111⟩ .

It must be Z-type. If it was X ⊗X ⊗X, it would swap the coefficients α and β. If

it was some other tensor product containing an X, it would send the state to a

completely different subspace of (C2)⊗2, for example

X ⊗X ⊗ 1
(
α |000⟩+ β |111⟩

)
= α |110⟩+ β |001⟩ .

It cannot contain Y for the same reason.

The basis state |000⟩ is stabilized by any Z-type operator, because Z |0⟩ = |0⟩.
However, Z |1⟩ = −|1⟩, which means we need A to be a tensor product of two Z

operators, so that the minus signs cancel. Conclude that StabPn
C consists of the

following elements:
1 ⊗ 1 ⊗ 1,
Z ⊗ Z ⊗ 1,
1 ⊗ Z ⊗ Z,
Z ⊗ 1 ⊗ Z.

The identity is always contained and gives us no information. Note that Z ◦Z = 1,

which means

1⊗Z ⊗Z = (Z ⊗Z ⊗ 1) ◦ (Z ⊗ 1⊗Z).

Thus we can choose a minimal generating set for the stabilizer group consisting of

the following generators:
Z ⊗ Z ⊗ 1
Z ⊗ 1 ⊗ Z

However, note that it is not always necessary to choose a minimal set. If we choose

a non-minimal generating set, we have to perform more measurements (see below)

than necessary, but this may be desirable in some cases.

24

Syndrome measurement

These stabilizer generators tell us how to measure the syndromes. Each stabilizer

corresponds to a single syndrome measurement. We do not need a syndrome

measurement corresponding to 1⊗Z ⊗Z — as it is generated by the two stabilizers

above, measuring it would give us no new information.

We show how to measure the syndrome in Figure 3.1b. Each generator A1⊗A2⊗
A3 gets an ancillary qubit. If Ai = Z, then we entangle the ancilla with the ith qubit

of the computation state, using a controlled Z, which can detect X-type errors. For

example, the first ancilla (labeled |0⟩1) corresponds to Z ⊗Z ⊗ 1, so we entangle

it with the first two computation qubits. In the figure, we write everything in

the standard (Z) basis, so we write a controlled Z as a CNOT conjugated by the

Hadamard operator.

3.3.2 A wild parity check matrix appears

Continuing with the example, recall the parity check matrix of the classical [3,1,3]

repetition code from eq. (2.1.2):

P =
(
1 1 0
1 0 1

)
←→ Z ⊗ Z ⊗ 1

Z ⊗ 1 ⊗ Z

We write it next to the generating set of StabP3
C. The positions of 0 and 1 in the

matrix correspond to the positions of 1 and Z, respectively, in the generators (in the

order in which we wrote them). This is not a coincidence! It shows that the classical

[3,1,3] repetition code from Section 2.2.1 does in fact correspond to the phase-flip

code with this choice of generators.

Recall from Section 2.1.2 that we interpret the rows of the parity matrix as

specifying measurements of the physical bits. Stabilizer generators also tell us

which qubits to measure. Then this correspondence between the parity matrix and

generators of the stabilizer subgroup makes sense, and it means we can represent

our quantum codes using vectors and matrices over Z2, in the same way as we did

classical codes.

▷Definition 3.3.4 (binary representation of stabilizers). Suppose we have a system

of n physical qubits. We represent X- and Z-type Pauli operators from Pn using

vectors from Zn2 as follows: Take v ∈ Zn2, then the corresponding X-type operator is

X (v)B
n⊗
i=1

Xvi = Xv1 ⊗Xv2 ⊗ · · · ⊗Xvn ,

25

and the Z-type operator is

Z(v)B
n⊗
i=1

Zvi = Zv1 ⊗Zv2 ⊗ · · · ⊗Zvn .

Clearly these are bijections between the set of X-type (resp. Z-type) operators

and Zn2. ◁

With the above, we can represent a quantum code on n physical qubits that

obtains syndromes by performing m measurements by a parity check matrix P :

Zn2→ Zm2 .

3.3.3 CSS Code from orthogonal classical codes

We can now study CSS stabilizer codes as a pair of classical codes joined together

in a compatible manner. The splitting into two codes comes from the fact that the

stabilizer group of a CSS code has generating set split into X- and Z-type operators.

Thus each of those corresponds to one classical code. We represent them using

parity check matrices PX : Zn2→ ZmX2 and PZ : Zn2→ ZmZ2 . The compatibility between

the two codes comes from the fact that the stabilizer group is required to be abelian.

This leads to the following relationship:

▶ Theorem 3.3.5. Let x and z ∈ Zn2 be two vectors representing stabilizers X (x) and

Z(z), respectively. The stabilizers commute if and only if ⟨x,z⟩ = 0, where ⟨−,−⟩
is the usual inner product on Zn2. In other words, the stabilizers commute exactly

when their representing vectors are orthogonal. ◀

This is a known fact (see [CB23]) and we do not prove it here. However, we will

generalize this to qudits in Theorem 7.3.2, which we prove.

It will be incredibly useful to express the theorem in terms of the parity check

matrices PX and PZ , and particularly their composite. Both have Zn2 as domain, and

they have, in general, different spaces as codomains, so they cannot be composed on

the nose. We transpose one of them, say the Z-type matrix, to obtain P ⊤Z : ZmZ2 → Zn2.

Then Theorem 3.3.5 tells us the following:

▶ Corollary 3.3.6. The composite ZmZ2

P ⊤Z−−→ Zn2
PX−−→ Zmx2 is zero, or equivalently

imP ⊤Z ⊆ kerPX . ◀

Proof. Write the parity matrices as

PX =

← x1 →

...
← xmX →

 , and PZ =

← z1 →

...
← zmZ →

 .
26

The generators are represented by xi and zi , and they are the rows of the matrices.

In components, we write (PX)i,j = xij and (PZ)i,j = zij . Then the composite is

(PX ◦ P ⊤Z)i,j =
n∑
α=1

(PX)i,α(PZ)j,α = xiαz
j
α = ⟨xi , zj⟩ = 0,

where we used the fact that the vectors xi and zj are orthogonal for all i, j. Conclude

that PX ◦ P ⊤Z = 0. ■

This is an important property of a CSS code. The sequence

ZmZ2

P ⊤Z−−→ Zn2
PX−−→ ZmX2

such that imP ⊤Z ⊆ kerPX is called a chain complex, a term which originated in

homological algebra. This is deeply connected to algebraic topology, and it will

allows us to design quantum error correcting codes by analyzing certain kinds

of topological spaces. We will also use these to generalize from CSS codes on

qubit systems to codes on systems of qudits. We need some mathematical tools to

properly deal with these, and we introduce them in the following chapters.

27

28

Part II

Tools from Algebraic Topology and
Homological Algebra

29

Chapter 4

Rings and Modules

Firstly, we need some basics. In this chapter, we generalize the notions of fields and

vector spaces over them. This will be used to reason about qudit systems.

We assume the reader is familiar with most of these ideas. As such, we only

review the basic definitions (to fix notation), and parts that can subtle or are

especially useful to us. We follow [Jac09a, Jac09b], and an unfamiliar reader can

use those to find out more.

4.1 Rings

▷Definition 4.1.1 (ring). A ring is a structure (R,+, ·,0,1), where R is a set, called

the carrier, we have binary operations +, · : R×R→ R called, respectively, addition
and multiplication, and 0,1 are distinguished elements of R. The triple (R,+,0) is

an abelian group, called the additive group of R, and the triple (R, ·,1) is a monoid,

called the multiplicative monoid. We require that multiplication distributes over

addition:

r · (s+ t) = r · s+ r · t and (r + s) · t = r · t + s · t.

By convention, every ring in this work is unital (multiplication forms a monoid, as

above, and not just a semigroup). Often, we write multiplication without the dot.

Lastly, whenever this does not create ambiguity, we abuse notation and refer to the

whole ring as R. ◁

▷Definition 4.1.2 (ring homomorphism). A function between rings that preserves

the ring structure is a ring homomorphism. ◁

▷ Notation 4.1.3. As is usual, a homomorphism that is injective is also called a

monomorphism (denoted R↣ S), surjective an epimorphism (R↠ S), and bijective

31

an isomorphism (R ∼→ S). If there is an isomorphism, the rings are isomorphic (R � S).

This terminology and notation will be used also for homomorphisms between other

kinds of objects. ◁

Now a few relevant examples:

Example 4.1.4 (integers). The set of integers Z forms a ring with the usual addition

and multiplication. This ring is commutative, which means its multiplicative monoid

is commutative.

Example 4.1.5 (endomorphism rings). A ring may not necessarily contain numbers.

For an abelian group (A,⊞, 0̂), denote End(A) the set of its endomorphisms f : A→ A,

that is homomorphisms from A to itself. This set forms a ring, where we define the

ring addition + pointwise using the addition of the group, and ring multiplication

as the composition of functions:

(f + g)(a)B f (a)⊞ g(a) and (f · g)(a)B (f ◦ g)(a) = f (g(a))

for f ,g ∈ End(A) and a ∈ A. The neutral element for multiplication is the identity

function idA : A→ A which maps a 7→ a for all a ∈ A, and zero, the neural element

for addition, is 0 : A→ A that maps a 7→ 0̂. Note that the endomorphism ring is, in

general, not commutative.

▷ Convention 4.1.6. Most of our rings will be commutative. In fact, from
now on, unless otherwise stated, every ring will be commutative. ◁ !

4.1.1 Quotients

Throughout the work, we will need quotient rings, especially Z/dZ. We define these

below:

▷Definition 4.1.7 (ideal). Let R be a ring. A subset I ⊆ R is an ideal (denoted I ⊴ R)

if it is a subgroup of the additive group of R and it absorbs multiplication by all of

R, which means that for any r ∈ R and i ∈ I , the product ri ∈ I . ◁

▷ Definition 4.1.8 (quotient). Let R be a ring and I ⊴ R an ideal. Define an

equivalence relation ∼ ⊆ R×R such that r ∼ s if and only if their difference r − s is in

I , for all r, s ∈ R. Then the equivalence classes, also called cosets, are [r] = r + I B

{r + i : i ∈ I} for r ∈ R, and we denote the set of equivalence classes R/I . The set R/I

is a ring with the following operations:

• addition: [r] + [s]B [r + s] = r + s+ I , with the neutral element [0] = I , and

• multiplication: [r][s]B [rs] = rs+ I , with the neutral element [1] = 1 + I ,

32

for r, s,0,1 ∈ R. The ring R/I is called the quotient ring of R by I , and we have a

canonical epimorphism R↠ R/I that maps r 7→ [r] for all r ∈ R. ◁

Example 4.1.9 (modular arithmetic). In our work, the most important rings are

Z and its quotients by ideals. Take an integer n ∈ Z; then we have the ideal

nZ = {nm :m ∈ Z} containing all integer multiples of n. The quotient ring consists

of residue classes [k] = k + nZ = {nm + k : m ∈ Z} for k ∈ Z. For k,ℓ ∈ Z, the sum is

[k]+[ℓ] = [k+ℓ mod n], and product is [k][ℓ] = [kℓ mod n], that is the quotient ring

Z/nZ is the setting for integer arithmetic modulo n. We denote it by the shorthand

ZnB Z/nZ.

This has a few important special cases: If n = 0, then 0Z = {0} and all elements

m ∈ Z have their own singleton equivalence class [m] = {m}. The quotient Z0 is

isomorphic to Z.

In the opposite extreme, if n = 1, then 1Z = Z which contains the difference of

any m,p ∈ Z. Thus we have a single equivalence class, and Z1 � 0, the zero ring.

If n is prime, then Zn contains all multiplicative inverses of non-zero elements,

and is thus a finite field. However, if n is not prime, this no longer holds, which

leads us to the following section.

4.1.2 Division

The existence of multiplicative inverses of elements of a ring R, that is division, is

an important feature of the ring. Special interest belongs to the division of the zero

element:

▷Definition 4.1.10 (zero-divisor). Let R be a ring, and r ∈ R. If there exists s ∈ R,

s , 0 such that rs = 0, then we call r a zero-divisor. If r is also non-zero, then it is a

non-zero zero-divisor. ◁

Example 4.1.11. Take Z6 = Z/6Z, and observe that [2] · [3] = [6 mod 6] = [0], i.e.

we can multiply non-zero elements to get zero. The elements [2] and [3] are both

zero-divisors.

The division of zero is important enough that we define classes of rings based

on whether this is possible:

▷Definition 4.1.12 (PID). A non-zero ring R that does not contain any non-zero

zero-divisors, and where every ideal is generated by a single element, is called a

principal integral domain. ◁

33

Notably, the ring Z is a PID, and as such, many familiar properties hold here.

However, as shown in Example 4.1.11, Zd with non-prime d has zero-divisors, and

hence is not a domain. We care about this distinction because much of the previous

work on homological quantum error correction was focused on working with qudits

of prime dimension p, which are related to the fields Zp, or on working with Z,

which is a PID. We want to extend this work to Zd , where d > 1 is arbitrary.

4.2 Modules

We now focus our attention to spaces that are linear with respect to a ring. This

generalizes the notion of a vector space.

▷Definition 4.2.1 (module). Let R be a ring, and let M be an abelian group. Define

a ring action of R on M as the ring homomorphism µ : R→ EndM, where EndM

is the endomorphism ring of M (see example 4.1.5). We write this action as left

multiplication r · x = rxB µ(r)(x). The structure (M,µ) is called an R-module.7 ◁

We often leave the action implicit, use multiplicative notation, and refer to M as

the module.

▷ Definition 4.2.2 (module homomorphism). Let R be a ring, and let (M,µ)

and (N,ν) be R-modules. A homomorphism of R-modules, also

called an R-linear map, is a group homomorphism f : M → N

that is also compatible with the action of R, meaning it makes

the diagram on the right commute. This can be also written as

M M

N N

µ(r)

ν(r)

f f

f (rx) = rf (x) for each r ∈ R and x ∈M. ◁

It is important here that both modules are of the same kind, i.e. both are R-

modules. The collection of all R-modules, together with all R-linear maps, forms

the category RMod.

We generalize the following objects from the theory of vector spaces to R-

modules. They are exactly what one would think.

▷Definition 4.2.3 (kernel, image). Let M,N be R-modules, and f :M→N a homo-

morphism of R-modules. As usual, denote its kernel as kerf B {x ∈M : f (x) = 0},
and its image as imf B {f (x) : x ∈M}. ◁

▶ Theorem 4.2.4. If f is a homomorphism as above, then kerf is a submodule of

M, and imf is a submodule of N ◀

7With multiplication on the left, it is a left R-module. The other possibility would be a right
R-module. All our modules will be over commutative rings (Convention 4.1.6), in which case the left
vs. right distinction does not matter, and we omit it.

34

This is a standard fact, so we omit the proof. See [Hat02] for details.

▷ Definition 4.2.5 (submodule). Let M be an R-module. A submodule N of M,

written as N ≤M, is a subgroup of the additive group of M that is closed under the

action of R, that is R ·N = {rn : r ∈ R,n ∈N } ⊆N . ◁

4.2.1 Examples of Modules

Here, we present a selection of examples of modules. In particular, the first two

will be important later.

Example 4.2.6 (ring). Any ring R can be seen as a module over itself, where the

action is just the ring multiplication: µ(r)(s) = rs for r, s ∈ R. Observe that if I is a

submodule of R as module over itself, then I is an ideal of the ring R.

Example 4.2.7 (abelian group). Let (A,+,0) be an abelian group. Define the multi-

plication by n ∈ Z as

n · aB a+ a+ · · ·+ a︸ ︷︷ ︸
n times

for all a ∈ A. This makes A a Z-module. Every abelian group is a Z-module this

way. Conversely, any Z-module is already an abelian group, we just forget the

multiplication. This means we can reason about abelian groups and Z-modules

interchangeably.

As previously mentioned, modules are meant to generalize vector spaces, so it is

nice to see that a vector space is, indeed, a module:

Example 4.2.8 (vector space). Recall that a field K is a PID where division by all

non-zero elements is defined. A K-module is, by definition, a vector space. The

action in this case is exactly scalar multiplication. A submodule is now a vector

subspace.

4.2.2 Free and Finitely Generated Modules

Modules over a ring generalize vector spaces (see Example 4.2.8), in that they are

linear spaces, except over a ring, not necessarily a field. Many familiar properties

of vector spaces no longer hold in this setting, depending on how far the ring is

from a field. In this section, we define a class of modules that are like vector spaces,

in that they are spanned by a linearly independent basis.

35

▷Definition 4.2.9 (generating set). Let M be an R-module, and S ⊆M be a subset

of M. Denote ⟨S⟩R the submodule generated by S, defined by

⟨S⟩RB

∑
xi∈S

rixi : ri ∈ R

 =
∑
xi∈S

Rxi ,

i.e. ⟨S⟩R contains R-linear combinations of elements of S. If ⟨S⟩R =M, we say M is

generated by S, and we call S the generating set. If S is a smallest such set, then we

call its cardinality the rank of M, denoted rkM.

If there exists a finite S such that M = ⟨S⟩R (so rkM is finite) then we say that M

is finitely generated. ◁

Note that so far, there is no mention of linear independence. In particular, M

generates itself: M = ⟨M⟩R.

▷ Definition 4.2.10 (free module). An R-module M is free if there exists a set

S = {ei}i of elements of M, such that M = ⟨S⟩R and all its elements are linearly

independent: for ri ∈ R, if ∑
i

riei = 0,

then each ri = 0. The set S is called a basis of M.8 ◁

A free module is the most vector space-like. The rank of a free module is

analogous to the dimension of a vector space. In fact if K is a field, then a K-module

is a vector space and the rank and dimension are the same thing.

There is a useful equivalent characterization using direct sums. This is a gener-

alization of the fact that a vector space V over a field K of dimension n is a direct

sum of n copies of K.

▷Definition 4.2.11 (finitary direct sum of modules). Let R be a ring, and for n ∈ N,

let M1, . . . ,Mn be R-modules. Recall that the Cartesian product of these is

n∏
i=1

Mi B {(x1, . . . ,xn) : xj ∈Mj ∀1 ≤ j ≤ n},

i.e. all ordered tuples, where the jth entry is from module Mj . Define the addition

and R-action on this component-wise:

(x1, . . . ,xn) + (y1, . . . , yn)B (x1 + y1, . . . ,xn + yn), and r(x1, . . . ,xn)B (rx1, . . . , rxn),

8Module theory literature prefers the term base for modules, and basis only for vector
spaces.[Jac09a] There are the same concept, and we call them the same name for clarity.

36

where (x1, . . . ,xn) and (y1, . . . , yn) ∈
∏n
i=1Mi , and r ∈ R. The zero element is (0, . . . ,0),

an n-tuple of all zeros. The module defined this way is called the direct sum of

M1, . . . ,Mn, denoted
⊕n

i=1Mi . ◁

Note that the above definition explicitly requires a finite number of modules.

This can be generalized to a direct sum any family of modules: then the elements of

the direct sum are further required to have only finitely many non-zero components.

In our work, all direct sums will be finitary, so we do not worry about this further.

▶ Theorem 4.2.12 (free module). An R-module is free if and only if it is isomorphic

to
⊕n

i=1R, a direct sum of n copies of R, denoted R⊕n, for some n ∈ N. Here, we see

R as a module over itself (see Example 4.2.6). ◀

This is a standard fact, and a proof can be found in [Jac09a, §3.4].

