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1Koç University, Institute of Physics, Sarıyer, 34450, İstanbul, Türkiye
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We investigate a quantum Otto engine with a quantum Ising spin glass as the working medium
to explore the scaling behavior of work output and thermodynamic performance concerning system
size, particularly near the critical point. Specifically, we explore the two operating modes of the
Otto engine, namely the heat engine and refrigerator modes. We observe a double-peaked structure
in the heat engine regime, leading to superlinear scaling in both work output and thermodynamic
performance near the critical point. Additionally, in the refrigerator regime, superlinear scaling in
refrigerator efficiency can be achieved at high and low temperatures, significantly outperforming
models with uniform Ising interactions. These findings suggest that disorder and frustration in
quantum Ising spin-glass systems could significantly impact thermodynamic performance in quan-
tum heat engines and refrigerators, potentially opening up new avenues for improvement.

I. INTRODUCTION

Investigation of quantum analogs of the Otto engines
has garnered significant attention. This interest is moti-
vated by the pronounced impacts of quantum phenomena
such as quantum fluctuation [1], superposition [2, 3], en-
tanglement [4], and coherence [5] on these cycles. The
literature on these thermodynamic cycles is mostly fo-
cused on quantum heat engines and quantum refrigera-
tors [6–10]. Numerous theoretical investigations of these
systems are available [11, 12], often dealing with sim-
ple few-level and/or single-particle quantum thermody-
namic cycles [6, 13–17]. Recent studies have extended
to more intricate systems, encompassing interacting par-
ticles [18], atomic collisions [19], strong coupling with
baths [20], and inner friction [21]. Our work aligns with
these trends, where computational treatments of multi-
level spin systems with larger system sizes have been ex-
plored [21, 22]. The impact of spin frustration on the
efficiency of thermodynamic cycles has also been inves-
tigated [23]. Nevertheless, the exploration of quantum
spin glasses, specifically magnetic states manifesting ex-
otic behavior due to system frustration and demonstrat-
ing pronounced quantum fluctuations [24], with substan-
tial system sizes remains an unexplored domain.

In this study, we investigate the potential use of the
quantum Ising spin-glass 1d-chain as a working substance
in a quantum Otto engine to enhance performance. This
is the simplest nontrivial interacting quantum model with
quenched randomness. We also show that superlinear
scaling of the performance emerges when the working
substance is on the verge of a phase transition.

As the working substance approaches the critical point
in a quantum Otto engine, the enhancement in perfor-
mance is a well-known phenomenon [22, 25, 26]. In this
context, the impact of various exotic behaviors, such as
the slowing down of the system’s dynamics, the breaking
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of time-reversal symmetry, the formation of islands in the
system, and the increase in long-range correlations be-
tween neighboring regions, on the engine’s performance
is significant [27].
Moreover, the slow relaxation appears in the quantum

Ising spin-glass model around the critical point hc, i.e.
critical quenched field. This slow relaxation behavior is
called the Griffith singularity [28, 29]. From this point of
view, we examined our system to investigate the phase
transition points and the effects on engine performance.
The paper is organized as follows: In Sec. II, we briefly

introduce the quantum Ising spin-glass model and Grif-
fiths phases. In section III, the four-stroke quantum Otto
engine is described followed by the mathematical model,
and the working regimes are presented. In Sec. IV, we
will present our computational results on the thermody-
namic performance of the Ising spin-glass QOE, in the
context of the phase transitions. Finally, in Sec. V, we
draw our conclusions.