▷ Notation 4.2.13. When we want to specify a generating set that is also a basis,

i.e. we have S = {e1, . . . , en} and M =
⊕

iRei , we write it as ⟨e1, . . . , en⟩⊕R, where we

mark it with the ⊕ symbol to indicate that the generating elements are linearly

independent. ◁

4.2.3 Matrices

Throughout the work, we will need to perform explicit computation using modules

and homomorphisms between them. In the context of finite-dimensional vector

spaces, we can encode their homomorphisms using matrices. This works exactly

because they have bases, and it generalizes to free modules:

▷Definition 4.2.14. Let M,N be free and finitely-generated R-modules. Suppose

M has rank m and basis {mj}mj=1, and suppose N has rank n and basis {ni}ni=1. If

f :M→N is an R-linear map, we can write f using its action on the basis element

mj as follows:

f (mj)B
n∑
i=1

fi,jni ,

where fi,j ∈ R, and we linearly extend this to all of M. Having a choice of bases, we

can identify f with the matrix (fi,j)i,j ∈ Rn×m that represents it. ◁

In particular, we will often need to compute kernels and images of homomor-

phisms of Z-modules in order to compute homologies of chain complexes; see

Section 5.1. This can be done by eyeballing the morphism or its representing

matrix, but there is also a systematic way to do it.

37

The algorithm we use is Gaussian elimination which transforms a matrix into a

row echelon form by a sequence of elementary row operations. We use this technique to

obtain kernels and images of matrices. We assume this to be known; an unfamiliar

reader may learn more in ref. [Axl96].

Note that we do not necessarily get the reduced row echelon form, which is a

unique normal form. The reduced part means that all leading coefficients are equal

to 1, and this can in general only be obtained if the ring of scalars contains divisors

of all non-zero elements. This is not the case for integers. For example, if a matrix

is in a row echelon form and some leading coefficient is 2, this cannot be reduced,

because that would require scalar multiplication by 1
2 , which is not contained in Z.

As we will see later, this is exactly where torsion comes in (see Section 4.2.5).

We have used Sage,[Sag23] a Computer Algebra System, to do many of these

computations for us. An example of such computation is in Appendix B.9

4.2.4 Quotient

Similarly to rings, we now construct a quotient module. The construction is, basically,

a group quotient with induced action.

▷Definition 4.2.15 (quotient). Let (M,µ) be an R-module, andN ≤M a submodule.

Recall that these are abelian groups, and as such, the subgroup N is normal in M.10

Then we have the quotient group M/N . Let x,y ∈M. The elements of M/N are

cosets [x] = x+N , equivalence classes of the relation defined by x ∼ y if x − y ∈N .

The addition is defined as [x] + [y] = [x + y], the zero element is [0] = N , and the

additive inverse is −[x] = [−x].

We define the action µ : R→ End(M/N) by requiring that

the diagram on the right commutes for every r ∈ R. Here,

q : M → M/N is the quotient map. Equivalently, this means

that r[x] B [rx] for every r ∈ R and x ∈ M. This induced

M M

M⧸N
M⧸N

µ(r)

µ(r)

q q

action clearly also satisfies everything it needs to, i.e. it is compatible with addition

and multiplication of the ring. The quotient group M/N , together with the induced

action µ, forms a quotient module. ◁
9While looking for a method to wrangle the huge matrices that sometimes came out of cell

complexes (see Section 6.2), we have also explored other algorithms. In particular, there is a method
to compute kernels and images of matrices over principal ideal rings, which include not just Z, but
also Zd ; see ref. [BN96]. However, due to Theorem 8.1.1, we did not need this in the end.

10A normal subgroup N ⊴ G is one closed under conjugation, i.e. gNg−1 ⊆N for each g ∈ G. If G
is abelian, this is true for all subgroups.

38

4.2.5 Torsion

With regard to zero-division from section 4.1.2, we now define the conceptual

opposite to freeness in terms of modules. We use the definition from ref. [Lam06],

because this is more general than other definitions in the literature which require

the ring to be a PID.

▷Definition 4.2.16 (torsion). Let M be an R-module. An element x ∈M is called a

torsion element if there exists an r ∈ R that is neither zero, nor a zero-divisor, such

that rx = 0. The set of torsion elements is denoted TorRM, and it is a submodule

of M. ◁

In the context of modules over a PID, we have the following fundamental result

that allows us to split the module into a free part and a torsion part.

▶ Theorem 4.2.17 (Structure Theorem for Finitely Generated Modules over PID).
Let R be a PID, and let M be a nonzero finitely-generated R-module. Then there

exist nonzero and non-invertible elements d1, . . . ,ds ∈ R (s ∈ N), such that d1 divides

d2, that divides d3, etc., and there exists an integer k ∈ N, such that

M � R⊕k ⊕
s⊕
i=1

R⧸diR. (4.2.1)

The generators di are unique up to multiplication by an invertible element, and are

called invariant factors of M. ◀

We do not prove this theorem, because it is standard and can be looked up for

example in ref. [Jac09a]. It can be summarized also as

M � R⊕k ⊕TorRM, (4.2.2)

because the summands R/diR are torsion R-modules. This decomposition will be

important to us later. It will tell us what the logical objects are in an error correcting

code if we include torsion.[VCT23] More on this in Chapter 8.

4.3 Tensor Product of Modules

In this section, we introduce the concept of tensor product. This is a way to combine

two objects into one in a way that carries a lot of coherence. In particular, this is

different than, for example, a direct sum. Here, we define the tensor product for

modules, but we will meet related tensor products for other kinds of objects as we

39

go along, and the relationships between these will be important to us.11 This is why

we dedicate it its own section. We follow the development in [Jac09b, §3.7], but we

simplify the definition to suit our purposes.12

▷ Definition 4.3.1 (tensor product). Let R be a ring, and let M,N be R-modules.

Define the tensor product of M and N over R as the abelian group M ⊗RN together

with a biadditive map −⊗− :M ×N →M ⊗RN . The biadditivity means that ⊗ acts

on each component as a homomorphism of the additive group:

(x+ x′)⊗ y = (x⊗ y) + (x′ ⊗ y) and x⊗ (y + y′) = (x⊗ y) + (x⊗ y′) (4.3.1)

for x,x′ ∈M and y,y′ ∈N . Furthermore, we require that ⊗ is compatible with the

action of R:

(rx)⊗ y = x⊗ (ry) (4.3.2)

for x ∈M, y ∈N and r ∈ R. Note that these conditions imply the following:

0⊗ y = 0 = x⊗ 0 and (−x)⊗ y = −(x⊗ y) = x⊗ (−y).

We require that the tensor product is universal: this

means that if there is another object P together with

a biadditive map f that satisfies all of the above, then

there exists a unique homomorphism of abelian groups

M ×N M ⊗RN

P

⊗

f
∃!

η :M⊗RN → P that maps x⊗y 7→ f (x,y) for x ∈M and y ∈N , such that the diagram

above right commutes. ◁

We explicitly construct M ⊗R N and describe its elements. Let F B ⟨M ×N ⟩⊕Z
be the free abelian group with basis M ×N (see section 4.2.2). Let G ≤ F be the

subgroup generated by

(x+ x′, y)− (x,y)− (x′, y), (x,y + y′)− (x,y)− (x,y′), and (rx,y)− (x,ry)

for all x,x′ ∈ M, y,y′ ∈ N , and r ∈ R. These generators correspond to equations

(4.3.1) and (4.3.2). Then we defineM⊗RN B F/G, and the map ⊗ :M×N →M⊗RN
as x⊗y B (x,y)+G for x ∈M and y ∈N . This construction is indeed a tensor product;

the proof is standard and we omit it here, but a reader may look it up in [Jac09b,

§3.7].

11To foreshadow slightly, this will lead us to products of certain topological complexes, their
associated chain complexes of modules, and it will be interesting to see how homology behaves with
respect to this. See Appendix A.1

12The tensor product is conventionally defined as the universal balanced product. We absorb the
definition of balanced product into the definition of tensor product.

40

Observe that the universal property makes the tensor product unique up to a

unique isomorphism, and hence any tensor product is isomorphic to the above.

From now on, we call M ⊗RN the tensor product of modules. We now construct the

corresponding tensor product for morphisms:

▷Definition 4.3.2 (tensor product of R-linear maps). Let R be a ring, M,M ′,N ,N ′

be R-modules, and let f : M → M ′ and N → N ′ be

R-linear maps. We define the tensor product of f and g

as the unique map f ⊗g that makes the diagram on the

right commute. It maps x⊗ y 7→ f (x)⊗ g(y) for x ∈M

M ×N M ⊗RN

M ′ ×N ′ M ′ ⊗RN ′

⊗

f ⊗g

⊗

f ×g

and y ∈N . ◁

We do not go into much explicit detail, but the map f ⊗ g is indeed unique, and

it satisfies all the nice properties we might want. We summarize it compactly by

noting that the tensor product is a bifunctor

⊗ : RMod× RMod→Ab = ZMod.

Notice that its results are, so far, abelian groups and their homomorphisms. How-

ever, we want a module over the original ring R, and we obtain this as follows:

▷ Definition 4.3.3 (tensor product module). Let R be a ring, and let M,N be R-

modules. We make M ⊗RN an R-module by defining the action R→ End(M ⊗RN)

such that r(x⊗ y)B (rx)⊗ y. ◁

This is clearly compatible with the other structure. In particular, recall (rx)⊗y =

x⊗ (ry), and so the action as defined above can be equivalently written r(x⊗ y) =

x⊗ (ry), as we would expect.

4.3.1 Properties of Tensor Product Modules

Here, we list some basic properties of the tensor product R-module. These are

standard, and we do not prove them. We only list the ones that we need at some

point. In the following, let M,N,P be R-modules.

The tensor product behaves like a monoid: it is associative, and has a unit which

is the ring R as module over itself:

M ⊗R (N ⊗R P) � (M ⊗RN)⊗R P , and M ⊗R R �M � R⊗RM. (4.3.3)

41

In RMod, we have a zero object, the module 0 = {0}. The tensor product of this

with any other module is again zero:

0⊗RM = 0. (4.3.4)

The tensor product is compatible with the direct sum, in a way that mimics the

distributivity of multiplication over addition of numbers. If {Ni}i is a family of

R-modules, then

M ⊗R
⊕
i

Ni �
⊕
i

M ⊗RNi . (4.3.5)

In the context of integer rings as modules over themselves, we have the following

equality. Let a,b ∈ N, then

Za ⊗Zb � Zgcd(a,b), (4.3.6)

where gcd(a,b) is the greatest common divisor of a and b.

4.3.2 Extension of Scalars

In Definition 4.3.3, we make the tensor product into a functor RMod × RMod→

RMod. However, the R-module structure was added on top of the tensor product by

defining a new action of R. A similar technique, but using a different ring, can be

used to change the ring of scalars of a module. This will be an important step when

describing quantum error correcting codes acting on qudit systems in Chapter 8.

More details can be found in [DF04].

▷Definition 4.3.4 (extension of scalars). Let R,S be rings, let f : R→ S be a ring

homomorphism, and let M be an R-module. Define an action σ : R→ EndS, such

that σ (r)(s)B f (r) ·S s, for r ∈ R and s ∈ S, with the multiplication done in S. This

makes (S,σ) into an R-module, and hence there is a tensor product S ⊗RM.

The ring S is also canonically an S-module, with action being the ring multipli-

cation (see Example 4.2.6). We use this to define the action µS : S→ End(S ⊗RM)

where µS(s)(s′⊗x)B (ss′)⊗x for s, s′ ∈ S and x ∈M. This makes S⊗RM an S-module.

The procedure we described is a way to turn an R-module into an S-module,

and it is called the extension of scalars of M by S along f . ◁

Note 4.3.5. Note that the scalar-extended module S ⊗RM can still be viewed as an

R module. Thus S ⊗RM has actions of two possibly different rings R and S, these

are compatible, and as such S ⊗RM is a bimodule.

42

Since the tensor product is a functor, it follows that the extension of scalars is

also a functor. Concretely, a ring homomorphism f : R→ S induces the functor

f! : RMod→ SMod. The action on morphisms is as follows: If α : M → N is an

R-linear map, then f! maps it to an S-linear map f!(α)B idS ⊗α.

43

44

Chapter 5

Homological Algebra

In this chapter, we introduce the basic notions of Homological Algebra. This is an

abstract area that originated in Algebraic Topology. However, we first present it

abstractly, only using linear algebra and the notions from Chapter 4, without any

topology involved. We follow the books [Hat02] and [Wei94].

5.1 Chain Complexes and Homology

▷Definition 5.1.1 (chain complex). Let R be a ring, and let {Cn}n∈N be a family of R-

modules, called chain modules or components. For Cn, the label n is called the degree.

For convenience, we define also C−1B 0, the zero module. Let {∂n : Cn→ Cn−1}n∈N
be a family of R-module homomorphisms, where ∂n is called the nth differential
or boundary map. For each n ∈ N, we require that ∂n ◦ ∂n+1 = 0 (written ∂2 = 0

for short), or equivalently that im∂n+1 ⊆ ker∂n. Such structure is called a chain
complex of R-modules, and is denoted C•. When necessary, the differentials may be

annotated ∂C•n to indicate their corresponding chain complex. ◁

There is a visual intuition for a chain complex. We display a special case where

im∂n+1 = ker∂n (discussed later) at the beginning of Part II on page 31, and we

show a general picture in fig. 5.1.

▷Definition 5.1.2 (length of a chain complex). If there exists n ∈ N, such that for all

m > n, the chain module Cm = 0, then the chain complex is bounded. If n is minimal,

we call it the length of the chain complex. ◁

There is a corresponding notion of morphisms between chain complexes, called

the chain maps. We will not need them, so we only briefly mention that these are

families of R-linear maps, one for each degree, that commute appropriately with the

differentials of each complex. Together, these form a category denoted Ch•(RMod).

45

Cn+2 Cn+1 Cn Cn−1 Cn−2 Cn−3
∂n+2 ∂n+1 ∂n ∂n−1 ∂n−2

Figure 5.1: Visualization of a chain complex C•. Chain modules Cn are the big ovals, with
the zero element distinguished by a small black circle •. The differentials ∂n go from left
to right, and are shown as funnels that take the domain (left oval) to their image, which
is a subset of the codomain (right oval). We indicate the kernels of differentials by the
red hatched area, and the images by the blue hatched area. Observe the chain complex
condition that im∂m+1 ⊆ ker∂m for all m.

We look more closely at the requirement that im∂n+1 ⊆ ker∂n for each n ∈ N.

Recall that the images and kernels of R-linear maps are modules. This implies a

stronger condition, that im∂n+1 is in fact a submodule ker∂n, and this allows us to

define the quotient to study their difference.

▷Definition 5.1.3 (homology). Let C• be a chain complex of R-modules. For n ∈ N,

define the nth homology module as the R-module quotient

Hn(C•)B ker∂n⧸im∂n+1
.

In the literature (e.g. [Hat02]), they are often called the homology groups, because

often we work over R = Z, however, we want to emphasize that the ring may be

arbitrary. ◁

▷ Notation 5.1.4 (cycles and boundaries). There is some terminology that comes

with the above definition. This stems from Algebraic Topology, and we explain what

it means in Section 6.3. For now, these are just names. We call ker∂nC Zn(C•) the

space of n-cycles, and im∂n+1 C Bn(C•) the space of n-boundaries. Then H1(C•) =

Zn(C•)/Bn(C•). ◁

In the following examples, we very briefly show why we care about this. We will

work these out in more detail later.

Example 5.1.5 (classical code). Any R-linear map, together with its domain and

codomain, can be interpreted as a chain complex of length 1. In particular, in

Section 2.1.1, we introduce the parity check matrix P : Zn2 → Zm2 that defines an

error correcting code. This corresponds to the following chain complex of Z2-

46

modules (i.e. vector spaces over Z2):

· · · 0 Zn2 Zm2 0
C2 C1 C0 C−1

0 0 P 0

Recall that the codespace is kerP , which in this case is isomorphic toH1(C•), because

im∂2 = im0 = 0. This is to foreshadow that homologies will be very important

when analyzing codespaces.

Example 5.1.6. In Section 3.3.3, we show how a quantum error correcting code

is defined using two parity check matrices PX and PZ that satisfy PX ◦ P ⊤Z = 0. As

mentioned there, this is exactly the chain complex condition, and as such a CSS

code corresponds to the following chain complex of length 2:

· · · 0 ZmZ2 Zn2 ZmX2 0
C3 C2 C1 C0 C−1

P ⊤Z PX 00 0

We will see in Section 7.1.1 that the codespace is, in fact, isomorphic to the first

homology module H1(C•).

5.2 Exact Sequences and Resolutions

Before we delve into error correction, we need some more tools. These will be

required to move from qubits to qudits. Specifically, we need to be able to define

the Tor functors, and this will allow us to compute the codespace of qudit codes.

▷ Definition 5.2.1 (exactness). Suppose we have the following sequence of R-

modules and R-linear maps between adjacent modules:

· · · Mn+1 Mn Mn−1 · · ·
fn+2 fn+1 fn fn−1

For some n, if imfn+1 = kerfn, then we say the sequence is exact at Mn. If such a

sequence is everywhere exact, we call it an exact sequence. ◁

The above idea is related to that of a chain complex. Note, however, that we do

not impose that imfn+1 ⊆ kerfn here. If that is the case though, then the sequence

can be interpreted as a chain complex M• with ∂n = fn, and the exactness at n can

be stated as Hn(M•) = 0.

Example 5.2.2 (short exact sequence). Ubiquitous in algebra are short sequences of

the form

0 A B C 0.0 f g 0

47

The exactness at every object within the sequence implies that f is a monomorphism

and g is an epimorphism; we emphasize this notationally, but only here. Such a

sequence can be interpreted as C being (isomorphic to) the quotient B/A.

Example 5.2.3 (isomorphism). An example of an even shorter exact sequence is

0 A B 0.
f
∼

The exactness implies that f is an isomorphism.

In Homological Algebra, a special kind of exact sequence is very important to

describe modules, and is important for us to define Tor. We will not do so in full

generality; instead, we only go as far as we need.

▷Definition 5.2.4 (free resolution). Suppose M is an R-module. A free resolution
of M is a chain complex F•, where each Fn is a free R-module, together with an

R-linear map ε : F0→M such that the augmented complex

· · · F1 F0 M 0
∂F•2 ∂F•1 ε 0

is everywhere exact. We write a resolution as F•
ε−→M. ◁

▷Definition 5.2.5 (Tor). Let A,B be Z-modules, and let F•
ε−→ A be a free resolution

of A. We define the nth Tor module of A and B as Torn(A,B)BHn(F• ⊗B), that is the

nth homology module of the chain complex

· · · F1 ⊗Z B F0 ⊗Z B 0.
∂F•2 ⊗idB ∂F•1 ⊗idB 0

This is no longer the augmented complex ending with A, just the F• itself with the

functor −⊗B applied to it. ◁

Note that we use the free resolution F•
ε−→ A to define Torn(A,B), but Tor is

actually independent of the choice of resolution.

▶ Lemma 5.2.6. Let A,B be Z-modules, and suppose A is free. Then the first torsion

module Tor1(A,B) = 0. ◀

Proof. If A is free, then A � Z⊕n for some n ∈ N. We write this isomorphism as

ε : Z⊕n ∼→ A. A suitable free resolution of A is the following:

· · · 0 Z⊕n A 0.0 ε
∼

00

48

The chain complex F• ⊗ B has components Fn = 0 for n > 0, and F0 = Z⊕n ⊗Z B.

Consequently, its differentials are necessarily all zero. Then the first homology is

H1(F• ⊗B) = ker(∂F•1 ⊗ idB)⧸im(∂F•2 ⊗ idB) = 0⧸0 = 0,

and this is the first Tor module Tor1(A,B). ■

5.3 Change of ring for homology

In Chapter 6, we will use chain complexes of Z-modules to study topological

spaces. However, to properly study qudit systems, we need to move to complexes

of Zd-modules, where d > 1 is arbitrary. We describe here how to do that.

▷Definition 5.3.1 (change of ring for chain complex). Let CR• be a chain complex

of R-modules, and let f : R→ S be a ring homomorphism. We use the extension
of scalars from Definition 4.3.4 to obtain the corresponding chain complex of

S-modules CS• B f!(CR•). This is the tensor product S⊗RCR• with component S⊗RCRn
and differential idS ⊗∂

CR•
n for degree n. ◁

Changing the ring of a chain complex is relatively straightforward. This induces

change of ring for the homology modules:

▷ Definition 5.3.2 (change of ring for homology). Let C• be a chain complex of

R-modules. Its nth homology R-module is Hn(C•). Using the above change of

scalars, we define the nth homology of C• over S as the nth homology evaluated in

the complex CS• . That is, HS
n (C•)BHS

n (CS•). Written explicitly, it is

HS
n (C•) = ker(idS ⊗∂

C•
n)⧸im(idS ⊗∂

C•
n+1).

We intend this to be an S-module; however, recall from Note 4.3.5 that this is also

still an R-module. ◁

We now present an important result from Homological Algebra. We do so

without proof, because this would, in full generality, require concepts beyond the

scope of this work. There are several version of the following theorem; we use the

one directly useful to us.

▶ Theorem 5.3.3 (Universal Coefficient Theorem[Hat02]). Let C• be a chain com-

plex of Z-modules, and let R be a ring. Then for each n ∈ N, there exists a short

exact sequence as follows:

0 Hn+1(C•)⊗Z R HR
n+1(C•) Tor1

(
Hn(C•),R

)
0. ◀

49

The theorem is usually stated with R being an abelian group (Z-module). Here,

we see it as a ring, but recall that every ring is an abelian group. We need the

theorem to prove the following lemma for later use.

▶ Lemma 5.3.4. Let C• be a chain complex of Z-modules, and let R be a ring.

Suppose that Hn(C•) is free for some n ∈ N. Then the (n+ 1)st homology over R is

HR
n+1(C•) �Hn+1(C•)⊗Z R. ◀

Proof. By hypothesis, Hn(C•) is a free Z-module. It follows from Lemma 5.2.6, that

Tor1(Hn(C•),R) = 0. Then the short exact sequence from Theorem 5.3.3 becomes

0 Hn+1(C•)⊗Z R HR
n+1(C•) 0.

The exactness of the sequence implies an isomorphism, as required. ■

Lemma 5.3.4 seems perhaps insufficiently motivated: why would we care specif-

ically about what happens to the (n + 1)st homology when the nth homology is

free? In a general chain complex, this may be completely useless. As shown in

Examples 5.1.5 and 5.1.6, we intend to build error correcting codes using chain

complexes. However, we will specifically use chain complexes arising from topolog-

ical spaces, where Lemma 5.3.4 will have great relevance. First, however, we need

to define those spaces; we do so in the next chapter.

50

Chapter 6

Cell Complexes

This chapter introduces a way to split topological spaces into simple parts that are

glued together. This allows us to establish algebraic structures (chain complexes

from Section 5.1) that describe these spaces, leading us into algebraic topology. We

take a combinatorial approach, where we define these parts and their relationships

abstractly, without worrying too much about the actual underlying topology or

geometry.

We assume knowledge of basic topology, and we will not talk about open sets

and similar concepts here, because they are not needed for us. Some knowledge

of cell complexes (also called CW complexes) would be perhaps beneficial to see

deeper into the background, but it is not strictly necessary.

6.1 Abstract 2-dimensional cell complexes

What we need is a complex of simple topological objects glued together in a useful

way. There are many possibilities; the one we choose is a cell complex (also called a

CW complex), because this is general enough for the kinds of spaces we need. There

are other kinds of topological complexes, and we comment on our choice of cell

complexes instead of the other options in Section 6.1.5. For more details on cell

and other kinds of complexes, see the book [Hat02], which served as our guide.

First, some intuition of a cell complex. The idea is that we build a space induc-

tively by attaching new cells of increasing dimension, starting from 0-dimensional

points (called 0-cells). At each step, there is a “frame” of dimension n, which we call

the n-skeleton Xn. This is composed of cells of dimension n (called n-cells) and lower,

glued together in a previous step. We attach n+1 dimensional “faces” to it to fill the

holes in the frame. These faces are copies of the closed topological (n+ 1)-dimensional

51

ball Bn+1, and the gluing is done along their boundaries, which are copies of the

n-dimensional sphere Sn.

Example 6.1.1. We show an example of this procedure in fig. 6.1. We take two

triangles, which are our 2-cells e2
1 and e2

2 (where the upper index indicates the

dimension), and glue them to a 1-skeleton X1 constructed from edges and points in

a previous step. We always glue by boundaries, as shown in the figure. The result is

a 2-dimensional space, which we call the 2-skeleton. In this case, this is the final

step, and we say the space X = X2.

e2
1 X1

e2
2 ⇝

X2

Figure 6.1: Gluing two triangles to a frame made of edges. The dashed edges are the
boundaries of the triangles (2-cells e2

1 and e2
2), and the 1-skeleton X1. The solid bendy lines

show how the triangle edges are glued to the skeleton. We do not show the vertices here,
but they are at the endpoints of the edges, and they are glued as appropriate.

6.1.1 Definition

The above example 6.1.1 is quite simple. However, our goal is homology of cell
complexes, and this is tricky to define in full generality.13 Thus, we take an alter-

native approach. For our purposes, we restrict the maximum dimension to two,

because we only work with surfaces. We also abstract away much of the topological

structure. What remains is an abstract representation of a cell complex, which is in

analogy to what an abstract simplicial complex is to a topological simplicial complex.

The concrete definitions are original, though following the general definition of a

cell complex given by [Hat02]. It took nontrivial effort to get the definition right for

our purposes. Because of this, we show it in steps, motivating each design choice.

13As we shall see in Section 6.2, we attach a chain complex to a cell complex, and the differentials
correspond to boundaries where cells are attached. In order to define the boundary maps in full
generality, we need to define the degree of a continuous map, and this in turn is defined using relative
homology. Thus, we need one homology theory to define another, more complicated homology theory.
A standard way to do this (see [Hat02]) is by first defining simplicial, and then singular homology,
and then using this to define the aforementioned boundary maps for cellular homology.

52

0-cells

When building a cell complex, we first need to define a set of discrete points or

vertices. This will be the initial step for us too. Denote X0 B {e0
α}α a family of

0-cells, which are abstract symbols, and are all distinct. The 0-skeleton is the same:

X0B X0.

1-cells

Next is a family of 1-cells, edges between points. Denote X1 B {e1
α}α a family of

these; they are again just abstract symbols, distinct from each other and from 0-cells.

For an edge e1
α ∈ X1, we need to specify its endpoint vertices: the source s(e1

α) ∈ X0

and target t(e1
α) ∈ X0. We define the function s, t : X1→ X0. We allow the source and

target to be the same vertex, or equivalently, an edge may be a self-loop.

In cell complex style, we combine both the source and target functions into a

single attaching map ϕ1 : X1→ X0 ×X0 that sends e1
α 7→ (s(e1

α), t(e1
α)). Note that so

far, we have essentially defined a directed graph, with vertices X0 and edges X1.14

This forms the 1-skeleton X1B X0 ∪X1.

Unlike general cell complexes which are unoriented, we are building the ori-

entation of 1-cells into the definition. This is a choice that will make things more

convenient in the definition of 2-cells in the next step, and the chain complexes

that we will define in Section 6.2 are uniquely, and easily, determined from this.

Furthermore, in Section 6.1.2, we will glue cells together to form interesting spaces,

and sometimes we want to glue them in opposite orientation.

This means also that while a 1-cell has a defined orientation, we will need to

reason about a copy of the same cell with the opposite orientation. We set up the

following machinery:

▷Definition 6.1.2 (orientation closure). For a set A, define +AB {+a : a ∈ A}, and

similarly −A B {−a : a ∈ A}. By this we mean that we attach a symbol + or − to

the elements. Define the orientation closure of A to be the set
−→
A B (+A) ∪ (−A).

Define also an action of eiπZ B ({+1,−1}, ·,+1), the cyclic group of order two in

multiplicative notation, such that −1 switches the signs. We write this as −(±a) = ∓a
for a ∈ A. By definition of an action, +1 acts as the identity.

14In Section 8.3, we will see that it is interesting if a 2-cell touches the same 1-cell several times.
It seems that this is not possible for 1-cells and 0-cells; however, we could generalize the 1-cells to
oriented hyperedges to get a similar effect.

53

We may use the usual multiplicative convention of omitting the symbol +, and

this way we notationally identify A � +A. Then
−→
A is the set of elements of A and

their formal additive inverses. ◁

We use the above construction to extend the attaching map ϕ1, by requiring that

for each e1 ∈ X1, the cell −e1 ∈ −−→X1 is the same edge, but with direction reversed:

s(−e1)B t(e1) and t(−e1)B s(e1).

Formally, we define this extension of ϕ1 to be −−→ϕ1 :
−−→
X1 → X0 ×X0, and we require

that it is compatible with the action of eiπZ on X0 × X0,

defined such that −1 swaps the entries: (e0
1, e

0
2)
−17−−→ (e0

2, e
0
1).

The compatibility then means that the diagram on the

right commutes.

−−→
X1

−−→
X1

X0 ×X0 X0 ×X0±1

−−→ϕ1
−−→ϕ1

±1

2-cells

The highest dimension we reach is two, i.e. faces. Denote X2 B {e2
α}α a family of

2-cells, again abstract symbols, distinct from 0- and 1-cells. In the usual definition

of a cell complex, the boundary is a 1-sphere S1, a circle, so we need an abstract

analogy for this. As the 1-skeleton X1 is essentially a directed graph, the obvious

way to define a circle is to use a cycle of edges in the graph. However, we need to

take the orientation of the edges into account.

We define an abstract circle as a sequence (±ie1
i)ℓi=1 of length ℓ ∈ N which consists

of elements of
−−→
X1 . We denote their signs with ±i , where the i means this is the sign

of ith cell in the sequence. In our context, some boundary has to always exist, so we

exclude the empty cycle (ℓ = 0). The sequence must form a cycle in the graph, so

the endpoints of adjacent edges have to match:

t(±ie1
i) = s(±i+1e

1
i+1) for every i = 1, . . . , ℓ − 1; and t(±ℓe1

ℓ) = s(±1e
1
1).

Our 2-cells are oriented as well, so their boundary circles have a definite direction

by which they traverse the edges. We show an example of this in fig. 6.2a.

So far, the sequences have a distinguished base point: this is the vertex s(±1e
1
1).

However, we do not need it – we just need to know which edges the circle traverses,

and in which direction. Thus we choose to forget the base point, and identify

all sequences of the same length that are cyclic permutations of one another. We

summarize this as follows:

54

⟳

e1
1

e1
2

e1
3

e1
ℓ

boundary (+e1
1,−e

1
2,−e

1
3, . . . ,+e

1
ℓ)

(a)

e0
1

⟳

boundary e0
1

(b)

Figure 6.2: Examples of boundaries of a 2-cell (shaded). (a) A boundary that is a cir-
cle (1-sphere) oriented clockwise. It is represented by a sequence of oriented edges
(+e1

1,−e
1
2,−e

1
3, . . . ,+e

1
ℓ). We indicate the start and end point of the cycle by a black cir-

cle. (b) A 2-cell bounded by a single point e0
1. It is a sphere S2 with a distinguished point.

▷Definition 6.1.3 (abstract circle). Let X0,X1 be sets of 0- and 1-cells respectively.

An abstract circle (1-sphere) is an equivalence class of cycles, up to cyclic permuta-

tions, represented by tuples in
−−→
X1 as described above. We denote such equivalence

classes as ⦅±1e
1
1, . . . ,±ℓe

1
ℓ ⦆, and we denote the set of all abstract circles S −−→X1 . ◁

Similarly to 1-cells, we need to consider reversing the orientation. An abstract

circle is already oriented, so the only remaining thing needed is the action of eiπZ

on S −−→X1 . We define

−⦅±1e
1
1, ±2e

1
2, . . . ,±ℓ−1e

1
ℓ−1, ±ℓe

1
ℓ ⦆B ⦅∓ℓe1

ℓ , ∓ℓ−1e
1
ℓ−1, . . . ,∓2e

1
2, ∓1e

1
1⦆

for all abstract circles. This means that traversing a circle backward, we see the

edges in the opposite orientation, and in the opposite order, as expected.

Special case: A general cell complex allows a 2-cell to be bounded by a single

0-cell, without any 1-cells in between. This corresponds to a 2-sphere S2 with a

distinguished point, as shown in Figure 6.2b. We have no use for this, so in order to

keep the definitions simpler, we exclude this case. This means that our definition is

even more restrictive, but that is fine.

Finally, we define the attaching map ϕ2 : X2 → S
−−→
X1 that maps a 2-cell to its

boundary which is an (oriented) abstract circle. Similarly to the case of 1-cells, we
extend ϕ2 to the orientation closure of 2-cells, and define
−−→ϕ2 :

−−→
X2 →S

−−→
X1 . This extension must be compatible with

the action of eiπZ, meaning the diagram to the right must

commute.

−−→
X2

−−→
X2

S −−→X1 S −−→X1

−−→ϕ2
−−→ϕ2

±1

±1

55

Full definition

We bound the dimension to two, so there will be no n-cells of dimension n > 2.

Hence, we now have all the ingredients required for the whole definition. Note that

for reasons of practicality, we require our complexes to be finite.

▷Definition 6.1.4 (abstract 2-dimensional cell complex). Let XnB {enα}α be a finite
family of n-cells, where n ∈ {0,1,2} is called the dimension of the cells. The enα are

abstract symbols, and all are distinct. Let ϕ1 : X1→ X0 ×X0 and ϕ2 : X2→S
−−→
X1 be

attaching maps as described above. We call the tuple X B (X0,X1,X2,ϕ1,ϕ2), also

denoted X = (X•,ϕ•), an abstract 2-dimensional cell complex. ◁

e0
1

e0
2 e0

3

e0
4

e1
1

e1
2

e1
3

e1
4

e1
5

e2
1⟳

e2
2⟳

Figure 6.3: Example of an abstract 2-dimensional cell complex.

Example 6.1.5. Take the space from example 6.1.1. In that example, we showed

the gluing of 2-cells (triangles) to the 1-skeleton to make a 2-skeleton (square).

Now, we construct the same space using our new definition. Note that this requires

that we decide the orientation of the faces and edges; we indicate this by arrows in

fig. 6.3.

The 0-cells are X0 = {e0
1, . . . , e

0
4}. The 1-cells are X1 = {e1

1, . . . , e
1
5}, and they are

attached to the 0-cells using ϕ1 as follows:

ϕ1(e1
1) = (e0

1, e
0
2), ϕ1(e1

4) = (e0
2, e

0
3),

ϕ1(e1
2) = (e0

2, e
0
4), ϕ1(e1

5) = (e0
3, e

0
4),

ϕ1(e1
3) = (e0

4, e
0
1),

Together, this makes the 1-skeleton. The 2-cells are X2 = {e2
1, e

2
2}, and they are

attached by ϕ2 as follows:

ϕ2(e2
1) = ⦅+e1

1,+e
1
2,+e

1
3⦆, and ϕ2(e2

1) = ⦅−e1
2,+e

1
4,+e

1
5⦆.

56

▷Definition 6.1.6 (subcomplex). Let X = (X•,ϕ•) be an abstract 2-dimensional cell

complex. Define a subcomplex of X to be a complex Y = (Y•,ψ•), where Yn ⊆ Xn
and the attaching maps are restrictions on these subsets, i.e. ψn = ϕn|Yn , for each

n ∈ {0,1,2}. For this to work, we require that if an (n+ 1)-cell en+1 ∈ Xn+1 is in Yn+1,

then all the n-cells forming its boundary are in Yn, for n ∈ {0,1}. ◁

6.1.2 Gluing Complexes

To obtain interesting spaces, we will glue these complexes, or different cells of the

same complex, together. To do this, we define the notion of a quotient. First, we

describe how to glue a single complex to itself; gluing different complexes will be

done by first joining them together disjointly, and then quotienting.

We restrict ourselves to only glue cells of the same dimension. No contractions

are allowed, meaning we cannot transform an n-cell to a cell of lower dimension.

On the other hand, we wish to be able to glue cells in an oriented manner, so that

we may, for example, construct a cylinder and Möbius strip from the same complex

by gluing edges in different ways (see Example 6.1.10).

▷ Definition 6.1.7 (oriented equivalence). Let A be a set. Take its orientation

closure
−→
A , together with the action of eiπZ (see Definition 6.1.2). A set-theoretic

equivalence relation ∼ on
−→
A is called oriented if it does not relate an element to

its inverse, that is ±a≁ ∓a for a ∈ A, and if it is compatible with the action of eiπZ,

meaning that ±aa ∼ ±bb implies ∓aa ∼ ∓bb for ±aa and ±bb ∈
−→
A . ◁

▷Definition 6.1.8 (coherent equivalence of cells). Let X = (X•,ϕ•) be an abstract

2-dimensional cell complex. Suppose we have an equivalence relation ∼0 on the

set of points X0 which have no orientation. Suppose further we have an oriented

equivalence relation ∼1 on the orientation closure of edges
−−→
X1 , and similarly ∼2

on
−−→
X2 . These can be joined together as ∼B ∼0 ∪ ∼1 ∪ ∼2, an equivalence relation

on X0 ∪
−−→
X1 ∪

−−→
X2 . We call ∼ coherent if the equivalences are compatible with the

attaching maps:

• Suppose e1
a and e1

b ∈ X1 are 1-cells. If ±ae1
a ∼ ±be1

b , then s(±ae1
a) ∼ s(±be1

b) and

t(±ae1
a) ∼ t(±be1

b). That is, the endpoints of equivalent edges must match, and

this must respect the orientation.

• Suppose e2
a and e2

b ∈ X2 are 2-cells with boundary circles ϕ2(e2
a) and ϕ2(e2

b). If

±ae2
a ∼ ±be2

b , then −→ϕ 2(±ae2
a) ≃ −→ϕ 2(±be2

b). By this we mean that their boundary

circles must match, respecting the orientations, up to equivalence of 1-cells,

indicated by the symbol ≃. ◁

57

▷ Definition 6.1.9 (quotient of abstract cell complex). Let X = (X•,ϕ•) be an ab-

stract 2-dimensional cell complex, and let ∼ be a coherent equivalence of the cells

of X. Define the quotient of X by ∼, denoted X/ ∼, to be the abstract 2-dimensional

cell complex (Q•,κ•) obtained by identifying the cells that are equivalent under ∼
and inducing the attaching maps on the equivalence classes. ◁

Examples

We show a few important examples. In the following, let X = (X•,ϕ•) be an abstract

2-dimensional cell complex corresponding to a square, with four vertices X0 =

{e0
1, . . . , e

0
4}, four edges X1 = {e1

1, . . . , e
1
4}, and a face X2 = {e2}. The edges attach as

ϕ1(e1
1) = (e0

1, e
0
2), etc.; and the face attaches as ϕ2(e2) = ⦅e1

1, e
1
2, e

1
3, e

1
4⦆. See Figure 6.4a.

e0
1

e0
2 e0

3

e0
4

e1
1

e1
2

e1
3

e1
4

e2⟲

(a) Square

e0
1

e0
2 e0

2

e0
1

e1
1

e1
2

e1
1

e1
4

e2⟲

(b) Cylinder

e0
1

e0
2 e0

1

e0
2

e1
1

e1
2

e1
1

e1
4

e2⟲

(c) Möbius strip

e0
1

e0
1 e0

1

e0
1

e1
1

e1
2

e1
1

e1
2

e2⟲

(d) Torus

e0
1

e0
1 e0

1

e0
1

e1
1

e1
2

e1
1

e1
2

e2⟲

(e) Klein bottle

e0
1

e0
1 e0

1

e0
1

e1
1

e1
2

e1
1

e1
2

e2⟲

(f) Real projective plane

Figure 6.4: Gluing a square to itself in different ways. Pairs of edges with the same number
of white arrows are glued together, in the orientation indicated by those arrows. Edges with
black arrows are not glued.