II. THE QUANTUM ISING SPIN-GLASS
MODEL AS WORKING MEDIUM

We focus on a model of N spin-1/2 quantum particles
coupled via the quantum Ising chain in a time-dependent
transverse magnetic field as the working substance of our
engine. The Hamiltonian of this model is

Ĥ(t) = −
N∑
i=1

Jiσ̂
x
i σ̂

x
i+1 − h(t)

∑
i

σ̂z
i , (1)

here σ̂α
j are Pauli operators (α = x, y, z) acting on the j-

th spin, σ̂α
N+1 = σ̂α

1 enforces the periodic boundary con-
ditions, and h(t) is the strength of the external field at
time t. The spins σ̂x

i and σ̂x
i+1 interact with each other by

coupling coefficients Ji that obey a Gaussian distribution
with zero mean J0 = 0 and variance 1/N . This model,
the so-called Edwards-Anderson spin-glass model [30], is
similar to the Ising model, with the only interaction be-
tween nearest neighbor spins. Still, the difference is that
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they have randomly distributed ferromagnetic (Ji > 0)
and antiferromagnetic (Ji < 0) interactions. We also set
ℏ = kB = 1.
In order to diagonalize the system Hamiltonian, we

first apply the Jordan-Wigner transformation which
maps equation (1) into the spinless-fermion Hamilto-
nian [24]

H(t) = −
∑
i=1

Ji(â
†
i âi+1 + â†i â

†
i+1 + h.c.)

+ h(t)
∑
i

(2â†i âi − 1), (2)

where âi (â
†
i ) are fermionic annihilation (creation) oper-

ators. Note that we need to access the full eigenspectrum
of the Hamiltonian in order to calculate the expectation
values. However, this process is intractable for large sys-
tem sizes N , as the size of the Hamiltonian grows ex-
ponentially. Thus, we use a special diagonalization trick
called the Bogoliubov Transform [31], which allows us to
deal with a 2N × 2N matrix instead of a 2N × 2N one.
More details can be found in Appendix A.

While this model with random field interactions has
not been studied in the context of quantum heat engines,
it was extensively examined [29, 32], where several results
on critical behavior and phase transitions were found,
which will play a crucial role in our further analysis.

The critical point of the random transverse-field chain
is obtained by Shankar and Murthy [33]. Then, following
the method, the control parameters are

∆h = lnh, (3)

∆J = ln J (4)

where J and h are the variances of the probability distri-
butions belongs to the Ji-couplings and hi random-fields,
respectively [29]. At the critical point,

∆h = ∆J = ln J ≡ ∆c, (5)

where the bar denotes the disorder average and Λc is the
critical value of the control parameters.

Once the magnetic field is uniform, one can conclude
that the quantum critical point is at

hc = e∆c = eln J . (6)

We have shown that hc converges to 0 in the thermo-
dynamic limit in Fig. 1. However, it should be noted that
hc is significantly non-zero for finite system sizes. This
implies that as the system size increases, the quantum ef-
fects will not survive at considering temperature regimes,
and then it will undergo an order-disorder phase transi-
tion, consistent with the EA classical spin glasses [24, 34].

Reducing disorder in the system can be seen as achiev-
ing a uniform transverse field distribution. Even if a uni-
form h field is achieved, the system still contains ran-
domness due to disorder in the Jis. This leads to the

FIG. 1. The critical values of the transverse field (6) hc,
with respect to the system size N for N ≤ 105 is illustrated.
The dotted black line marks hc = 0, as converges to it in
thermodynamic limit, N → ∞.

question of whether randomly distributed interactions in
spin-glass systems, which can have locally ordered spin
regions, might influence the thermodynamics of the entire
system. To better understand the impact of disordered
interactions in spin-glass systems, we will discuss related
phenomena, such as Griffiths phases [35] occur near the
critical point.

• The “weakly disordered” Griffiths phase occurs
when max({Ji}) > min({hi}) = h but ∆h > ∆c,

• The “strongly disordered” Griffiths phase occurs
when max({Ji}) < min({hi}) = h and ∆h > ∆c,

• The “weakly ordered” Griffiths phase occurs when
min({Ji}) < max({hi}) = h but ∆h < ∆c,

• The “strongly ordered” Griffiths phase occurs when
min({Ji}) > max({hi}) = h and ∆h < ∆c.