Example 6.1.10 (cylinder, Möbius strip). If we put e1
1 ∼ −e

1
3, the quotient we obtain is

a cylinder in Figure 6.4b. Observe that because of the way we constructed the square

X, we have to glue e1
1 to e1

3 in the opposite orientation. This induces the equivalences

of points e0
1 ∼ e

0
4 and e0

2 ∼ e
0
3. The boundary circle of the face becomes ⦅e1

1, e
1
2,−e

1
1, e

1
4⦆.

In the figure, we indicate the gluing of e1
1 ∼ −e

1
3 by the white triangles. In Figure 6.5,

we show the result of the gluing in three dimensions.

58

On the other hand, if we put e1
1 ∼ e

1
3, the quotient is a Möbius strip in Figure 6.4c,

with the face now bounded by the circle ⦅e1
1, e

1
2, e

1
1, e

1
3⦆. Observe that the white

triangle on the right is now oriented the other way.

e1
1

e0
2

e0
1

e1
2

e1
4

e2⟲

Figure 6.5: Cylinder from Figure 6.4b in 3D.

Example 6.1.11 (torus). Now, let e1
1 ∼ −e

1
3 and e1

2 ∼ −e
1
4. This means we glue two

pairs of edges, and the quotient is a torus in Figure 6.4d. In the picture, we now

indicate the pairs of edges: the gluing e1
1 ∼ −e

1
3 is indicated by a single white

triangle on the edges, and the gluing e1
2 ∼ −e

1
4 has two triangles on each glued edge.

Observe that all vertices have been identified. The face is bounded by the circle

⦅e1
1, e

1
2,−e

1
1,−e

1
2⦆.

Example 6.1.12 (Klein bottle, real projective plane). Finally, we show what happens

if we glue pairs of opposite edges as in Example 6.1.11, but we change the orien-

tation in one or both of the gluings. Putting e1
1 ∼ −e

1
3 and e1

2 ∼ e
1
4 gives the Klein

bottle in Figure 6.4e. Putting e1
1 ∼ e

1
3 and e1

2 ∼ e
1
4 gives the real projective plane in

Figure 6.4f.

Note the omission of a sphere S2. This does not fit our definition of a cell complex

very neatly, but we also do not need to use any spheres, so we do not mind this.

We can obtain those same spaces using different abstract cell complexes. One

particular method useful for us later is to work backwards, define a space, and then

cellulate it, i.e. construct an abstract cell complex that describes it. We use, and

describe this procedure, in Section 8.2.1.

6.1.3 Gluing two complexes

Now, we shortly describe how to glue two complexes together. Essentially, we first

disjointly merge them to a single complex, and then we quotient.

▷ Definition 6.1.13 (direct sum of complexes). Let X = (X•,ϕ•) and Y = (Y•,ψ•)

be abstract cell complexes. Define their direct sum, denoted X ⊕Y , as a complex

59

U = (U•,υ•) where Un B Xn ⊔ Yn and υn B ϕn ⊔ψn, for n ∈ {0,1,2}. These disjoint

unions are set-theoretic coproducts, and this is a coproduct of cell complexes. ◁

Then in order to merge two complexes X and Y , we first put them together in

the coproduct X ⊕Y , and then we identify whatever cells we want to identify. This

is a pushout of abstract cell complexes, but we omit the details of this, because we

have not defined morphisms for abstract cell complexes.15

Even though the direct sum of cell complexes is defined using disjoint unions of

sets (⊔), we denote it similarly to a direct sum ⊕. This is because we will later see

that the chain complex corresponding to a direct sum of cell complexes is a direct

sum of chain complexes (see Lemma 6.3.3).

6.1.4 Relationship to general cell complexes

The construction we defined is designed to give very precise instructions on how to

construct a topological (non-abstract) cell complex from an abstract cell complex

X = (X•,ϕ•). This follows by mapping the n-cells to actual topological objects,

namely n-balls Bn. These are glued by their boundaries ∂Bn = Sn−1, as prescribed

by the abstract cell complex. The abstract attaching maps ϕn (n = 1,2) are realized

as a family of topological attaching maps ϕnα : Sn−1→ X
n−1

for each n-cell enα ∈ Xn,

where X
n−1

is the (n − 1)-skeleton of the topological realization. As such, our

definition is a useful abstraction to faithfully reason about cell complexes in the

setting we have here. It further allows us to reach cellular homology without too

much complication.

6.1.5 Other kinds of (abstract) topological complexes

We now comment on other kinds of topological complexes that we chose not to use.

We only briefly and informally describe them.

The simplest kind are simplicial complexes.[Hat02, §2.1] These are made of

triangles, tetrahedra, and their higher-dimensional analogues; though we only care

about surfaces, so triangles are where we end. Simplicial complexes are very easy

to work with, however, the definition is quite restrictive in what kind of cells are

allowed. For example, to construct a space like the torus (see Example 6.1.11), we

need at least 19 triangles, and similarly many edges and vertices. For our purposes,

15We do not use morphisms directly, which is why we do not define them. They are also tricky
to get right, and several choices are available. To give an idea, the easiest to define are dimension-
preserving maps, which are required to send n-cell to n−cells. These must of course respect the
boundaries and the action of eiπZ. In fact, the action of −1 ∈ eiπZ is such a morphism.

60

we want control over how many cells are present, and simplicial complexes cannot

give us that.

A slight generalization are ∆-complexes.[Hat02, §2.1] They look like simplicial

complexes, but some conditions are relaxed. Describing a torus, say, no longer

requires a large amount of cells. However, all the faces still have to be triangles,

and this is a deal-breaker for us.

Another generalization are polyhedral complexes.[MS15, §2.3] These allow any

polygons to be the faces, which would work more nicely for us. However, they

still exclude certain things that we like to have, like faces bounded by self-loops.

Also, the way they are defined in ref. [MS15], they are already concrete topological

spaces, and we want abstractions.

Thus the choice is to use an extremely general kind of complex, the cell complex.

Their definition in ref. [Hat02], while stated in terms of concrete spaces, like n-balls

and similar, is very amenable to abstraction, and this is what we have done.

Lastly, we mention another kind of abstract cell complex, unrelated to our con-

struction. These are special kind of topological spaces which only hold information

about dimension of cells and their incidence. They seemed promising for a while,

but they were in the end not quite what we needed, so we chose not to use them.

They are part of a current line of research in digital topology, mainly used for image

processing.[Kov21]

6.2 Chain Complexes from Abstract Cell Complexes

When constructing a cell complex, we build it up by saying how higher-dimensional

cells attach, by their boundaries, to lower-dimensional ones. Now, we break the

space back into its parts to study it algebraically. We define chain complexes (see

Definition 5.1.1) that correspond to cell complexes.

In the following definitions, let X = (X•,ϕ•) be an abstract 2-dimensional cell

complex. We define a cellular chain complex for this, in analogy to a (non-abstract,

and not bounded to dimension 2) cellular chain complex from ref. [Hat02].

▷ Definition 6.2.1 (cellular chain modules). Define a family of free Z-modules

{Cn}n∈N, called chain modules, as follows: There are no cells of dimension larger

than 2, so we define CnB 0 for n > 2. For n ∈ {0,1,2}, we define the chain module

Cn to be a module freely generated by the n-cells of the cell complex:

CnB ⟨Xn⟩⊕Z =
⊕
enα∈Xn

Zenα,

61

that is the elements of Cn are Z-linear combinations of n-cells, and they are called

n-chains. We emphasize that n-cells are linearly independent, and thus a basis.

Furthermore, since all sets of cells are finite by definition, all chain modules are

finitely generated. Recall from Definition 5.1.1 that by convention, we define also

C−1B 0. ◁

▷ Definition 6.2.2 (cellular boundary maps). Define a family of Z-module ho-

momorphisms {∂n : Cn → Cn−1}n∈N between cellular chain modules from Defini-

tion 6.2.1 as follows: For n > 2, the module Cn = 0, and hence the differential from

it has to be the zero map: ∂n = 0. Similarly, C−1 = 0, so ∂0 = 0.

The remaining two differentials are defined by the abstract attaching maps.

Recall that for a 1-cell e1
α ∈ X1 (an edge), the attaching map gives its source and

target: ϕ1(e1
α) = (s(e1

α), t(e1
α)). Define

∂1(e1
α)B t(e1

α)− s(e1
α).

For a 2-cell e2
α ∈ X2, the boundary is an abstract circle ϕ2(e2

α) = ⦅±ie1
i ⦆
ℓ
i=1 ∈ S

−−→
X1 ,

and we define

∂2(e2
α)B

ℓ∑
i=1

±ie1
i ,

that is we sum the elements in the tuple representing the circle, keeping their signs

as well. ◁

▶ Theorem 6.2.3. The family of cellular chain modules from Definition 6.2.1 to-

gether with the family of cellular boundary maps from Definition 6.2.2 form a

chain complex, called a cellular chain complex. That is, ∂2 = 0. ◀

Proof. This is clear for those n ∈ N where ∂n = 0 or ∂n+1 = 0, and thus ∂n ◦∂n+1 = 0.

That is the case for n ≥ 2, as well as n = 0. We only need to show that ∂1 ◦∂2 = 0.

Take some e2
α ∈ X2, and write its boundary circle ϕ2(e2

α) = ⦅±1e
1
1, . . . ,±ℓe

1
ℓ ⦆ ∈ S

−−→
X1 .

We compute the action of the composite ∂1 ◦∂2 on this:

∂1 ◦∂2(e2
α) = ∂1

 ℓ∑
i=1

±ie1
i

 =
ℓ∑
i=1

±i∂1(e1
i) =

ℓ∑
i=1

(
±it(e1

i)∓i s(e1
i)
)
.

Remember that the boundary of a 1-cell is target minus source. Recall that s(±e1
i) =

t(∓e1
i), i.e. the source of an edge when traversed in one direction is the target of the

62

edge when traversed in the opposite direction. Rewrite the above as:

ℓ∑
i=1

(
±it(e1

i)∓i s(e1
i)
)

=
ℓ∑
i=1

(
t(±ie1

i)− s(±ie1
i)
)

= t(±1e
1
1)− s(±1e

1
1) + t(±2e

1
2)− s(±2e

1
2) + · · ·+ t(±ℓe1

ℓ)− s(±ℓe1
ℓ)

=
[
t(±1e

1
1)− s(±ℓe1

ℓ)
]

︸ ︷︷ ︸
0

+
[
t(±2e

1
2)− s(±1e

1
1)
]

︸ ︷︷ ︸
0

+ · · ·+
[
t(±ℓe1

ℓ)− s(±ℓ−1e
1
ℓ−1)

]
︸ ︷︷ ︸

0

= 0.

In the last step, we used the fact that t(±ie1
i) = s(±i+1e

1
i+1) for each i = 1, . . . , ℓ − 1

and t(±ℓe1
ℓ) = s(±1e

1
1), which comes from this being a circle. Therefore ∂1 ◦∂2 = 0,

and since this was the only nontrivial case, we conclude that ∂2 = 0, and the family

of cellular chain modules together with cellular boundary maps forms a chain

complex. ■

Example 6.2.4. Now for some interpretation. The abstract cell complex (X•,ϕ•) only

contains individual cells, whereas the chain modules contain linear combinations.

Suppose we have two edges e1
1 and e1

2, such that t(e1
1) = s(e1

2). Consider e1
1 + e1

2: its

boundary is ∂1(e1
1 + e1

2) = t(e1
2) − s(e1

1). The sum e1
1 + e1

2 behaves as a single longer

edge with endpoints (s(e1
1), t(e1

2)). Not all linear combinations have such a nice

interpretation, for example

∂1(e1
1 − e

1
2) = t(e1

1)− s(e1
1)− t(e1

2) + s(e1
2) = 2t(e1

1)− s(e1
1)− t(e1

2),

where the final step comes from the fact that t(e1
1) = s(e1

2). This correctly shows the

fact that the endpoint t(e1
1) appears twice as the target of an edge, but the sum itself

does not have a nice interpretation as a longer edge. That is because we did not

sum the edges coherently: (e1
1,−e

1
2) is not a path in the graph X1.

Example 6.2.5. This works similarly for faces. Return to

Example 6.1.5; we recall Figure 6.3 on the right. Consider

e2
1 + e2

2: the boundary is

∂2(e2
1 + e2

2) = e1
1 +�

�e1
2 + e1

3︸ ︷︷ ︸
∂2(e2

1)

+e1
4 + e1

5 −��e
1
2︸ ︷︷ ︸

∂2(e2
2)

= e1
1 + e1

4 + e1
5 + e1

3,

that is the boundary of the whole square, without the
e0

1

e0
2 e0

3

e0
4

e1
1

e1
2

e1
3

e1
4

e1
5

e2
1⟳

e2
2⟳

diagonal edge e1
2. This has a nice interpretation that the sum e2

1 + e2
2 corresponds to

63

the whole square. It works because we sum faces of the same orientation. Obviously,

we can again take any linear combination of 2-cells, but this will not have the same

nice interpretation.

Example 6.2.6. In Example 6.2.5, e1
2 canceled in ∂2(e2

1 + e2
2) because both faces

include it in their boundary circles, but in different directions. The same kind of

cancellation may happen when the same 2-cell, or linear combination of 2-cells,

touches and edge multiple times. Consider the cylinder obtained by gluing opposite

edges of a the square, see fig. 6.6a. The attaching map of 2-cells is:

ϕ2(e2
1) = ⦅e1

1, e
1
2, e

1
3⦆ =⇒ ∂2(e2

1) = e1
1 + e1

2 + e1
3,

ϕ2(e2
2) = ⦅e1

4,−e
1
1,−e

1
2⦆ =⇒ ∂2(e2

1) = e1
4 − e

1
1 − e

1
2.

Then the boundary of the sum is

∂2(e2
1 + e2

2) =�
�e1
1 +S

Se
1
2 + e1

3 + e1
4 −��e

1
1 −SSe

1
2 = e1

3 + e1
4.

This now corresponds to the whole square, even though such a cell does not exist

in X2. If it did, the boundary circle would be ⦅e1
1, e

1
4,−e

1
1, e

1
3⦆; see fig. 6.6b. The edge

e1
2 is not present in the abstract boundary circle, nor in ∂2(e2

1 + e2
2). The edge e1

1 is

also canceled in ∂2(e2
1 + e2

2), in the same way that e1
2, but we keep it in the abstract

complex description, because this is what the definition requires. However, as far as

the chain complex can tell, the boundary consists of e1
3 + e1

4, in this case two disjoint

loops. This does correspond to a cylinder without the top and bottom face.

e0
1

e0
2 e0

2

e0
1

e1
1

e1
2

e1
3

e1
4

e1
1

e2
1⟳

e2
2⟳

(a)

e0
1

e0
2 e0

2

e0
1

e1
1

e1
3

e1
4

e1
1e2

1 + e2
2⟳

(b)

Figure 6.6: Cylinder complex. (a) The actual complex (X•,ϕ•). We glued e1
1 ∼ −e

1
5 from

fig. 6.3. If one were an ant living on this surface, one could start in the middle, walk right,
and loop back from the left. (b) The same space, but we show that e2

1 + e2
2 corresponds to a

single cell that consists of the entire square. Such a cell is not actually contained in X2, but
a corresponding element is contained in the chain module C2.

64

Having defined the abstract cell complexes and their chain complexes in such a

closely-corresponding way allows us to use either structure to reason about a space.

We use whichever is more convenient: the chain complex is incredibly useful in

capturing the actual structure of the space independent of a particular abstract cell

complex chosen to represent it, but we write the cell complex explicitly when we

need the details about individual cells and their attaching. One of the things we

obtain from chain complexes is homology, and this is important in the view of the

topological space.

6.3 Homology of a cell complex

In Definition 5.1.3, we define the nth homology module of a chain complex C• as

Hn(C•) = ker∂n/ im∂n+1. We mentioned in Notation 5.1.4 that we call ker∂n the

space of n-cycles, denoted Zn(C•), and we call im∂n+1 the space of n-boundaries,
denoted Bn(C•). There terms originate in studying a topological space using a chain

complex, and we explain them here, also interpreting what homology is in this

context. While this obviously applies to general cell complexes (i.e. non-abstract

and not restricted to dimension two), we choose to use our notion of an abstract

2-dimensional cell complex. In part, this is because imagining surfaces, perhaps

with edges and points drawn on them, is easy. The abstract 2-dimensional cell

complexes are also the setting for the rest of the work, so it is useful to build a good

understanding of these.

In the following, let X = (X•,ϕ•) be an abstract 2-dimensional cell complex, and

let C• be its corresponding chain complex of Z-modules from Section 6.2.

Elements of Zn(C•), the n-cycles, correspond to n-dimensional subcomplexes

(see Definition 6.1.6) of X that have no boundary. This is because the differentials

are interpreted as boundaries, and an element is in the kernel of a differential

if it is mapped to zero. In our setting, ∂0 = 0 and ∂n = 0 for n ≥ 2, so the only

nontrivial case is n = 1. Recall that C1 is the space of oriented edges and their linear

combinations; we saw their interpretation in Example 6.2.4. A boundary of such

a thing consists of endpoint vertices, and thus 1-cycles are linear combinations of

edges that have no endpoints. These are exactly the cycles in the graph, which is

where the term comes from. Note that they are not necessarily simple, by which

we mean they may visit the same vertex multiple times, follow an edge forward

and then immediately backward, etc. Such cycles are linear combinations of simple

cycles that do not do these things, and these form a basis of Z1(C•).

65

In our case, orientations are built into the cell complex, so it is more correct to

say that elements of Z1(C•) correspond to abstract circles (recall Definition 6.1.3).

Note that self-loops are also included in this, because both their endpoints are the

same, and they cancel.

Boundaries, that is elements of Bn(C•) = im∂n+1, are n-dimensional subspaces

that form the boundaries of (n+ 1)-dimensional subspaces. That is to say Bn(C•) is

a Z-module generated by boundaries of all (n+ 1)-cells; though note that ∂n+1 is

not necessarily a monomorphism, i.e. the set ∂n+1(Xn+1) of images of (n+ 1)-cells is

not necessarily linearly independent.

In the case of n = 1, the elements of B1(C•) correspond to the boundary circles

of faces. Let e2 be a 2-cell bounded by an abstract circle, e.g. a triangle ⦅e1
1, e

1
2, e

1
3⦆.