The points where the system enters these phases are not
real phase transition points, but they nevertheless mark
an important change in system behavior [29]. However,
disorder generally has stronger effects on quantum phase
transitions than on classical transitions [36]. We will pri-
marily investigate the thermodynamic properties of the
spin-glass system through quantum Otto heat engines
and refrigerators.

III. THE QUANTUM OTTO ENGINE

The quantum Otto cycle (QOC) consists of four
strokes. Two of these strokes are adiabatic while the
other two are isochoric strokes.
A quantum adiabatic stroke is a process in which no

heat is exchanged while some work is performed. The
energy levels of a Hamiltonian vary under such a stroke.
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FIG. 2. Schematic representation of a quantum Otto cycle composed of four strokes as adiabatic expansion (A → B) where the
system is decoupled from the baths while the magnetic field is transitioned from hi to hf , isochoric hot thermalization (B → C)
where the system is coupled with the heat bath at temperature Th while the Hamiltonian H(t) of the system is held constant,
adiabatic compression (C → D) where the system is decoupled from the baths while the magnetic field is transitioned from hf

to hi, and isochoric cold thermalization (D → A) that the system is coupled with the cold bath at temperature Tc while the
Hamiltonian H(t) of the system is held constant.

In our QOE, the adiabatic stroke is performed via varying
a magnetic field from a value hi to a value hf > hi, and
vice versa.

In a quantum isochoric process, contact between a heat
bath and the substance is established, causing a change
in temperature. In such a process no work is done and
the Hamiltonian eigenvalues are unchanged. In our QOE,
our working substance, a quantum spin glass, is put in
contact with baths at temperature Tc and Th, with Th >
Tc, respectively [22, 37].

The strokes of the cycle are enumerated as follows:

1. A → B: Adiabatic expansion. The system is de-
coupled from the baths while the magnetic field is
transitioned from hi to hf .

2. B → C: Isochoric heating. The system is coupled
with the heat bath at temperature Th while the
Hamiltonian H(t) of the system is held constant.

3. C → D: Adiabatic compression. The system is
decoupled from the baths while the magnetic field
is transitioned from hf to hi.

4. D → A: Isochoric cooling. The system is cou-
pled with the cold bath at temperature Tc while the
Hamiltonian H(t) of the system is held constant.

A. Working Regimes of the QOE

The four working regimes of the QOE, including the
quantum refrigerator (R) and heat engine (HE), along
with the relevant quantities. These quantities include
work output and the quantity to analyze the enhanc-
ing effects of quantum spin glasses, i.e. thermodynamic
performance. We are going to deal with three relevant
quantities from the Otto Engine:

• Qc: The heat exchanged with the cold reservoir

• Qh: The heat exchanged with the hot reservoir

• W : The total work done during a cycle is equal to
the sum of heat exchanged with the baths (W =
Qc +Qh)

Combining the work equation with the celebrated Clau-
sius inequality of thermodynamics, we see that only four
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working regimes are allowed [38]. These are called heat
engine (E), refrigerator (R), heater (H), and accelerator
(A) regimes.

TABLE I. Comparison of different working regimes in terms
of work output and heat exchanged.

Working Regime W Qc Qh

Heat Engine (E) > 0 > 0 < 0
Refrigerator (R) < 0 > 0 < 0
Heater (H) < 0 < 0 < 0
Accelerator (A) < 0 < 0 > 0

By convention, note that Qc(h) > 0 implies the en-
gine absorbs heat from the cold (hot) reservoir, and for
a complete cycle Qc(h) = −Qh(c).

Let’s consider a system in the Otto cycle, where the
state is at point B before thermalization and at point
C after thermalization, with the time-dependent Hamil-
tonian being H(τ) at time t = τ . Since, by definition,
no work is done during a quantum isochoric process, the
change in internal energy depends only on the heat ex-
changed. Thus,

Qc = ∆U = ⟨H(τ)⟩ρ(C) − ⟨H(τ)⟩ρ(B), (7)

where ρ(P ) denotes the density matrix of the system at
any point P = A,B,C,D.
To find the work output W , note that the total change

in internal energy over one complete cycle is zero. Thus,
∆Utot = Qtot −Wtot = 0. This leads to Wtot = Qtot =
Qc +Qh. For further information on calculating Hamil-
tonian expectation values, refer to Appendix B. Keep in
mind that our calculations are based on the ideal appli-
cation of the adiabatic theorem [39].