Then the differential of e2 is, by definition, ∂2(e2) = e1
1 + e1

2 + e1
3. Observe that such

a triangle (or any abstract circle) belongs to Z1(C•). This is a defining property of

a chain complex, and the topological interpretation is why that was chosen. Any

boundary of a face from X2, or sum thereof, itself has no boundary.

But suppose Z1(C•) , B1(C•), so the homology H1(C•) = Z1(C•)/B1(C•) is non-

zero. What are its elements? The non-zero elements of H1(C•) correspond to

cycles that are not boundaries of any face, and as such they describe holes in the

space. More correctly, the elements of H1(C•) are equivalence classes of these non-

boundary cycles, up to addition of boundary cycles. If two cycles are in the same

equivalence class, we call them homologous. In the next section, we look at some

examples.

6.3.1 Examples

Example 6.3.1. Suppose X is a torus obtained by gluing a square as shown in

fig. 6.7a. Then the boundaries of faces are:

ϕ2(e2
1) = ⦅e1

1, e
1
4, e

1
5,−e

1
1,−e

1
3⦆ =⇒ ∂2(e2

1) = −e1
3 + e1

4 + e1
5,

ϕ2(e2
2) = ⦅e1

2, e
1
3,−e

1
2,−e

1
5,−e

1
4⦆ =⇒ ∂2(e2

1) = +e1
3 − e

1
4 − e

1
5.

The boundary of their sum, respecting orientation, is ∂2(e2
1 + e2

2) = 0. We could of

course sum them in a different way:

∂2(ae2
1 + be2

2) = a(−e1
3 + e1

4 + e1
5) + b(e1

3 − e
1
4 − e

1
5) = −(a− b)e1

3 + (a− b)e1
4 + (a− b)e1

5,

for a,b ∈ Z. Notice that we are describing the image of ∂2. We will show that an

element e1
4 + e1

5 corresponding to the circle ⦅e1
4, e

1
5⦆, emphasized in fig. 6.7, is not in

66

e0
1

e0
1 e0

1

e0
1

e0
2 e0

2

e0
3

e1
1

e1
2

e1
3

e1
1

e1
2

e1
3

e1
4 e1

5

e2
1⟳

e2
2⟳

(a)

e1
1

e0
2

e0
1

e0
3e1

5

e1
2

e1
4

e1
3e2

1⟳

e2
2
⟲

(b)

Figure 6.7: Torus, which has circles that are not homologous to zero. (a) The gluing diagram.
We graphically emphasize the circle ⦅e1

4, e
1
5⦆ as . (b) A 3D picture of the torus glued.

The dashed lines correspond to the edges where gluing occurs. The full lines correspond to
the circle ⦅e1

4, e
1
5⦆. Notice that there is no way to continuously deform this circle along the

surface, such that it contracts to a point.

im∂2. If it were, then there would exist c ∈ Z, c , 0, such that ∂2(ae2
1+be2

2) = c(e1
4+e1

5).

This would imply a − b = 0. But then ∂2(ae2
1 + be2

2) = 0 and thus c = 0, which is a

contradiction. Conclude that e1
4 + e1

5 is indeed not in the image, meaning there is no

linear combination of faces bounded by it. Hence it is not in the homology class

[0] = B1(C•).

In the following, we view the torus in fig. 6.7b as a continuous topological

space. The homology class [0] contains exactly the circles on the torus which can

be continuously deformed to a point – these are called contractible. However, there

is no way to contract the circle ⦅e1
4, e

1
5⦆, because there is no surface along which

we could deform it. It would have to pass through “empty space,” but this is not

actually a part of our space, so it is not possible. The circle ⦅e1
4, e

1
5⦆ is said to go

around a hole in the space. This is the meaning of e1
4 + e1

5 not being the boundary of

any face (or linear combination of faces).

In the example, we artificially created an unnecessary circle ⦅e1
4, e

1
5⦆ that is not

a boundary, so that we could explain this on a circle that is not used to define the

gluing of the square (fig. 6.7a) to make a torus. However, the circle ⦅e1
3⦆ is also

not homologous to zero, and in fact it is homologous to ⦅e1
4, e

1
5⦆: we can add the

boundary of e2
1 or e2

2 to transform one into the other; or in terms of deformation, we

can slide ⦅e1
3⦆ to ⦅e1

4, e
1
5⦆.

Another homology class of non-boundary circles corresponds to the circle

⦅e1
1, e

1
2⦆. This is because the torus is a surface with no volume inside, so this circle

67

also cannot be contracted. Thus we conclude that the first homology of this complex

has rank two, i.e. it consists of two distinct homology classes:

H1(C•) =
〈
e1

1 + e1
2, e

1
4 + e1

5

〉⊕
Z
� Z⊕2.

Example 6.3.2. Now, we add another face to the complex from Example 6.3.1: the

new face e2
3 has boundary ⦅e1

4, e
1
5⦆, the circle that previously described a hole. We

show this in Figure 6.8. With the addition of this face, the circle ⦅e1
4, e

1
5⦆ can be

contracted, and thus it is homologous to zero. The homology class represented by

this circle is now, in fact, the zero class [0]. The first homology of this new complex

is H1(C•) = ⟨e1
1 + e1

2⟩
⊕
Z � Z which has rank 1.

e0
1

e0
1 e0

1

e0
1

e0
2 e0

2

e0
3

e1
1

e1
2

e1
3

e1
1

e1
2

e1
3

e1
4 e1

5

e2
1⟳

e2
2⟳
e2

3⟳

(a) (b)

Figure 6.8: Torus with a hole filled. (a) The gluing diagram. The only difference from
Figure 6.7a is the addition of the face e2

3 (blue), bounded by the circle ⦅e1
4, e

1
5⦆ drawn as .

The edge drawn as is not real; we only use it to emphasize the boundary and orientation
of the new face, but this is only an artifact of the way we have drawn the picture, with the
vertex e0

2 on the left and on the right. The edge is to be interpreted as the vertex e0
2

stretched between the two places where we actually place the dot . (b) A 3D picture. To
avoid clutter, we omit the labeling, which is the same as in Figure 6.7b, with the addition of
the face e2

3 (blue). Notice that the circle ⦅e1
4, e

1
5⦆ (full line) can be contracted.

6.3.2 Homology of a direct sum of complexes

In Definition 6.1.13, we defined the direct sum of cell complexes. We now show how

homology behaves in respect to this. We need this to study H0(C•) in the following

section, but also for merging two quantum error correcting codes in Appendix A.2.

▶ Lemma 6.3.3. Let Y = (Y•,υ•) and Z = (Z•,ζ•) be abstract cell complexes, and

let X = (X•,χ•) B Y ⊕Z. Denote their chain complexes C•(Y), C•(Z), and C•(X).

68

Then C•(X) = C•(Y)⊕C•(Z), the direct sum chain complex which has components

Cn(X) = Cn(Y)⊕Cn(Z) and differentials ∂C•(X)
n = ∂C•(Y)

n ⊕∂C•(Z)
n for all n. ◀

Proof. Recall from that the sets of cells of X are Xn = Yn ⊔Zn for n ∈ {0,1,2}. Then

the chain modules are related as

Cn(X) = ⟨Xn⟩⊕Z = ⟨Yn ⊔Zn⟩⊕Z = ⟨Yn⟩⊕Z ⊕ ⟨Zn⟩
⊕
Z = Cn(Y)⊕Cn(Z), (6.3.1)

Take a differential ∂C•(X)
n : Cn(X)→ Cn−1(X), where both the domain and codomain

are direct sums as in eq. (6.3.1). Then clearly this differential is compatible with

the splitting, and

∂
C•(X)
n = ∂C•(Y)

n ⊕∂C•(Z)
n . ■

▶Theorem 6.3.4. LetX = Y⊕Z be cell complexes as above, with their corresponding

chain complexes. Then Hn(C•(X)) =Hn(C•(Y))⊕Hn(C•(Z)) for each n. ◀

Proof. Since the chain modules and differentials are all direct sums, it follows that

the kernel and image are also direct sums:

ker∂C•(X)
n = ker∂C•(Y)

n ⊕ker∂C•(Z)
n and im∂

C•(X)
n = im∂

C•(Y)
n ⊕ im∂

C•(Z)
n ,

for all n. Then the homology modules are, for each n:

Hn(C•(X)) = ker∂C•(X)
n ⧸im∂

C•(X)
n+1

=

(
ker∂C•(Y)

n ⊕ker∂C•(Z)
n

)
⧸(

im∂
C•(Y)
n ⊕ im∂

C•(Z)
n

)
�

ker∂C•(Y)
n ⧸im∂

C•(Y)
n

⊕ ker∂C•(Z)
n ⧸im∂

C•(Z)
n

 (6.3.2)

=Hn(C•(Y))⊕Hn(C•(Z)).

In (6.3.2), we use the fact that im∂
C•(Y)
n ≤ ker∂C•(Y)

n , and similarly for C•(Z), to split

the quotient into direct sum of two quotients, and thus conclude that the homology

respects the direct sum. ■

6.3.3 0th homology module

We saw in the examples in Section 6.3.1 what the first homology module represents.

Now, we look at H0(C•). The following results are important steps towards the

Structure Theorem 8.1.1. They are standard results in the context of cellular (and

other) homology theories. However, we still prove them below, to show how they

work, and that they indeed hold for our construction of the abstract cell complex.

69

▶ Theorem 6.3.5. If C• is a chain complex corresponding to an abstract cell complex

(X•,ϕ•), then the 0th homology module is free, and its rank is the number of

connected components of (X•,ϕ•). ◀

In order to prove it, we need the following first:

▶ Lemma 6.3.6. If X = (X•,ϕ•) is a connected abstract cell complex, which means

that there exists a path of edges between any two vertices, and C• is its chain

complex, then H0(C•) � Z. ◀

In the statement of the lemma, we do not mention faces. The 1-skeleton is

essentially a graph, and if this is partitioned into disjoint connected components,

then there is no way for a face to exist between them, because there is no way to

define a boundary circle if there are no edges between the components. This means

we can reason about connectedness just in terms of the 1-skeleton.

Proof. Assume X is connected, and take two distinct points e0
1 and e0

2 ∈ X0. Then

there exists a path of oriented edges (±ie1
i ∈
−−→
X1)ℓi=1 for ℓ ∈ N, such that s(±1e

1
1) = e0

1

and t(±ℓe1
ℓ) = e0

2. This being a path means that t(±ie1
i) = s(±i+1e

1
i+1) for i = 1, . . . , ℓ − 1.

In the chain complex, the differential ∂0 = 0, so its kernel is C0 = ⟨X0⟩⊕Z, where

its basis elements are all vertices. We now show that the quotient C0/ im∂1 � Z. The

connectedness means that for any pair of vertices e0
1 and e0

2, there exists an element

x ∈ C1 such that ∂1(x) = e0
2 − e

0
1 – this x corresponds to the path above. Choose some

vertex e0, and change the basis to

C0 =
〈
e0

〉
Z
⊕
〈
e0
i − e

0 : e0
i ∈ X0 \ {e0}

〉⊕
Z
.

All of the basis elements in the right hand span are eliminated by quotienting over

im∂1. We are left with H0(C•) = C0/ im∂1 � ⟨e0⟩Z � Z. ■

Proof of Theorem 6.3.5. Now, we simply put two results together. The connected

components of the abstract cell complex X are a family of complexes {X(i)}i such

that X =
⊕

iX
(i). The superscript (i) indexes the family and is not related to

skeletons. It follows from Theorem 6.3.4 that H0(C•(X)) =
⊕

iH0(C•(X(i))), where

C•(X) and {C•(X(i))}i are the corresponding chain complexes. By construction, all

X(i) are connected, so each H0(C•(X(i))) � Z by Lemma 6.3.6. Then we conclude

that H0(C•(X)) � Z⊕c, where c is the number of connected components. ■

Theorem 6.3.5 is important in its own right. However, the main reason we

needed to show it was the following important result about the first homology

taken over a ring R. The result below is a central step of our main Theorem 8.1.1.

70

▶ Corollary 6.3.7. Let X be an abstract cell complex, and C• its corresponding

chain complex of Z-modules. Let R be a ring. Then the first homology of C• over

the ring R is HR
1 (C•) �H1(C•)⊗ZR, where H1(C•) is the usual homology over Z. ◀

Proof. Recall from Lemma 5.3.4 that if Hn(C•) is free, then there is an isomorphism

HR
n+1(C•) �Hn+1(C•)⊗Z R. As we have just shown in Theorem 6.3.5, H0(C•) is free.

The result follows immediately from this. ■

71

72

Part III

Homological Quantum Error
Correction

73

Chapter 7

CSS codes from cellulations

We foreshadowed at the end of Section 2.3 that we aim to design LDPC codes by

cellulating spaces. We saw in Examples 5.1.5 and 5.1.6 that a classical code, as

well as a CSS code, can be interpreted as a chain complex. Then in Section 6.2,

we construct chain complexes that represent abstract cell complexes. This now

all comes together, and we finally explain the full story. In explaining this way to

construct quantum error correcting codes, and the relation between a chain complex

and stabilizer measurements, we follow the papers [Kit03, BH13, CB23, VCT23],

with our own commentary and examples.

We start with qubit codes, following from Section 3.3, and then using the

abstract machinery built up in Chapters 4 and 5, we generalize to qudits where

torsion appears and gives us more interesting logical spaces. We start by example.

7.1 A simple toric code
We use the torus from Example 6.3.1. We recall Fig-

ure 6.7a on the right, though we change the notation

for convenience as follows:

▷ Notation 7.1.1. From now on, we denote a 0-cell

(vertex) e0
α as vα, a 1-cell (edge) e1

α as eα, and a 2-cell

(face) as fα. ◁

As a reminder, the white arrows on edges in the

diagram imply gluing. Pairs of edges with the same

number of white arrows are glued, and they are
v1

v1 v1

v1

v2 v2
v3

e1

e2

e3

e1

e2

e3

e4 e5

f1⟳

f2⟳

glued in the orientation indicated by the arrows. Formally, this is a quotient by

coherent equivalence, see Section 6.1.2. The chain complex C• that corresponds

to this abstract cell complex is the following: the 0-chain module, i.e. the space of

75

vertices, is C0 = ⟨v1,v2,v3⟩⊕Z, the 1-chain module (edges) is C1 = ⟨e1, . . . ,e5⟩⊕Z, and

finally the 2-chain module (faces) is C2 = ⟨f1,f2⟩Z. These listed n-cells form bases of

the chain modules, and we order the basis elements by their index (the subscript);

this is the order we wrote them in the preceding expressions. With this choice of

ordering on the basis, we can now write the differentials as matrices:

∂2 =

0 0
0 0
−1 1

1 −1
1 −1

 and ∂1 =

−1 1 0 0 0
1 −1 0 −1 1
0 0 0 1 −1

 .
These matrices summarize the differentials computed from the attaching maps in

Example 6.3.1. As mentioned at the end of Section 3.3.3, we define these to be the

parity check matrices corresponding to X-type and Z-type stabilizers. Specifically,

we say that PX B ∂1 and PZ B ∂⊤2 .

Recall that each row of a parity check matrix describes a parity check measure-

ment, or in the context of CSS codes, a stabilizer measurement. For example, the

first row of PX = ∂1 corresponds to X−1 ⊗X ⊗ 1 ⊗ 1 ⊗ 1. Here, the inverse is the

adjoint, i.e. X−1 = X†. Working with qubit systems, the adjoint is actually X itself,

i.e. X† = X. It is useful then to perform a change of ring to the field Z2. This is done

using Definitions 4.3.4 and 5.3.1 along the canonical quotient map Z↠ Z2. This

makes the chain modules into vector spaces over Z2, and the parity check matrices

become the following:

PZ =
(
0 0 1 1 1
0 0 1 1 1

)
, and PX =

1 1 0 0 0
1 1 0 1 1
0 0 0 1 1

 .
Finally, the stabilizer group defining this CSS code is generated by the following

elements:
1 ⊗ 1 ⊗ Z ⊗ Z ⊗ Z,
X ⊗ X ⊗ 1 ⊗ 1 ⊗ 1,
X ⊗ X ⊗ 1 ⊗ X ⊗ X,
1 ⊗ 1 ⊗ 1 ⊗ X ⊗ X.

We omit the second occurrence of 1⊗2 ⊗Z⊗3, because this gives us no new infor-

mation. The generating set above is not minimal though: X ⊗X ⊗ 1⊗X ⊗X is a

product of other two elements. The rows corresponding to those two have lower

Hamming weight, so we could choose them to be the generators, and omit the

higher-weight element. However, the correspondence to the abstract cell complex

would be partially lost, and this may lower our ability to correct errors. In addition,

76

this would mean that attempts at reasoning about the code using the cell complex

would fail – as we will see later, omitting X ⊗X ⊗ 1⊗X ⊗X would lead to an error

syndrome that only flags a single vertex, and this makes it unclear what the error is.

The syndrome measurement for this is in Figure 7.1. The Z-type stabilizer is

measured by applying a series of controlled X operators, where the data qubit

is the control, and the ancilla is the target. To measure X-type stabilizers, we

essentially change the basis in the measurement of Z-type stabilizers. We do not

derive it here, but observe in the figure that this means we apply the Hadamard H

before and after the entangling operations (this essentially means preparing |+⟩ and

measuring in the X-basis), and the CNOTs are controlled on the ancillae. More on

the measurement of stabilizers can be found in ref. [Cow22, Appendix A]

We do not show encoding separately, because this is another large area of

quantum error correction using CSS codes, and we will not go into the details

on this. However, one way to prepare an encoded state is to perform all the

stabilizer measurements and correct errors, as we would usually do during error

correction.[ŁMGH15]

|0⟩1 s1

|0⟩2 s2

|0⟩3 s3

|0⟩4 s4

X X X

H

X

X

H

H

X

X

X

X

H

H

X

X

H

Figure 7.1: Syndrome measurement circuit for the example toric code.

7.1.1 Logical space

Recall that codewords, i.e. states considered correct by the code, or undetectable

errors, are those corresponding to the kernel of a parity check matrix. We now

generalize this idea to our chain complex:

· · · 0 Z⊕mZ2 Z⊕n2 Z⊕mX2 0.0 P ⊤Z PX0 0 (7.1.1)

77

In the context of CSS codes, we represent codewords by operators from our stabilizer

group, and errors are other operators. That is, by (code)words, we do not mean the

state vectors, but the operators. In (7.1.1), we already denote the chain modules as

free and finitely generated Z2-modules with their corresponding ranks. This makes

it clear that C1 = Z⊕n2 corresponds to operators on physical qubits, and the other

two chain modules somehow correspond to syndromes.

The space C1 corresponds to Z-type operators that act on our system. Recall

from Definition 3.3.4 that a vector v ∈ C1 = Zn2 represents Z(v) =
⊗n

i=1Z
vi . It is

perhaps not intuitive why C1 represents Z-type operators, and not X-type. The

reason is that ∂1 = PX describesX-type stabilizer measurements, and these commute

with any X-type errors. However, they anti-commute with detectable Z-type errors,

represented by elements in C1 \kerPX , and this is what we can measure. Thus we

call the complex in (7.1.1) a Z-type chain complex.

Kernel and image

The kernel of PX corresponds to Z-type operators which commute with all X-type

stabilizers, i.e. undetectable Z-type errors (or perhaps logical operations, as we see

later). Of course, the matrix P ⊤Z also features in the complex. Its image consists

of Z-type stabilizers, i.e. products of Z-type generators defined by PZ . With this

interpretation, the chain complex property that PX ◦P ⊤Z = 0 indeed makes sense: the

Z-type subgroup of stabilizers by definition commutes with the X-type subgroup.