The engine efficiency is defined as

η = W/Qh, (8)

in terms of work output W and heat absorbed from the
hot reservoir, Qh. The Carnot efficiency is given by ηC =
1 − Tc/Th, where Tc and Th represent the cold and hot
reservoir temperatures, respectively.

In quantum heat engines, increasing the system size
typically leads to a rise in work output, but it often re-
sults in decreased efficiency. From this perspective, ther-
modynamic performance, Π, is relevant because it ac-
counts for both factors. The main quantity that we will
consider is the “thermodynamic performance”,

Π =
W

δη
, (9)

where δη = ηC−η is the measure of how close the engine’s
efficiency is to the Carnot efficiency. Superlinear scaling
in Π would suggest that the increase in work output out-
weighs the decrease in efficiency as the system grows, in-
dicating improved performance [25]. The present study
aims to demonstrate that superlinear scaling occurs due
to quantum criticality in quantum spin glass systems.

FIG. 3. Working Regimes of the Otto Engine (EA) for Th =
0.2, 0.5. The purple lines denote Tc = Th/4 and the black
lines denote Tc = 3Th/4, see Table I.

IV. RESULTS

In this section, we will present our results regarding
the proposed QOE. Unless stated otherwise, the fixed
quench is applied

δh = hf − hi = 0.5, (10)

All our data are averaged over 512 realizations of the
independent Ji Gaussian distribution with zero mean and
the variance 1/N .
We present the operating regimes of our QOE with a

continuous range for 0 ≤ Tc ≤ Th and −0.5 ≤ hi ≤ 2,
while varying Th = 0.2 and 0.5. A detailed explanation
for these choices will be provided as follows. However, it
should be noted that once we understand the behavior
of the working regimes depending on the related param-
eters, it can certainly be tuned to operate in the specific
mode required for the Otto engine.
In Figure 3, it is evident that as the temperature of

the cold reservoir gets closer to that of the hot reservoir,
it becomes more likely to achieve a refrigerator regime.
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FIG. 4. Top line: Comparison of Work per Spin, W/N for Th = 0.2, 0.5, Tc = Th/4, with δh = 0.5 held constant. Number of
realizations is 512. The solid purple line marks the phase transition point where ∆h = ∆c and the dashed black lines mark
the ends of the Griffiths phases. Bottom Line: Comparison of Thermodynamic Performance per Spin, Π/N for Th = 0.2, 0.5,
Tc = Th/4, with δh = 0.5 held constant. Number of realizations is 512. The solid purple line marks the phase transition point
where ∆h = ∆c and the dashed black lines mark the ends of the Griffiths phases. The values of Π/N where W/N < 0 were
clipped to 0 to avoid any unwanted peaks as our definition of Π assumes W/N > 0.

Conversely, as the difference between Th and Tc in-
creases, a heat engine regime becomes more proba-
ble. Furthermore, there is a notable region between the
boundaries of the refrigerator (R) and heat engine (E)
regimes, encompassing other regimes such as heater (H)
and absorption (A). As we will observe in Section IVA,
the minimum point of this region consistently lies be-
tween the two peaks in work output and thermodynamic
performance, as shown in Figures 4, separating them.

We can identify a trend by looking at the sequence of
regimes from high to low Tc. Initially, as Tc decreases, Qc

shifts from positive to negative. With further reduction
in Tc, Qh also changes sign from positive to negative.
Finally, as Tc continues to decrease, the signs of both
these quantities invert, resulting in positive work output.
This is convenient with the 2nd law of Thermodynamics.

Another intriguing observation is the predictable shift
in the boundaries of the E and R regimes as Th increases.
These changes, which we will delve into in the following

subsections, highlight the predictable nature of thermo-
dynamics and the control we can exert over these regimes.

A. Heat Engine Regime

This section will examine the work output W , and the
thermodynamic performance, Π, of our QOE operating
as a heat engine.

Let’s consider the fixed Tc temperature that will allow
the Otto engine to operate in the heat engine regime as
Th/4 for two cases, where Th = 0.2 and 0.5, see Fig. 4.

A notable observation is that W/N exhibits a double-
peaked structure with respect to −0.5 ≤ hi ≤ 1.75. The
reason for selecting Th = 0.2 and 0.5 becomes clear: For
Th = 0.2, the first peak yields a higher work output than
the second one, whereas, for Th = 0.5, the second peak
provides a higher work output. This distinction between
peaks is an important theme throughout the paper.
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FIG. 5. Comparison of the height of the two peaks. The
dashed black line marks the intersection at Th ≈ 0.29. From
now on, including this figure, the orange marks denote the sec-
ond peak while the blue marks denote the first. Peak height
for thermodynamic performance per spin, Π/N .

In Fig. 5, it is seen that a similar double-peaked struc-
ture is observed for thermodynamic performance. As
most behavior of Π/N is similar with W/N , we’ll only
consider the two significantly different behavior: Peak
height and scaling of the classical peak.

To determine the dominant parameter scaling with re-
spect to work output and thermodynamic performance,
we demonstrate how the positions of the maxima, calcu-
lated for a system with N = 50 spins, vary with Th over
the range 0.05 ≤ Th ≤ 1.5.

We observed that the temperature at which the domi-
nant peak shifts is approximately Th ≈ 0.29, as depicted
in Fig. 5 at the crossing point. For Th < 0.29, the first
peak is dominant, but the second peak becomes domi-
nant when the temperature exceeds this value.

As depicted in Fig. 4, the critical point hc separates the
two peaks. Consistent with the hypothesis proposed in
[25], the first peak corresponds to a quench that crosses
the critical point. This is because hi < hc < hf =
hi + ∆h = hi + 0.5 where hi represents the peak po-
sition on the graph. Additionally, the first peak typically
resides within the weakly ordered Griffiths phase, while
the second peak exhibits behavior largely independent
of this phase. Following the second peak, we notice an
exponential tail, indicating the formation of larger rare
clusters within the system [40]. This observation suggests
that a regime characterized by this exponential tail has
replaced the weakly disordered Griffiths phase [41, 42].

Given these observations and considering that lower
temperatures tend to favor the first peak, we refer to the
first peak as the “quantum peak” and the second one as
the “classical peak”.

B. Superlinear Scaling of Ising Spin-glass Quantum
Otto Heat-engine

In Fig. 6, we show that the exponents with which the
peaks scale with respect to the system size, that is, α for
W ∼ Nα, hold true. We achieve the numerical values for
α via fitting a function of form y = bNα for the values
of the relevant quantities at the peaks.

FIG. 6. The scaling behavior for work output, W , and ther-
modynamic performance, Π, with respect to the hot bath
temperature Th is given for both peaks by the scaling expo-
nent α such that the relevant quantity,Q, obeys the scaling
Q ∼ Nα. The dashed black line denotes α = 1 which corre-
sponds to the linear scaling with system size.

It is important to note that the scaling of the quan-
tum peak decreases from superlinear to sublinear with
Th, while the scaling of the classical peak converges to 1
with increased temperature. This is a significant devia-
tion from the pure model with uniform J in many ways.
Following the calculations in [22], we observed in our nu-
merical simulations that the quantum peak dissolves, and
the classical peak starts from sublinear and converges to
linear scaling with increased temperature. Thus, we con-
clude that the randomness and frustration incorporated
into the system affect the work output quantum peak
anomalously, which may lead to enhancement in low tem-
peratures, along with inverting the scaling of the classical
peak, albeit leaving the value it converges to unchanged
at α = 1.
We are going to use the definition of thermodynamic