Recall from Example 6.3.1 which is the basis for the present code that in terms

of the abstract cell complex, the kernel of PX contains the linear combinations

v = a(e1 + e2) + be3 + c(e4 + e5)

for a,b,c ∈ Z2. These correspond to abstract circles. Such a linear combination

represents the Z-type operator

Z(v) = Za ⊗Za ⊗Zb ⊗Zc ⊗Zc.

Notice this important idea: our operators are 1-chains in the abstract cell complex!

We can thus think of these two very different things interchangeably.

Kernel, but not image

The elements kerPX \ imP ⊤Z represent those Z-type operators that are not Z-type

stabilizers, i.e. they can act non-trivially on the state, but they still commute with

78

all X-type stabilizers which means they are not (detectable) errors. These are Z-type
logical operators. However, not all of them are, in fact, independent operators. Take

a Z-type logical operator A, and take a Z-type stabilizer B. Then A and AB = BA

are different operators, but their action on the state is the same. Thus we work

with equivalence classes of logical operators, i.e. of elements of kerPX \ imP ⊤Z up to

composition with elements of imP ⊤Z .16 What we have just described is the quotient

kerPX⧸imP ⊤Z
= ker∂1⧸im∂2

=H1(C•),

the first homology of the Z-type complex. Note that this is a vector space over Z2,

because we have already changed the ring of scalars of the complex to Z2. Conclude

that the first homology describes the equivalence classes of Z-type logical operators,

and this is why we call this error correcting code homological.
As these homology classes are the only non-trivial logical operators, this also

gives us the size of the logical space – number of logical qubits encoded by this

code. This is the rank of H1(C•), which for the case of torus is 2 (see Example 6.3.1).

The connection with the abstract cell complex and its first homology is clear:

logical operators are circles not homologous to zero, i.e. those that go around the

holes of the torus. They are equivalent up to addition of circles that are boundaries

of faces, which are in imP ⊤Z , and correspond to the Z-type stabilizers.

Choice of representatives

The logical space is the space of homology classes. However, to perform actual

computation, we need concrete operators. That is, we need to choose a basis

of representatives of these equivalence classes. This choice depends on the cell

complex used to generate the code, and on what the architecture allows us to do,

which is why we only mention this briefly.

One thing we may consider is the weight of the chosen operators, which is the

Hamming weight of their representing vectors in Zn2. In the ideal case, the weight is

large enough that such an operator is unlikely to be applied as a random error (this

is related to code distance), yet low enough that the process of applying it does not

generate too much noise.[VCT23, CCBT18]

16We abuse terminology here: we should say: “up to addition of elements of imP ⊤Z ,” because these
are vectors in Zn2 representing operators. But the addition in Zn2 does, indeed, represent composition
of the represented operators: Z(v +w) = Z(v) ◦Z(w).

79

7.1.2 Syndrome measurement

We now describe how error detection, and perhaps correction, work in this setting.

We still work with the Z-type complex. By construction, Z-type errors correspond

to the elements of C1\kerPX . Since the kernel contains 1-chains without a boundary,

this means the errors are exactly those 1-chains which have a nonzero boundary.

Concretely, these correspond to subcomplexes that are made of edges, and are not

closed, meaning they have endpoints. An example of a Z-type error is Z ⊗ 1⊗4,

which corresponds to the 1-chain e1 ∈ C1. We display this in Figure 7.2.

e1

e2

e3

e1

e2

e3

e4 e5

f1⟳

f2⟳

v1

v1 v1

v1

v2 v2
v3

Figure 7.2: Example of Z-type syndrome in the presented toric code. The abstract cell
complex with the error corresponding to e1. We mark e1 by the red crosses . We also
emphasize the endpoints v1 and v2 by big red squares . Note that these vertices and edges
repeat throughout the diagram due to gluing; we mark the repeats more subtly, and we
focus attention to one of the occurrences.

The fact that these have endpoints is the essence of obtaining the syndromes.

As seen in Figure 7.1, each stabilizer generator, or equivalently each row of PX ,

tells us which qubits to (non-destructively) measure. Since by construction C1

corresponds to the physical space, and C0 to syndromes of X-type measurements,

we associate measurements to vertices of the complex. The syndrome s ∈ ZmX2 has

component si = 1 if there is an error on a qubit touching vertex vi . Note that if there

are errors on multiple qubits, they may cancel – the syndrome measurement counts

the number of errors on incident edges, but in the field Z2, i.e. modulo 2. This is,

again, related to the fact that errors are paths (or tree, graphs, etc.), and we can only

detect their endpoints.

To make this concrete, suppose again that we have an error Z ⊗ 1⊗4, correspond-

ing to e1. The syndrome is s = (0,1,1,0)⊤. The code sees an error, but it is not clear

where exactly it occurred:

80

• the correct guess is a single error on the first qubit, corresponding to e1,

• but equally likely, though incorrectly, it could guess that there is a single error

on e2;

• and finally, there could be errors on e1, e2, e4 and e5. This case is less probable,

because it requires multiple simultaneous errors.

7.1.3 Error correction

Suppose that we guess correctly that the error is either on e1 or e2. If we knew

with certainty that it is on e1, we could just apply Z there, and the error would be

fixed. However, in a homological code, we can correct an error even if we do not

guess correctly where it is: by applying Z operators, we may extend the 1-chain

of errors. The strategy is to create a circle that is homologous to zero, i.e. one that

is contractible. Then even if we do not correctly identify the qubit where error

occurred, we correct it. For example, we could apply 1⊗1⊗Z ⊗Z ⊗Z, that is, apply

Z on edges e3, e4 and e5. This is inefficient, but closes the circle, and eliminates the

error; see Figure 7.3a.

However, it is possible to go wrong with this. Not knowing where exactly the

error occurred, we might guess it was at e2. Then applying Z on e2 closes the circle

⦅e1,e2⦆, see Figure 7.3b. This circle is not in the trivial homology class. That means

the circle is a logical operator: by attempting error correction, we cause a logical

operation by mistake.

e1

e2

e3

e1

e2

e3

e4 e5

f1⟳

f2⟳

v1

v1 v1

v1

v2 v2
v3

(a)

e1

e2

e3

e1

e2

e3

e4 e5

f1⟳

f2⟳

v1

v1 v1

v1

v2 v2
v3

(b)

Figure 7.3: Two of the possible choices of correction the syndrome. We show them as the
circles, denoted , obtained by error correction, and we no longer show the error markings.

81

7.1.4 X-type complex

In the previous steps, we obtained X-type measurements, Z-type errors, and equiv-

alence classes of Z-type logical operators. We have shown how the code deals

with Z-type errors. However, the choice to have PX = ∂1 and P ⊤Z = ∂2 was arbi-

trary, and analogous results follow from swapping them; this is how we obtain the

corresponding X-type complex:17

· · · 0 C2 C1 C0 00 PZ P ⊤X0 0

This is an instance of a cochain complex, the dual notion to a chain complex. Specif-

ically, the above cochain complex is the dual of the chain complex in (7.1.1). We

define this formally below, but we limit ourselves to the present case, instead of

full generality.

▷Definition 7.1.2 (dual chain complex and cohomology over Z2). Let C• be a chain

complex of vector spaces over Z2. Its dual is the cochain complex C•, where we

have the chain module Cn B C∗n for each n ∈ N, and where the differentials are

∂n : Cn−1 → Cn that are the duals of the chain differentials: ∂n B ∂∗n. We work

with finitely generated modules, so these are represented by matrices; in those

terms, we have ∂n = ∂⊤n . This can be interpreted as another chain complex, because

∂n+1 ◦∂n = 0. The homology of this new chain complex is called cohomology:

Hn(C•)B ker∂n+1
⧸im∂n

(fin. dim.)
= ker∂⊤n+1⧸im∂⊤n

. ◁

We formulate the space of (equivalence classes) of X-type logical operators as

the first cohomology H1(C•) in analogy to deriving the Z-type logical operators as

the first homology H1(C•).

The X-type errors, measured by Z-type stabilizers, are also 1-chains in the

complex. However, these are not the typical paths, trees, or graphs of edges. The

Z-type measurements are associated with faces of the complex: we measure the

qubits corresponding to the edges in the boundary of a face. Then X-type errors

correspond to paths of edges as in Figure 7.4, and syndromes are measured at their

endpoint faces.

An interesting way to look at the cochain complex, when the abstract cell

complex describes a 2-manifold, is that it describes an abstract cell complex with

17A note on notation: in both, the chain complex, and this cochain complex, we could just write
the three non-trivial vector spaces, the parity matrices, and omit all the zero spaces and morphisms.
However, we present it in this form to make the connection with general (co)chain complexes clear.

82

v1

v4

v2

v5

v3

v6

v4

v7

f1

⟳

f2

⟳

f3

⟳
Figure 7.4: X-type syndrome in a small lattice code. The errors occur on qubits corre-
sponding to edges marked with crosses . The syndrome component corresponding to
f2 is 0, because these errors cancel out. The components corresponding to f1 and f3 are 1,
indicated by the red circles . We draw a dashed line between these, to indicate how the
error corresponds to a path across edges. This path is not a cell in the complex.

faces and vertices switching places. This idea can also be see in Figure 7.4. However,

this is picture is not the right way to think about the cochain complex in general,

and the fact that it is possible here is a special case.

The choice of representatives the cohomology classes, i.e. elements of H1(C•),

is determined by the choice of representatives of H1(C•). Equivalently, choosing

concrete Z-type logical operators determines the X-type logical operators.[CB23]

7.2 Qudits and their operators

The aim is now to generalize the preceding to the case of qudits, where the integer

d > 1 is arbitrary. In particular, it is not necessarily a prime, so Zd is not necessarily

a field, and Zd-modules are no longer necessarily vector spaces. In particular, this

allows for torsion within the first homology, which is where we get extra logical

space to play with. Apart from theoretical interest, there is a practical one: quantum

computing with qudit systems seems to be a viable avenue. This is in part also

because we struggle to keep many qudits stable enough to do computation, but for

d > 2, we can pack more information into a system of fewer objects. Furthermore,

there is linear optical quantum computing, and this is inherently qudit based.

In this section, we briefly introduce qudits. We follow the paper [SY23].

▷Definition 7.2.1 (qudit). Let d > 1 be an integer. A qudit is a d-state system living

in a d-dimensional state space. The standard basis of this is written |0⟩, . . . , |d − 1⟩,
which is the eigenbasis for the generalized Z operator defined below. Their duals

are, as expected, ⟨0|, . . . , ⟨d − 1|, with
〈
i|j

〉
= δi,j . ◁

▷Definition 7.2.2 (qudit Pauli group). Define the qudit Pauli X as the operator that

maps |i⟩ 7→ |i + 1 (mod d)⟩ for i = 0, . . . ,d − 1. Define the qudit Pauli Z that maps

83

|i⟩ 7→ ωi |i⟩, where ωB e2πi/d . Similarly to Definition 3.1.4, we use these to generate

the group of qudit Pauli operators P1, and we define the n-qudit Pauli group Pn as

the tensor products of elements of P1 analogously to Definition 3.1.8. ◁

Note that we do not mention the Y Pauli above. In the qubit case, this is just

iXZ, and ignoring global phases, it corresponds to XZ which means it is not needed

as a generator of the qubit Pauli group. It is similarly defined in the qudit case,

and as such we do not need it. Observe also that if d = 2, these indeed become the

familiar qubit Paulis, as expected.

All of the previous reasoning about stabilizers and similar is transported to the

case of qudits. We will build codes where stabilizers may include higher powers of

Z or X, for example Z2 ⊗Z ⊗ 1. Note that it is no longer necessarily the case that

Z2 = X2 = 1.

▶ Lemma 7.2.3 (powers of qudit Pauli operators). Let m,n ∈ Z. For d > 1, the power

Xm = Xm mod d , and similarly Zm = Zm mod d . Consequently, we have that the

product of powers behaves as XmXn = Xm+n mod d , the inverse is X† = X−1 = Xd−1,

and analogous equations hold for Z. ◀

This follows directly from Definition 7.2.2, so we omit the proof. Note that the

above means that Zd , the ring of modular arithmetic with modulus d, is the natural

setting for reasoning about qudits.

▶ Lemma 7.2.4 (commutation). The qudit Pauli X and Z commute as follows:

ZX =ωXZ. ◀

Proof. Write X =
∑d−1
i=0 |i + 1 mod d⟩⟨i| and Z =

∑d−1
j=0 ω

j |j⟩⟨j |. This is just a different

way to write their definition. Compute XZ:

XZ =
d−1∑
i=0

d−1∑
j=0

|i + 1 mod d⟩⟨i|ωj |j⟩⟨j | =
d−1∑
i=0

ωi |i + 1 mod d⟩⟨i|.

Now, compute ZX:

ZX =
d−1∑
i=0

d−1∑
j=0

ωj |j⟩⟨j |i + 1 mod d⟩⟨i| =
d−1∑
i=0

ωi+1|i + i mod d⟩⟨i| =ωXZ.

Thus we conclude that ZX =ωXZ. ■

▶ Lemma 7.2.5 (commutation of powers of Pauli operators). Let m,n ∈ N. Then

ZmXn =ωmnXnZm. ◀

84

Proof. We prove this by strong induction. We start with two base cases: If m = 0

or n = 0, then the statement is trivially true. If m = n = 1, then it follows from

Lemma 7.2.4.

Now, we follow by induction on m. Take an arbitrary n, and suppose that for

each m′ ≤m, we have that Zm
′
Xn = ωm

′nXnZm
′
. We will show this is then also the

case for m+ 1:

Zm+1Xn = ZZmXn = ZωmnXnZm =ωmnω1nXnZZm =ω(m+1)nXnZm+1,

where we applied the inductive hypothesis first on ZmXn and then ZXn. We follow

this by an analogous strong induction on n. Take an arbitrary m, and suppose that

for each n′ ≤ n, we have that ZmXn
′
=ωmn

′
Xn

′
Zm. Then

ZmXn+1 = ZmXnX =ωmnXnZmX =ωmnXnωm1XZm =ωm(n+1)Xn+1Zm.

The lemma then follows by strong induction on m and n. ■

7.3 Stabilizers of qudit systems

We generalize Definition 3.3.4 to handle qudits:

▷Definition 7.3.1 (representation of qudit Pauli operators). Let n ∈ N, and suppose

we have a system of n qudits, where d > 1. We represent the operators acting on

this system as vectors in Z⊕nd . Let v be an element of Z⊕nd . Then the corresponding

X- and Z-type stabilizers, where this is now the qudit Paulis, are:

X (v)B
n⊗
i=1

Xvi = Xv1 ⊗ · · · ⊗Xvn , and Z(v)B
n⊗
i=1

Zvi = Zv1 ⊗ · · · ⊗Zvn . ◁

Having shown Lemma 7.2.5, we now generalize Theorem 3.3.5 from qubits to

qudits. This is an important result that will allow us to write a CSS code on qudits

again as a chain complex.

▶ Theorem 7.3.2. Let n ∈ N be the number of qudits in a system, and let z and x

be vectors Z⊕nd . Then the operators Z(z) and X (x) commute if and only if ⟨z,x⟩ = 0,

where this is the usual inner product in Z⊕nd . The equality is also in Zd , so it holds

modulo d. ◀

Proof. Suppose for now that z,x ∈ Z⊕n, i.e. their components are arbitrary integers.

This is for the sake of recovering the equality ⟨z,x⟩ ≡ 0 (mod d), with the modulo d

explicit. The operators Z(z) and X (x) can be obviously extended to Z⊕n, and

85

Lemma 7.2.5 clearly also works – this is due to Lemma 7.2.3. We evaluate the

commutator, and apply Lemma 7.2.5 on each tensor factor ZziXxi :

[Z(z),X (x)] =
n⊗
i=1

ZziXxi −
n⊗
j=1

XxjZzj =
n⊗
i=1

ωzixiXxiZzi −
n⊗
j=1

XxjZzj .

We collect the factors ωzixi by linearity of the tensor product, and then take the

tensor product out of the parenthesis:

[Z(z),X (x)] =

 n∏
ℓ=1

ωzℓxℓ

 n⊗
i=1

XxiZzi −
n⊗
j=1

XxjZzj =
(
ω

∑n
ℓ=1 zℓxℓ − 1

) n⊗
i=1

XxiZzi .

Recall that ω B e2πi/d , and for an integer q ∈ Z, ωq = 1 if and only if q ∈ dZ. It

follows that the commutator is zero if and only if
∑n
ℓ=1 zℓxℓ ∈ dZ, or equivalently,∑n

ℓ=1 zℓxℓ ≡ 0 (mod d). This is exactly the statement that the operators commute if

and only if their representing vectors are orthogonal in Z⊕nd . ■

Then defining two parity check matrices PX and PZ over qudits, in analogy to

the qubit case, means that once again we will have PX ◦ P ⊤Z = 0, and we can use all

the machinery of homological algebra developed so far.

86

Chapter 8

Torsion

We build qudit CSS codes in close analogy to the qubit codes. They will be defined

using chain complexes of Zd-modules arising from abstract cell complexes. Note

that this implies change of ring from the original chain complex of Z-modules that

represents a cell complex, in analogy to changing the ring to Z2 for qubit codes

before. Error detection and correction are also analogous. The difference is that in

the case of qudits, both errors and stabilizers may contain higher powers of qudit

Pauli operators. The thing that is not at all analogous is the presence of torsion (see

Section 4.2.5). Torsion does not exist in vector spaces, so qudits with prime d, like

qubits with d = 2, do not have it. In particular, the first homology of the complex

which represents the logical space will contain torsion, and this makes the codes

interesting for us.

8.1 First homology

We first say something general about this. The main theorem presented here is

original, and it transports a result from ref. [VCT23] about decomposing the logical

space to the case of qudits. It is a specific use of the well established Universal

Coefficient Theorem 5.3.3.

We wish to work with chain complexes of Zd-modules. However, as a first step,

we come back to the familiar Z-modules, because Z is a PID which means the

Structure Theorem 4.2.17 applies. That gives us the following decomposition:

H1(C•) � Z⊕k
′
⊕

k′′⊕
i=1

Z⧸diZ, (8.1.1)

where di are non-zero integers that are not invertible (i.e. di , ±1), and they

form a divisibility chain: d1 divides d2, which in turn divides d3, etc. We write

87

Equation (8.1.1) it in the presentation of [VCT23]. The free part Z⊕k′ means that we

have k′ logical qudits of dimension d, i.e. living in a d-dimensional state space as

usual.18 The torsion part means that there are k′′ additional logical qudits, but they

have dimensions di . This torsion part does not exist if d is prime, because then Zd
is a field. The total number of logical objects is k = k′ + k′′. We now follow this with

our result:

▶ Theorem 8.1.1 (Structure Theorem for the Qudit Logical Space). Suppose we

have a system of qudits of dimension d, and we have a CSS code described by

an abstract cell complex acting on it. Let C• be the chain complex of Z-modules

corresponding to the cell complex. Then the logical space of the code, the first

homology over Zd , has the following decomposition:

HZd
1 (C•) � Z⊕k

′

d ⊕
k′′⊕
i=1

Zdi ,

where k′, k′′ ∈ N and d1, . . . ,dk′′ are non-zero and non-invertible elements of Zd , such

that di divides di+1 for i = 1, . . . , k′′ − 1. The numbers k′, k′′ here may be different

than those in eq. (8.1.1).19 ◀

Proof. By the Structure Theorem 4.2.17, we have the decomposition of the first

homology over Z as in eq. (8.1.1):

HZ
1 (C•) � Z⊕s ⊕

t⊕
i=1

Z⧸qiZ, (8.1.2)

where s, t ∈ N and qi ∈ Z are non-zero, non-invertible (that is, qi , ±1), and they

form a divisibility chain as before. Notice that we now call the rank of the free

part s instead of k′, and the number of torsion parts t instead of k′′. We also

label the generators of the ideals qi instead of di . This is because when moving to

homology over Zd , the new decomposition may have a different rank of the free

part, a different number of torsion parts, and different generators of the quotients.