performance, Π in (9) and search for the enhancement
proposed in [25]. However, we must note that the 1D
Edwards-Anderson model in a transverse field exhibits
anomalous scaling behavior when compared with other
second-order quantum phase transitions and that the di-
mension d = 1 is below the lower critical dimension for
such a system [29, 43]. Thus, our scaling isn’t expected
to strictly obey the polynomial scaling in [25].
As seen in Fig. 5, in thermodynamic performance, the

peak height of the classical one also reaches a maxi-
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FIG. 7. Comparison of Refrigerator Performance per Spin, ΠR/N for Th = 0.2, 0.5, Tc = 3Th/4, with δh = 0.5 held constant.
Number of realizations is 512. ΠR was clipped to 0 where W > 0.

mum rather than approaching asymptotic convergence,
as observed for work output’s classical peak. Moreover,
in Fig. 6, the convergence of the classical peak to α = 1 is
slower along with the scaling drop in the quantum peak
compared to work output.

Thus, we conclude that we see a greater enhancement
in Π compared to W , signaling a significant enhancement
in the heat engine efficiency, η.
Overall, we observe significant enhancement possibili-

ties in both work output, W , and thermodynamic perfor-
mance, Π, due to the disorder and frustration involved
in the system.

C. Refrigerator Efficiency

In this subsection, we will examine the performance of
our QOC as a quantum refrigerator. To achieve this, we
must change our definition of performance.

Denote the refrigerator performance by ΠR. Similar to
our definition for Π, we define

ΠR = Qc/δηR (11)

where δηR is defined analogously as δηR = ηCOP − ηR.
Here, ηCOP = Tc/(Th − Tc) is the Carnot coefficient of
performance, and

ηR = Qc/|W | = −Qc/W (12)

is the refrigerator efficiency.
Following these definitions, we obtained Fig. 7, where

Th = 0.2, 0.5 as before and Tc = 3Th/4. As seen in Fig.
3, the engines are in the refrigerator regime for most hi

for such a choice of Tc.
From Fig. 7, we observe arising structure with a slope

followed by a shoulder and then a peak in which the
shoulder dissolves quickly and the peak widens as tem-
perature increases. We will focus on the peak. However,

FIG. 8. Quench midpoint for refrigerator performance,
ΠR.The point where peaks diverge is roughly around Th ≈ 0.7
while hi ≈ 0.9.

it is important to note that the curves for different sys-
tem sizes overlap at a point that corresponds to direct
quenching over the quantum critical point. The peak
appears to be independent of the quantum critical point
and dependent on temperature. The two relevant quanti-
ties we will examine are the quench midpoint of the peak
and the scaling factor α.

An important observation from Fig. 8 is that the lo-
cation follows a linear shape at low temperatures; how-
ever, the curves for system sizes start to differentiate and
converge to distinct values at higher temperatures. This
divergence starts roughly around Th ≈ 0.7. From Fig. 9,
we infer that unlike in the heat engine regime, the scal-
ing with system size converges to an α > 1, to roughly
around α ≈ 1.1, giving genuine superlinear scaling which
does not disappear with temperature for Th ≤ 1.5. Thus,
by extrapolating our results, we conclude that for high
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FIG. 9. The scaling behavior for the refrigerator performance,
ΠR, with respect to the hot bath temperature Th is given for
the second peak by the scaling exponent α for refrigerator
performance, ΠR ∼ Nα. The dashed black line denotes α = 1
which corresponds to the linear scaling with system size.

temperatures, the refrigerator performance peak is local-
ized and shows superlinear scaling with a constant expo-
nent, surpassing the results of the pure model in [22]. For
low temperatures, we obtain even higher scaling which
falls rapidly to a minimum and rises, along with the lo-
cation of the peak changing rapidly.

V. CONCLUSIONS

In conclusion, we studied the 1D Ising spin-glass model
in a transverse field as a working medium in the quan-
tum Otto cycle. We investigated both heat engine and
refrigerator regimes in relatively low and high tempera-
ture scales by tuning the hot and cold bath temperatures.
First, we mapped our model to the free fermions model
via the Jordan-Wigner transformation and then we calcu-
lated the relevant quantities for N = 20, 30, 40, 50 spins.

The primary focus of our investigation is the gen-
uine superlinear scaling in the performance of work out-
put and engine performance in both the heat engine
and refrigerator operating regimes. In the case of the
heat engine regime, we observe a double-peaked struc-
ture, whereas, for the refrigerator, we obtain a shoul-
der and then single-peaked structure similar to the Ising
model [22]. In the case of the double-peaked work out-
put, we infer that the first peak is governed by quantum
effects, while the second peak is influenced by classical
effects, as observed through their behaviors at increasing
temperatures.

The “quantum” peak directly corresponds to a quench
over the quantum critical point, hc, and that its location
converges within the Griffiths phases[24, 44, 45] while the
“classical” peak is independent of the quantum critical
point and its location increases linearly after a certain

temperature, Th ≈ 0.29. This temperature also corre-
sponds to the change in the domination of the peaks, as
for Th < 0.29, the quantum peak outputs higher work
than the classical peak when for Th > 0.29, the classical
peak corresponds to higher work output.

We also see that the scaling exponent α of the quan-
tum peak goes from α > 1 to α < 1 rapidly, slowing
its decrease down in higher temperatures. Thus, we find
it possible to obtain superlinear scaling for lower mag-
netic field strengths only for lower temperatures. For the
classical peak scaling, we see that scaling starts super-
linear and converges to linear with increasing tempera-
ture. Thus, we conclude that genuine superlinear scaling
from a quantum heat engine with a 1D chain quantum
Ising spin glass, specifically the simplest spin-glass model
known as the Edwards-Anderson model in a transverse
field, is achievable for lower temperatures.

For the quantum refrigerator, we encounter a shoulder
and following a peak structure with the shoulder dissolv-
ing and the second peak widening with increased tem-
perature. This peak also behaves independently of the
quantum critical point and the Griffiths phases; however,
unlike the classical peak in the quantum heat engine, its
location converges to a number greater than one in higher
temperatures. Additionally, this peak exhibits genuine
superlinear scaling even at higher temperatures, with α
converging to a constant value greater than 1 as the tem-
perature increases.

Hence, we conclude that it is possible to obtain gen-
uine superlinear scaling from a quantum refrigerator with
a 1D quantum spin-glass model in a transverse field for
both lower and higher temperatures, significantly sur-
passing the results of the pure Ising model, i.e., without
randomly distributed disorder, [22].

Our study is the first to utilize quantum spin glasses as
a fuel source in quantum heat engines, where we observed
phase transitions through work output and obtained su-
perlinear scaling at the critical point. The engine effi-
ciency proved to be higher than that of trivial spin sys-
tems, with even greater performance in the refrigerator
regime. These findings are not only groundbreaking in
the fields of quantum thermodynamics and heat engines,
but they also contribute to a deeper understanding of the
nature of spin glasses, providing new insights for future
research.
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Appendix A: The Bogoliubov Transform

As the Hamiltonian matrix grows exponentially with
the system size, we use a special diagonalization method
called the Bogoliubov Transform to find another related
matrix that is linear in system size [31]. First, we must
apply the Jordan-Wigner Transform to our Pauli matri-
ces to convert them into free fermions. We will follow
[31] and [46] in this process.