We now express the first homology over Zd by change of ring. By Corollary 6.3.7,

for a chain complex arising from an (abstract) cell complex, this is simply

HZd
1 (C•) �H

Z
1 (C•)⊗Z Zd .

18In [VCT23], the codes acted on rotor systems – these can be understood as qudits with d =∞,
and this is why the authors reasoned in Z.

19Note that Theorem 8.1.1 could be generalized: we use the Universal Coefficient Theorem which
itself does not require the chain complex to be defined using a topological space. We impose this
requirement to set Tor1(H0(C•),R) = 0 because we want to obtain a simple decomposition of HR

1 (C•)
that is similar to the decomposition of a finitely generated module over a PID. However, it is possible
to relax this requirement to obtain a more general, though slightly more complicated, theorem.

88

What happens there is an extension of scalars along the canonical quotient epimor-

phism Z↠ Zd . Now, we expand the HZ
1 (C•) by eq. (8.1.2), and use the distributivity

of the tensor product over direct sum from eq. (4.3.5):

HZd
1 (C•) �

Z⊕s ⊕ t⊕
i=1

Zqi

⊗Z Zd � (Z⊗Z Zd)⊕s ⊕
t⊕
i=1

Zqi ⊗Z Zd .

We use the property from eq. (4.3.6) to evaluate these tensor products of Z and its

quotients. Recall that this is Za⊗ZZb � Zgcd(a,b) for a,b ∈ N. Note that Z � Z0, which

means that Z⊗Z Zd � Zd (as expected from eq. (4.3.3)). The module Zd is a free

Zd-module, so we have a contribution Z⊕sd to the free part of HZd
1 .

The quotients become Zqi ⊗Z Zd � Zgcd(qi ,d). If qi and d are coprime, meaning

that gcd(qi ,d) = 1, then this tensor product is Z1 = 0, the zero module. In the

other extreme, if gcd(qi ,d) = d, then the tensor product is Zd , another free part.

Finally, if 1 < gcd(qi ,d) < d, then Zgcd(qi ,d) is a torsion part of HZd
1 (C•). Thus the

decomposition is

HZd
1 (C•) � Z⊕sd ⊕

t⊕
i=1

Zgcd(qi ,d)C Z⊕k
′

d ⊕
k′′⊕
i=1

Zdi .

We collect the free parts, of which there may be more in HZd
1 than in HZ

1 , so k′ ≥ s.
Similarly, some of the torsion parts of HZ

1 may have become free or zero in HZd
1 , so

k′′ ≤ t. The generators of ideals di correspond to the greatest common divisors that

are not 1 nor d from above. ■

The Structure Theorem allows us to compute the logical spaces in terms of Zd .

This corresponds more closely to the properties of the physical systems we are

using, i.e. qudits with finite d. In addition, the proof above shows explicitly how

to compute HZd
1 (C•) from the decomposition of HZ

1 (C•) over Z. This allows us to

work with chain complexes of Z-modules, and compute their homologies over Z
as well, and then change the base ring to Zd at the end. That is very useful for

computational purposes: computing in a PID like Z is much more convenient than

in a non-PID like Zd . In particular, Computer Algebra Systems such as Sage[Sag23]

are able to deal with Z much better (see Appendix B).

8.2 Projective plane

We now show an example of a topological space where torsion occurs in first

homology, and hence derive a CSS code that has torsion in its logical space. The

89

space we use the is real projective plane, denoted also RP 2, a 2-dimensional non-

orientable manifold. Imagining it is difficult, because it cannot be embedded into

3-dimensional space without self-intersection. It can be described in terms of the

gluing diagram in Figure 8.1. This is the same as in Figure 6.4f, though we relabel

the cells for convenience: vertices are labeled {vi}i , edges {ei}i , and faces {fi}i (in this

case only f1).

v1

v1 v1

v1

e1

e2

e1

e2

f1
⟲

Figure 8.1: Gluing square representation of the real projective plane.

In our case, however, we choose a different representation: the half-sphere model
of the projective plane. This is conventional in the literature on homological CSS

codes based on the projective plane; see for example [VCT23, BMD07]. It is also

more general than the gluing square, specifically because there need not be a square

subcomplex encompassing neatly the space that we want. In this model, we have

a half of a 2-sphere, say the upper hemisphere, and we identify the opposite points

of the equator. We may also view this as a 2-disc, with the opposite points of the

boundary identified.20 In either case, we refer to the circle on the boundary, whose

antipodal points get identified, as the gluing boundary. It is not a part of an abstract

cell complex defined in this space. We show this model in Figure 8.2.

8.2.1 Cellulation

In Examples 6.1.10 to 6.1.12, we started with an abstract cell complex, glued its

parts, and saw what came out. Here, we switch direction: we have a space first, and

we construct an abstract cell complex to match it. This assignment of a cell complex

to a space is called a cellulation.[Hat02] For this, the half-sphere model of RP 2 is

very useful, because the half-plane itself has no cells by itself. The construction is

not trivial, and one can easily make a mistake. We provide a practical guide below:

20Note that the gluing square is, in fact, compatible with this construction: opposite edges are
glued in the opposite direction, and if we forget about the points and edges, we get the disc with
antipodal points identified.

90

v1 v2 v3
e6

e5

e5

e6

e1

e2

e3

e4

f1

⟳

f2

⟳

f3

⟳

f3

⟲

f4

⟳
f4

⟲
Figure 8.2: A cellulation of the real projective plane, using the half-sphere model. The
half-sphere model is essentially a disc with antipodal points identified: for example, notice
that the points where e6 crosses the circle are an angle of 180◦ apart. The identification of
antipodal points reverses orientations as one crosses the circle: for example, the face f4 is
oriented clockwise in the upper part, but anticlockwise in the lower part of the diagram.

Vertices and edges

As usual with a cell complex, vertices come first. We place these as we like into the

half-sphere. Next, we draw edges between vertices, choosing also their orientation.

This is straightforward if the edge does not cross the boundary of the half-sphere.

In Figure 8.2, these are edges e1, . . . ,e4.

If an edge does cross the boundary, it continues from the antipodal point, i.e.

from a point on the dashed circle exactly 180◦ away. We draw it in its chosen

orientation from a vertex into the boundary, and then again from the antipodal

point of the boundary. In the figure, these are e5 and e6.

Notice that crossing the boundary switches left and right. Suppose there are

two ants, labeled A and B, who live on this surface. They walk side-by-side, A on

the left of B. Suppose both A and B are walking left from v1, the ant A along e5,

and B along −e6 (i.e. opposite to the direction of the edge). As they cross the dashed

line, they emerge on the right-hand side, but now B, walking along e6, is on the left

of A, still on e5.

Faces

This leads us to faces, which are the tricky part. Notice in the picture that the face

f4 appears in two regions of the circle, but it has opposite orientation in each. The

91

same is true for f3. We can state this as a rule: the orientation of a face is reversed

when it crosses the gluing boundary.

We can also state this in a constructive way. Suppose we have built the 1-skeleton,

and wish to add the face f3. We mark the left-hand region of the picture as a part

of this face, and declare the orientation there to be clockwise ⟳⟳⟳. Then we choose

a vertex incident on this face; in this case, the only choice is v1. Respecting the

clockwise orientation, we follow the edge e5 from v1. Since the face is on the right

of this edge, we think of this as walking on the right of this edge, within the face f3.

As we cross the glued boundary, we emerge in the right-hand part of the picture.

We are on the left of the edge e5, but still within f3. That must mean that in this

region, the face is oriented counter-clockwise ⟲⟲⟲.21

Note 8.2.1. The above description is possible due to the requirement that in our

abstract cell complex (or even a less restricted general cell complex), a face must

be bounded by a circle, and hence a face can only exist in a connected component

of the 1-skeleton. We might define more general topological constructions, where

this requirement is relaxed. Then, for example, we could have a face bounded by

two circles with no edge between them. These are more difficult to deal with, and

in that case, we have to fall back on the rule that crossing the gluing boundary

reverses the orientation of a face.

8.2.2 CSS code

We construct a CSS code from the cellulation of RP 2 from Figure 8.2. The chain

Z-modules are C0 = ⟨v1, . . . ,v3⟩⊕Z, C1 = ⟨e1, . . . ,e6⟩⊕Z, and C2 = ⟨f1, . . . ,f4⟩⊕Z. We choose

the natural ordering of these bases, so that we may write down matrices. The

differentials are:

P ⊤Z = ∂2 =

1 0 0 −1
1 0 0 1
0 1 0 −1
0 1 0 1
0 0 1 1
0 0 1 −1

and PX = ∂1 =

−1 1 0 0 −1 1
1 −1 −1 1 0 0
0 0 1 −1 1 −1

 . (8.2.1)

21Another way to think about this is that we start of on top of the plane (in front of the page), and
as we walk across the glued boundary, we cross over below the plane (behind the page).

92

This gives us the following generators of the stabilizer group, which also prescribe

which qudits to measure and how:

Z ⊗ Z ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1
1 ⊗ 1 ⊗ Z ⊗ Z ⊗ 1 ⊗ 1
1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ Z ⊗ Z
Z−1 ⊗ Z ⊗ Z−1 ⊗ Z ⊗ Z ⊗ Z−1

X−1 ⊗ X ⊗ 1 ⊗ 1 ⊗ X−1 ⊗ X
X ⊗ X−1 ⊗ X−1 ⊗ X ⊗ 1 ⊗ 1
1 ⊗ 1 ⊗ X ⊗ X−1 ⊗ X ⊗ X−1

The measurement process itself is architecture-dependent, so do we not go into

much detail. In general, we need an entangling operation, a qudit analogue of

the CNOT. One option is the operator that maps |i⟩ ⊗ |j⟩ 7→ |i⟩ ⊗ |i + j mod d⟩.
Furthermore, we need a way to switch between the Z and X bases. On qubits, this

is the Hadamard operator, which is itself an instance of a Fourier transform. This is

generalized to the case of qudits; we still denote it H . In the general qudit case, its

square H2 maps |i⟩ 7→ |− i mod d⟩. Apart from using this for X-type measurements

as in the qubit case, we also applyH2 before and after CNOT on those qudits, where

the stabilizer generator acts as X−1 or Z−1, i.e. an inverse Pauli operator. For more

details, see ref. [Cow22].

Similarly to the case of a qubit CSS code, the main idea is to use the non-

commutation of the qudit X and Z operators. A measurement outcome of ωa

corresponds to a component of the syndrome vector with value a ∈ Zd . Observe that

for qubits (d = 2), this is exactly the statement that measuring (−1)a corresponds to

syndrome component of a ∈ Z2.

Syndrome decoding

In our example code in Figure 8.2, suppose an error Z ⊗ 1 ⊗ Z2 ⊗ 1⊗3 occurred.

This corresponds to the 1-chain e1 + 2e3. Its syndrome of X-type measurements is

(−1,1,0)⊤ + 2(0,−1,1)⊤ = (−1,−1,2)⊤. In general, if an error Za occurs on an edge

eβ, then this contributes −a to the syndrome component corresponding to s(eβ)

and +a to t(eβ). However, it is not easy to work out the 1-chain backward from the

syndrome. Even with qubits, it may be unclear what the error is. In the case of

qudits, the search space is now much larger, and so is the complexity of decoding.

Qudit error decoding is a large field of its own, and we do not go into this. See for

example the papers [DH21, BH13, WAB15].

93

8.2.3 Logical space

We now compute the first homology of the complex in Figure 8.2. First, we compute

the kernel of ∂1 = PX and image of ∂1 = P ⊤Z , the matrices from Equation (8.2.1). We

have used Sage[Sag23] for this computation, and we display an excerpt from the

corresponding Jupyter[KRKP+16] notebook in Appendix B. The results are:kerPX = ⟨e1 + e2, e2 + e4 − e6, e3 + e4, e5 + e6⟩Z ,

imP ⊤Z = ⟨e1 + e2, 2(e2 + e4 − e6), e3 + e4, e5 + e6⟩Z .
(8.2.2)

Notice that while the kernel corresponds to circles in the complex, and as such

includes e2 + e4 − e6, the image does not include this element. This is because

e2 + e4 − e6 is not a boundary of a face. However, its multiple 2(e2 + e4 − e6) is the

boundary of x B f1 + f2 − f3 + f4. This is strange on first look, and it illustrates

why working with the matrices is useful: we can compute first, and interpret later.

This method is also much more reliable, because it does not depend on topological

intuition; in fact, this is how the author gained that intuition in the first place.

The element x represents the sum of all of the faces, in a way that respects their

orientation. We interpret it as merging the faces across edges that separate them by

forgetting those edges. Specifically, this element is interpreted as merging across

e1, e3, and e5, that is the edges not present in ∂2(x). It is important to note that we

do not delete all the edges. In fact, the circle ⦅e4,e2,−e6⦆ must exist, because the

face x must be bounded by a circle. We show this in Figure 8.3.

v1 v2 v3
e6

e6e2 e4

f1 + f2 − f3 + f4⟳

f1 + f2 − f3 + f4

⟲

Figure 8.3: The complex from Figure 8.2 with faces merged.

The boundary of x is 2(e2 + e4 − e6), and not just e2 + e4 − e6. To see this, imagine

once again we are standing inside the face x, and walk along its boundary, following

94

its orientation. Start at v1, and stand just above it: the face is oriented clockwise

here, so we walk along −e6, i.e. opposite the direction of this edge. Walking like

this, we have the boundary of x on the left. We cross the gluing boundary, and

afterwards we have the boundary of x on the right. After reaching v1 again, we

have walked along −e6 + e4 + e2. However, we are still not back at the start, because

we are on the wrong side of the boundary. We keep going, make another loop, and

when we reach v1 again, the total path walked is 2(e2 + e4 − e6). In this sense, the

face touches the boundary twice, but without cancellation. This is the essence of

torsion.

It remains to compute the first homology using the kernel and image in eq. (8.2.2).

We wrote them in such form that the cancellation in the quotient below is obvious:

H1(C•) = kerPX⧸imP ⊤Z
=
⟨e1 + e2, e2 + e4 − e6, e3 + e4, e5 + e6⟩Z
⟨e1 + e2, 2(e2 + e4 − e6), e3 + e4, e5 + e6⟩Z

� Z⧸2Z.

The torsion of RP 2 is known to be Z2,[Hat02] so this is as expected. The single

non-trivial homology class of logical operators we get from this is represented by

e2 + e4 − e6. Recall that this is a Z-type complex, so the corresponding operator is:

1⊗Z ⊗ 1⊗Z ⊗ 1⊗Z−1.

8.3 Torsion of higher order

As we have seen, the origin of torsion in H1(C•) is a face whose boundary traverses

some circle of edges multiple times. Above, we saw the case of Z2 torsion. Here, we

briefly show how to construct a space with torsion Zq, where q > 2. Specifically, we

define an abstract cell complex engineered to have torsion Z3, by gluing a hexagon

(in general a 2q-gon) shown in Figure 8.4a.[Hat02]

In that complex, the face f1 is bounded by the circle ⦅e1,e2,e1,e2,e1,e2⦆ that

contains each of the two edges three times, in the same orientation. The differential

is ∂2(f1) = 3(e1 + e2). Observe that ker∂1 is generated by the simple cycle ⦅e1,e2⦆.

Then we have

H1(C•) = ker∂1⧸im∂2
= ⟨e1 + e2⟩Z⧸⟨3(e1 + e2)⟩Z � Z3.

This method generalizes to any q ≥ 2. However, only for q = 2 can such a space

be realized as a 2-manifold. In the example, the neighbourhood of (the topological

realization of) any point on the edge e1 cannot possibly be homeomorphic to R2, as

shown in Figure 8.4b.

95

v1

v2v1

v2

v1 v2

v1

e1

e2

e1

e2

e1

e2

f1

⟳
(a)

v2

v1

e1

(b)

Figure 8.4: A complex with torsion Z3. (a) Three edges of a hexagon are glued together
to become the edge e1, and analogously for e2. (b) Picturing the realization of the whole
space is not easy. We show what the gluing of e1 looks like.

96

Chapter 9

Conclusion and related work

In this work, we have explored homological quantum error correction, and we de-

rived error correcting codes from cellulations of topological spaces. We explained

this in worked examples and provided commentary on the results. In terms of con-

tributions, we defined our own abstracted and restricted version of a cell complex

to match our needs. As a main result, we proved Theorem 8.1.1, and results leading

up to it. Now, we finish off by mentioning other work in the literature, especially

things that we would like to explore next. The following would be the natural

directions for this project to continue.

9.1 Regular cellulations

There is an ongoing line of research into regular cellulations of various spaces, also

called uniform tilings; see for example [BVC+17, BT16]. Regularity means that each

face is a regular r-gon, and each vertex has s of these around it. This is represented

by the Schläfli symbol ⦃r, s⦄. For example, we display the real projective plane

with a regular cellulation with symbol ⦃3,5⦄, i.e. each vertex surrounded by five

triangles, in Figure 9.1.

The advantage of regularity is that these codes are by design LDPC (see Sec-

tion 2.3). Recall this means that the Hamming weight of each stabilizer, as well

as the number of stabilizer measurements that each physical qudit is involved in,

are both bounded from above by a constant. For an ⦃r, s⦄ regular cellulation, each

X-type stabilizer (vertex) involves s qudits (edges). Similarly, each Z-type stabilizer

(face) touches r qudits.

A particular class of regular cellulations are those that tile the hyperbolic plane.

Note that this is no longer just a topological notion: we are imposing a metric on

some space. A metric does not change the homology itself, however, it allows us to

97

⟳

⟳

⟳

⟳ ⟳

⟳ ⟳
⟳

⟳
⟳

e1 e2

e3

e4

e5

e1e2

e3

e4

e5

Figure 9.1: A regular cellulation of the real projective plane with Schläfli symbol ⦃3,5⦄.
We abuse notation slightly and draw a single white triangle to indicate gluing for all of
the edges except e1, which is indicated by two white triangles. By this, we do not mean
that there is an edge that is glued eight times, this is simply a notational convenience.
Furthermore, we also label the edges to make this clear. Observe that this gluing makes the
complex a real projective plane, and it is a cellulation of the half-plane model, similar to
Figure 8.2.

cellulate the space in a regular and controlled way. We then cut holes out of the

plane, or perform gluings, to create non-trivial first homology. More can be found

in ref. [BVC+17, BT16].

9.2 Fault-tolerant computation and transversals

The encoding of logical operators is itself a problem that needs solving. Of course,

we get operators that correspond to 1-chains representing the equivalence classes

in the first homology of the chain complex. However, these are, essentially, just

X and Z acting on logical qudits. For fault-tolerant computation, we need more

operators. In particular, we need an entangling operation, say an encoded analogue

of CNOT, and we need a change of basis, that is an encoded Hadamard.

There exists a class of fault-tolerant operators that are easy to implement. Let

A be a physical operator acting on an un-encoded system in a certain way. If it is

possible to encodeA as a logical operatorA acting on our logical qudits in essentially

the same way as A acts on un-encoded qudits, then it is called a transversal operator.