The Pauli matrices transform as follows,

σx
j =

[
Πj

i=1(c
†
i + ci)(c

†
i − ci)

]
(c†j + cj) (A1)

σy
j = i

[
Πj

i=1(c
†
i + ci)(c

†
i − ci)

]
(c†j − cj) (A2)

σz
j = 1− 2c†jcj (A3)

Then, the spin coupling terms σx
i σ

x
i+1 becomes,

σx
i σ

x
i+1 = c†i c

†
i+1 + c†i ci+1 + h.c. (A4)

which can be verified using 1− 2c†i ci = (c†i + ci)(c
†
i − ci),

(1 − 2c†i ci)
2 = 1 and the commutation-anticommutation

relationships.
Equipped with the Jordan-Wigner Transform, we write

our Hamiltonian,

H = −
N∑
i=1

Ji(a
†
iai+1 + a†ia

†
i+1 + h.c.) + h

N∑
i=1

(2a†iai − 1)

(A5)

as H = a†Ha where a is a 2N dimensional
column-vector a = (a1, ..., aN , a†1, ..., a

†
N )T and a† =

(a†1, ..., a
†
N , a1, ..., aN ). Then, we can write H in block

matrix form,

H =

(
A B

−B∗ −A∗

)
(A6)

As we’re dealing with an Ising model, we can take the
N×N size matrices A and B real. Here, the imposed pe-
riodic boundary conditions on our initial spins may trans-
late both as antiperiodic and periodic boundary condi-
tions (ABC and PBC) to our free fermions according to
fermion parity. As the ground state of our model is in
the ABC sector, we continue with ABC [46]. However,
we also note that numerical simulations both with PBC-
and ABC-imposed Bogoliubov matrices gave nearly in-
distinguishable results, which can be attributed to the
0-mean and low-variance Gaussian distribution of Ji
Then, by simple algebra, we get,

Ai,i = h,Ai,i+1 = Ai+1,i = −Ji/2 (A7)

Bi,i+1 = −Bi+1,i = −Ji/2 (A8)

for i ≤ N and i = N + 1 ≡ 1.
To obtain the eigenvectors and eigenvalues of H, we

must solve the equation,(
A B
−B −A

)(
uµ

vµ

)
= ϵµ

(
uµ

vµ

)
(A9)

When we organize the eigenvectors uµ and vµ into a
block matrix U such that U†HU = diag(ϵµ,−ϵµ), we get,

U =

(
u1 ... uN v1 ... vN

v1 ... vN u1 ... uN

)
(A10)

Now, with the aid of matrix U, we can define new
fermionic operators bi through a unitary transformation
on ai,

b = U†a (A11)

Now, one can check that operators bi diagonalize our
initial Hamiltonian H,

H =

N∑
i=1

2ϵi(b
†
i bi −

1

2
) (A12)

Thus, we achieve diagonalization using the Bogoliubov
transform.

Appendix B: Calculating Hamiltonian Expectation
Values

To calculate the expectation value of our Hamiltonian
at some state A, two pieces of information are required
[37]:

• First, we need the energy levels Ej of the Hamil-
tonian. Through the Bogoliubov transform, these
are equivalent to ϵj .

• Second, we need the probability distribution that
the system follows. As our model is a fermionic
model, the system will follow a Fermi-Dirac distri-
bution, modeled by the function:

f(E, T ) = (eE/T + 1)−1 (B1)

where T is the temperature of the system while E
denotes the energy eigenvalue of a specific state.

Note that during adiabatic strokes, the probability dis-
tribution of the system is invariant while the energy lev-
els change. On the contrary, during thermalization, the
energy levels are invariant while the probability distribu-
tion changes. While finding the energy difference of the
system before and after thermalization, then, we must
use the same energy eigenvalues but different probability
distributions. For example, denote the energy levels of
the Hamiltonian at h(t) = hi with ϵi while denoting the
energy levels at h(t) = hf with Ei. Then, if we want to
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calculate the energy difference of the system before and
after thermalization with the hot bath at h(t) = hf , we
get,

∆⟨H⟩ =
∑
i

Ei(f(Ei, Th)− f(ϵi, Tc)) (B2)

In our study, we use the Bogoliubov eigenvalues to study
the relevant thermodynamic quantities following [22], as
the general behavior of the thermodynamic quantities. is
similar to the real calculations using actual eigenenergies.
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