To make this concrete, suppose our codespace contains two logical qudits of the

same kind encoded in disjoint blocks of physical qudits. This essentially means

that we have two copies of the same smaller code with a single logical qudit, and

these run in parallel. If we are able to perform logical CNOT between these two

logical qudits by applying the physical CNOT between the corresponding qudits

of the two blocks, then CNOT is a transversal of this code. It is not always clear

98

how to find transversals, or how to construct codes given some desired transversal

operation. More on this in refs. [Got97, DKLP02, BB22]

9.3 Code surgery

Throughout the work, we have mostly dealt with a single code at a time. In Ap-

pendix A, we give some thoughts on joining two codes, either using the tensor

product of chain complexes, or a connected sum of the underlying topological

spaces (which corresponds to a quotient of the direct sum of the topological com-

plexes). More generally, one can use the tools of topological surgery theory which

studies how a space can be split up, and the parts recombined in a possibly novel

way. In the context of quantum error correction, this is another way of constructing

new codes with favourable properties. In particular, surgery of LDPC codes yields

new codes which are also LDPC. More can be read in ref. [CB23].

99

100

Part IV

Appendix

101

Appendix A

Joining Codes

In this chapter, we briefly explore what can be done when we have two or more

codes obtained from chain complexes corresponding abstract cell complexes (or in

general from any chain complexes), and we wish to merge them. We only show the

two simple options, the tensor product, and the connected sum. This is an extension

of the main body of the work, and not all details have been worked out yet.

A.1 Tensor product

In this section, we define a tensor product of two codes based on cellulations. We

focus mainly on the product of two classical codes, which will give us a quantum

code; but at the end, we mention more general products. We describe the tensor

product using examples.

A.1.1 The [3,1,3] classical code as a cell complex

We come back to the [3,1,3] classical code from Section 2.2.1, and we interpret is as

an abstract cell complex. Recall that the parity matrix is

P =
(
1 1 0
1 0 1

)
: Z3

2→ Z2
2

We wish to interpret this as a differential ∂1 of a length 1 chain complex C•, corre-

sponding to a 1-dimensional abstract cell complex X = (X•,ϕ•). We change the ring

to Z, and we add minus signs to some of the entries. The choice we make is:

∂1 =
(
−1 −1 0

1 0 −1

)
: C1→ C0

We assume the ordered bases are (e1,e2,e3) for C1, and (v1,v2) for C0. With this

labeling, the first column simply says that ϕ1(e1) = (v1,v2). However, the other two

103

edges are tricky. The matrix gives their starting vertices, but does say anything

about their targets.

One way to deal with this is to interpret those edges as shooting off to infinity.

This breaks the rules, as it is now not a valid abstract cell complex. But we might

generalize our notion of a topological complex to include this scenario, which now

corresponds to a bi-infinite line, as shown in Figure A.1a.

v1 v2

e1e2 e3

(a)

v1 v2

v∞

e1

e2 e3

(b)

Figure A.1: Interpretations of the [3,1,3] repetition code as abstract cell complexes.

However, there is another way to capture this construction. This one does not

require us to break the rules, and it will be much more useful when defining the

product of codes in Appendix A.1.2. We adjoin a point at infinity, labeled v∞, and

connect all single-endpoint edges to it. This means changing the chain module

C0 to Z⊕3
2 by adding a new basis vector. The new ordered basis is (v1,v2,v∞).

Correspondingly, we change the differential:

∂1B
−1 −1 0

1 0 −1

0 1 1

This corresponds to setting ϕ2(e2) = (v1,v∞) and ϕ2(e3) = (v2,v∞). The new abstract

cell complex forms a circle, and we display it in Figure A.1b.

Note that the parity matrix P = ∂1 is different than before, and this is formally a

different code under Convention 2.1.8. However, it is essentially the same, as we

have not changed the codespace.

A.1.2 Tensor product of complexes

We now define the tensor product of an abstract cell complexes, and of chain

complexes. For more details, see [Hat02]. These two constructions correspond, and

allow us to construct new codes from old.

104

▷Definition A.1.1 (tensor product cell complex). Let X = (X•,ϕ•) and Y = (Y•,ψ•)

be abstract cell complexes of dimension at most 1, i.e. we require X2 = Y2 = ∅.

Define its tensor product,22 denoted X ⊗ Y , as the abstract cell complex (P•,π•),

where PnB {eiα ⊗ e
j
β : i + j = n,eiα ∈ Xi , e

j
β ∈ Yj}. The elements eiα ⊗ e

j
β are just pairs of

cells from each complex, and ⊗ is just a chosen notation. Observe that a product of

an n- and an m-cell is an (n+m)-cell; we restrict the dimension of X and Y , so that

the product P = X ⊗Y is at most 2-dimensional. The attaching map for 1-cells acts

as π1(e1
α ⊗ e0

β) = (s(e1
α)⊗ e0

β , t(e
1
α)⊗ e0

β), and analogously on e0
α ⊗ e1

β. The attaching of

product 2-cells is defined analogously. We show an example in Figure A.2. ◁

e0
1

e0
2

e0
3 e0

4

e0
1 ⊗ e

0
3 e0

1 ⊗ e
0
4

e0
2 ⊗ e

0
3 e0

2 ⊗ e
0
4

e1
1

e1
2

e1
1 ⊗ e

0
3

e0
1 ⊗ e

1
2

e1
1 ⊗ e

0
4

e0
2 ⊗ e

1
2

e1
1 ⊗ e

1
2⟲

Figure A.2: Example of the tensor product of cell complexes. The two factor complexes are
the lines on the left and top, and they are positioned in a way to make the structure of the
tensor product clear.

Correspondingly, the chain complex describing this is the following:

▷Definition A.1.2 (tensor product of chain complexes[Hat02]). Let C• and D• be

chain complexes of R-modules. Define their tensor product C• ⊗D• as the chain

complex P• with components

PnB
⊕
i+j=n

Ci ⊗RDj ,

and differentials are linearly extended from

∂P•n

⊕
i+j=n

xi ⊗ yj

B ∑
i+j=n

∂C•i (xi)⊗ yj + (−1)ixi ⊗∂
D•
j (yj),

22This is usually called just the product.

105

where n ∈ N, and each xi ∈ Ci , and yj ∈Dj . ◁

Note that conventionally C−1 =D−1 = 0. By convention, P−1 should also be the

zero module. We check that this is the case following Definition A.1.2:

P−1 = (C−1 ⊗RD0)⊕ (C0 ⊗RD−1) = (0⊗RD0)⊕ (C0 ⊗R 0) = 0⊕ 0 = 0,

exactly as expected. Above, we used the property from eq. (4.3.4).

With the above definitions, we can define the tensor product of error correcting

codes. If we bound the factors to dimension one, i.e. classical codes, we immediately

get a quantum code out of this. For the interpretation of the [3,1,3] code from

Figure A.1a which is a line, the product is a plane. This is not an interesting code,

because it has trivial first homology. On the other hand, this is exactly why we

constructed also Figure A.1b. The product of two circles is a torus, and now this is

a viable quantum code with logical space (first homology) of rank 2.

This may be further generalized to products of quantum codes. Then, the chain

complex has length four, and our abstract cell complexes can no longer interpret it

(though, general cell complexes can). Then we have to choose how to assign parity

check matrices, so that we obtain generators of the stabilizer group. One way is to

truncate the complex to length two by deleting one end. Another option is to see

the extra differentials as defining meta-checks, which detect measurement errors.

More on these can be found in ref. [BH13].

A.2 Connected sum

Finally, we briefly mention the connected sum of codes. In Definition 6.1.13, we

have defined the direct sum of cell complexes, which corresponds to the direct

sum of chain complexes. We also sketched how to glue them. This clearly also

corresponds to an operation that takes two codes and merges them.

This can be formalized as an actual sum of abstract cell complexes, but we can

also use a more general connected sum (see [Hat02]) of topological spaces and then

cellulate it. This has different effects on the logical space. This concept may be

generalized to code surgery, see [CB23, Cow22].

106

Appendix B

Jupyter + Sage notebook

We display in Figures B.1 and B.2 a portion of our Jupyter[KRKP+16] notebook

where we have used Sage[Sag23] to analyze the complex from Figure 8.2. We use

the Sage standard library to find ker∂1 and im∂2 as matrices over Z, and we further

use Sage to change the basis, so that the generating sets of these spaces are in row

echelon form. The function on_basis_from_dict is our own utility, written to

more easily translate differentials computed by hand into Sage. It is displayed in

Figure B.1.

[1]: def on_basis_from_dict(dct, dom, cod):
def _on_basis(b):

if dct[b]:
return sum([sign(i) * cod.monomial(abs(i)) for i in dct[b]])

else:
return cod.zero()

return dom.module_morphism(_on_basis, codomain=cod)

1

Figure B.1: The custom utility function on_basis_from_dict. It allows to conveniently
input a linear transformation M, defined by its action on the standard basis ei 7→

∑
jMj,iej ,

as a dictionary. It works in the specific case that the entries of M as a matrix are all 0 or
±1. The dictionary has keys corresponding to input basis vectors, and the values are lists of
output basis vectors with nonzero coefficients. These are written using their integer indices,
and they are given the sign corresponding to the matrix value. For example, if we have
ei 7→ e1 − e3 , the key-value pair is {i : [+1,−3]}, omitting e2 because it does not occur.

107

[2]: R = ZZ
R

[2]: Integer Ring

[3]: C2 = CombinatorialFreeModule(R, basis_keys=[1 .. 4], prefix="f")
C1 = CombinatorialFreeModule(R, basis_keys=[1 .. 6], prefix="e")
C0 = CombinatorialFreeModule(R, basis_keys=[1 .. 3], prefix="v")
C2, C1, C0

[3]: (Free module generated by {1, 2, 3, 4} over Integer Ring,
Free module generated by {1, 2, 3, 4, 5, 6} over Integer Ring,
Free module generated by {1, 2, 3} over Integer Ring)

[4]: ð2 = on_basis_from_dict({
1 : [1, 2],
2 : [3, 4],
3 : [5, 6],
4 : [-6, 4, 2, 5, -3, -1]

}, C2, C1)
print(ð2.matrix())

[1 0 0 -1]
[1 0 0 1]
[0 1 0 -1]
[0 1 0 1]
[0 0 1 1]
[0 0 1 -1]

[5]: im_ð2_basis = C1.echelon_form(ð2.image_basis())
im_ð2_basis

[5]: [e[1] + e[2], 2*e[2] + 2*e[4] - 2*e[6], e[3] + e[4], e[5] + e[6]]

[6]: ð1 = on_basis_from_dict({
1: [-1, 2],
2: [-2, 1],
3: [-2, 3],
4: [-3, 2],
5: [-1, 3],
6: [-3, 1]

}, C1, C0)
ð1.matrix()

[6]: [-1 1 0 0 -1 1]
[1 -1 -1 1 0 0]
[0 0 1 -1 1 -1]

[7]: ker_ð1_basis = ð1.kernel_basis()
ker_ð1_basis

[7]: (-e[1] - e[2], -e[3] - e[4], e[1] + e[3] - e[5], -e[1] - e[3] - e[6])

Figure B.2: Computation of ker∂1 and im∂2 of Figure 8.2. We define the ring of scalars to
be Z, and define three free and finitely generated modules C2,C1,C0 by listing their bases.
Then we define the differentials ∂2 and ∂1 using the function from Figure B.1. Finally, we
ask Sage to compute the bases of, respectively, their image and kernel, and write them in
row echelon form, so that may easily compute the quotient ker∂1/ im∂2.

108

Bibliography

[Aar16] Scott Aaronson. Introduction to quantum information science I, lecture

notes, 2016. https://www.scottaaronson.com/qclec.pdf.

[Aar22] Scott Aaronson. Introduction to quantum information science II, lec-

ture notes, 2022. https://www.scottaaronson.com/qisii.pdf.

[Axl96] Sheldon Axler. Linear algebra done right. Undergraduate Texts in

Mathematics. Springer-Verlag, New York, 1996.

[Bac06] Dave Bacon. The Quantum Error Correcting Criteria, lecture 17.

Lecture notes in CSE 599d - Quantum Computing, University of

Washington, 2006. https://courses.cs.washington.edu/courses/

cse599d/06wi/lecturenotes17.pdf.

[BB22] Nikolas P. Breuckmann and Simon Burton. Fold-transversal clifford

gates for quantum codes, 2022.

[BDD21] Arjun Berera and Luigi Del Debbio. Quantum Mechanics. Cambridge

University Press, 2021.

[BH13] Sergey Bravyi and Matthew B. Hastings. Homological Product Codes,

2013.

[BMD07] H. Bombin and M. A. Martin-Delgado. Homological error correc-

tion: Classical and quantum codes. Journal of Mathematical Physics,
48(5):052105, 05 2007.

[BN96] Johannes A. Buchmann and Stefan Neis. Algorithms for linear al-

gebra problems over principal ideal rings. Darmstadt, 1996. Techn.

Hochschule, FB 20, FG Theoretische Informatik.

109

https://www.scottaaronson.com/qclec.pdf
https://www.scottaaronson.com/qisii.pdf
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes17.pdf
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes17.pdf

[BT16] Nikolas P. Breuckmann and Barbara M. Terhal. Constructions and noise

threshold of hyperbolic surface codes. IEEE Transactions on Information
Theory, 62(6):3731–3744, 2016.

[BVC+17] Nikolas P Breuckmann, Christophe Vuillot, Earl Campbell, Anirudh

Krishna, and Barbara M Terhal. Hyperbolic and semi-hyperbolic sur-

face codes for quantum storage. Quantum Science and Technology,

2(3):035007, aug 2017.

[CB23] Alexander Cowtan and Simon Burton. CSS code surgery as a universal

construction, 2023.

[CCBT18] J. Conrad, C. Chamberland, N. P. Breuckmann, and B. M. Terhal. The

small stellated dodecahedron code and friends. Philos. Trans. Roy. Soc.
A, 376(2123):20170323, 19, 2018.

[Cow22] Alexander Cowtan. Qudit lattice surgery, 2022.

[DF04] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley

& Sons, Inc., Hoboken, NJ, third edition, 2004.

[DH21] Nicolas Delfosse and Matthew B. Hastings. Union-Find Decoders For

Homological Product Codes. Quantum, 5:406, March 2021.

[DKLP02] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topo-

logical quantum memory. Journal of Mathematical Physics, 43(9):4452–

4505, 08 2002.

[DMN13] Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error

correction for beginners. Reports on Progress in Physics, 76(7):076001,

June 2013.

[Got97] Daniel Gottesman. Stabilizer codes and quantum error correction,

PhD thesis, 1997. https://doi.org/10.48550/arXiv.quant-ph/

9705052.

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cam-

bridge, 2002.

[Jac09a] Nathan Jacobson. Basic algebra, volume I of Dover books on mathematics.
W. H. Freeman and Company, Mineola, New York, unabridged second

edition, 2009.

110

https://doi.org/10.48550/arXiv.quant-ph/9705052
https://doi.org/10.48550/arXiv.quant-ph/9705052

[Jac09b] Nathan Jacobson. Basic algebra, volume II of Dover books on mathematics.
W. H. Freeman and Company, Mineola, New York, unabridged second

edition, 2009.

[Kit03] A. Yu. Kitaev. Fault-tolerant quantum computation by anyons. Ann.
Physics, 303(1):2–30, 2003.

[Kov21] Vladimir Kovalevsky. Boundary Presentation Using Abstract Cell Com-
plexes, pages 7–16. Springer Singapore, Singapore, 2021.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian

Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica

Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia

Abdalla, and Carol Willing. Jupyter notebooks – a publishing for-

mat for reproducible computational workflows. In F. Loizides and

B. Schmidt, editors, Positioning and Power in Academic Publishing: Play-
ers, Agents and Agendas, pages 87 – 90. IOS Press, 2016.

[Lam06] T. Y Lam. Exercises in modules and rings. Problem books in mathematics.

Springer, New York, NY, 2006.

[ŁMGH15] Justyna Łodyga, Paweł Mazurek, Andrzej Grudka, and Michał

Horodecki. Simple scheme for encoding and decoding a qubit in un-

known state for various topological codes. Scientific Reports, 5(1):8975,

Mar 2015.

[MS15] Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry,

volume 161 of Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, 2015.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and
quantum information. Cambridge University Press, Cambridge, 2000.

[RL09] William Ryan and Shu Lin. Channel Codes: Classical and Modern.

Cambridge University Press, 2009.

[Sag23] Sage Developers, The. SageMath, the Sage Mathematics Software System,

May 2023. Version 10.0. https://www.sagemath.org.

111

https://www.sagemath.org

[SY23] Rahul Sarkar and Theodore J. Yoder. The qudit Pauli group: non-

commuting pairs, non-commuting sets, and structure theorems. https:

//doi.org/10.48550/arXiv.2302.07966, 2023.

[VCT23] Christophe Vuillot, Alessandro Ciani, and Barbara M. Terhal. Homo-

logical Quantum Rotor Codes: Logical Qubits from Torsion. https:

//doi.org/10.48550/arXiv.2303.13723, April 2023.

[WAB15] Fern H. E. Watson, Hussain Anwar, and Dan E. Browne. Fast fault-

tolerant decoder for qubit and qudit surface codes. Physical Review A,

92(3), sep 2015.

[Wei94] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge

Studies in Advanced Mathematics. Cambridge University Press, 1994.

112

https://doi.org/10.48550/arXiv.2302.07966
https://doi.org/10.48550/arXiv.2302.07966
https://doi.org/10.48550/arXiv.2303.13723
https://doi.org/10.48550/arXiv.2303.13723

	Introduction
	Structure of the dissertation

	I Introduction to Error Correction
	Classical Linear Codes
	General idea
	Error detection
	Interpretation of the parity check matrix
	Characterizing codes
	Detection versus decoding

	Examples
	A [3,1,3] repetition code
	The [7,4,3] Hamming codes

	Low-Density Parity-Check (LDPC) Codes

	Quantum Error Correction
	Two-state system
	Multiple qubits

	Stabilizer states
	Error model

	CSS codes
	Example: phase-flip code
	A wild parity check matrix appears
	CSS Code from orthogonal classical codes

	II Tools from Algebraic Topology and Homological Algebra
	Rings and Modules
	Rings
	Quotients
	Division

	Modules
	Examples of Modules
	Free and Finitely Generated Modules
	Matrices
	Quotient
	Torsion

	Tensor Product of Modules
	Properties of Tensor Product Modules
	Extension of Scalars

	Homological Algebra
	Chain Complexes and Homology
	Exact Sequences and Resolutions
	Change of ring for homology

	Cell Complexes
	Abstract 2-dimensional cell complexes
	Definition
	Gluing Complexes
	Gluing two complexes
	Relationship to general cell complexes
	Other kinds of (abstract) topological complexes

	Chain Complexes from Abstract Cell Complexes
	Homology of a cell complex
	Examples
	Homology of a direct sum of complexes
	0th homology module

	III Homological Quantum Error Correction
	CSS codes from cellulations
	A simple toric code
	Logical space
	Syndrome measurement
	Error correction
	X-type complex

	Qudits and their operators
	Stabilizers of qudit systems

	Torsion
	First homology
	Projective plane
	Cellulation
	CSS code
	Logical space

	Torsion of higher order

	Conclusion and related work
	Regular cellulations
	Fault-tolerant computation and transversals
	Code surgery

	IV Appendix
	Joining Codes
	Tensor product
	The [3,1,3] classical code as a cell complex
	Tensor product of complexes

	Connected sum

	Jupyter + Sage notebook
	Bibliography

