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Abstract

Recently, User-Generated Content (UGC) videos have gained popularity in our daily lives. However,
UGC videos often suffer from poor exposure due to the limitations of photographic equipment and
techniques. Therefore, Video Exposure Correction (VEC) algorithms have been proposed, Low-Light
Video Enhancement (LLVE) and Over-Exposed Video Recovery (OEVR) included. Equally important
to the VEC is the Video Quality Assessment (VQA). Unfortunately, almost all existing VQA models
are built generally, measuring the quality of a video from a comprehensive perspective. As a result,
Light-VQA, trained on LLVE-QA, is proposed for assessing LLVE. We extend the work of Light-VQA
by expanding the LLVE-QA dataset into Video Exposure Correction Quality Assessment (VEC-
QA) dataset with over-exposed videos and their corresponding corrected versions. In addition, we
propose Light-VQA+, a VQA model specialized in assessing VEC. Light-VQA+ differs from Light-
VQA mainly from the usage of the CLIP model and the vision-language guidance during the feature
extraction, followed by a new module referring to the Human Visual System (HVS) for more accurate
assessment. Extensive experimental results show that our model achieves the best performance against
the current State-Of-The-Art (SOTA) VQA models on the VEC-QA dataset and other public datasets.
Our code and dataset can be found at https://github.com/SaMMyCHoo/Light-VQA-plus.

Keywords: Exposure Correction, Video Quality Assessment, Vision-Language Guidance, Human Visual
System

1 Introduction

Compared to the widely spreading texts and
images, videos are generally more entertaining and
informative. However, due to the influence of pho-
tographic devices and skills, the quality of UGC
videos often varies greatly. It is frustrating that

the precious and memorable moment is degraded
by photographic limitations (e.g. over- and under-
exposure, low frame-rate, low resolution, etc.).

To address the problems mentioned above,
specific video enhancement algorithms have been
proposed. There are algorithms designed for super
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Table 1: Which video enjoys the best visual perceptual quality in the listed examples? The below 12
figures are the representative frames of 12 corrected videos obtained by applying different correction
algorithms to corresponding original over-exposed and low-light videos. The concrete algorithms are listed
below the figures. Then we use 5 SOTA VQA models (Simple-VQA [1], FAST-VQA [2], Max-VQA [3],
Q-Align [4], Light-VQA [5]) and the proposed Light-VQA+ to predict the quality of these videos. The
Ground-Truth (GT) perceptual quality of enhanced videos, are obtained through a subjective experiment.
It is evident that the results of Light-VQA+ are highly consistent with human perception as compared
to others. [Key: video with the best perceptual quality given by models or GT]

Over-Exposed-Recovered Videos Low-Light-Enhanced Videos

(I)

DIEREC [6]

(II)

LMSPEC [7]

(III)

ECMEIQ [8]

(I)

AGCCPF [9]

(II)

MBLLEN [10]

(III)

DCC-Net [11]

Ground-truth I II III Ground-truth I II III Ground-truth I II III Ground-truth I II III

Simple-VQA [1] ✔ Q-Align [4] ✔ Simple-VQA [1] ✔ Q-Align [4] ✔

Fast-VQA [2] ✔ Light-VQA[5] ✔ Fast-VQA [2] ✔ Light-VQA[5] ✔

Max-VQA [3] ✔ Light-VQA+ ✔ Max-VQA [3] ✔ Light-VQA+ ✔

(I)

LECVCM [12]

(II)

Cap-Cut [13]

(III)

PSE-Net [14]

(I)

GHE [15]

(II)

SGZSL [16]

(III)

StableLLVE [17]

Ground-truth I II III Ground-truth I II III Ground-truth I II III Ground-truth I II III

Simple-VQA [1] ✔ Q-Align [4] ✔ Simple-VQA [1] ✔ Q-Align [4] ✔

Fast-VQA [2] ✔ Light-VQA[5] ✔ Fast-VQA [2] ✔ Light-VQA[5] ✔

Max-VQA [3] ✔ Light-VQA+ ✔ Max-VQA [3] ✔ Light-VQA+ ✔

resolution videos [18–22], for frame interpola-
tion [23, 24], for optical flow [25], and for expo-
sure [26]. In this paper, we focus on the qual-
ity assessment of expsure-correction, which are
mainly composed of low-light videos and over-
exposed videos, along with the corrected versions.
Low-light videos are often captured in the low-
or back-lighting environments, while over-exposed
videos are often captured in direct sunlight envi-
ronments. These degraded videos usually suffer
from significant degradations such as low visibil-
ity and noises, thus will challenge many computer
vision downstream tasks such as object detec-
tion [27], semantic segmentation [28], etc., which
are usually resorted to the videos with good
quality.

Therefore, many VEC algorithms have been
developed to improve the visual quality of such
damaged videos. One straightforward way is to

split the video into frames, and then apply
the Low-Light Image Enhancement (LLIE) and
Over-Exposed Image Recovery (OEIR) algorithms
to process each frame of this video. Repre-
sentative traditional algorithms as such include
ACE [29], AGCCPF [9], GHE [15], IAGC [30], and
BPHEME [31]. There are also some deep-learning-
based algorithms that focus on images. For LLIE,
there are MBLLEN [10], SGZSL [16], and DCC-
Net [11]. As for OEIR, there are DIEREC [6],
LMSPEC [7], LECVCM [12], LCDP-Net [32],
ECMEIQ [8], as well as PSE-Net [14]. While
some of these algorithms are capable of correct-
ing videos well, due to the lack of consideration
in the consistency of neighboring frames in a
video, some of LLIE algorithms will lead to tem-
poral instability. To address this issue, some LLVE
algorithms that take temporal consistency into
account are proposed, such as MBLLVEN [10],
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SDSD [33], SMID [34], and StableLLVE [17]. In
contrast, there are no existing OEVR algorithms
available in the literature. One possible reason is
that the temporal inconsistency when processing
the videos with OEIR is not as severe as that
of LLIE. Therefore, the OEVR task is still com-
monly addressed by OEIR algorithms. To reduce
the impact of lack of OEVR algorithms when
collecting our VEC-QA dataset, a commercial
software named CapCut [13] is also used to recover
over-exposed videos.

All algorithms need a metric for improve-
ment, where the quality assessment methods [35–
43] play an important role. For VQA, there are
mainly two branches: subjective VQA and objec-
tive ones. Subjective VQA is to assess the video
by human, which is naturally more expensive and
time-consuming. Objective VQA can be divided
into Full-Reference (FR) VQA [44], Reduced-
Reference (RR) VQA [45] and No-Reference (NR)
VQA [46] contingent on the amount of required
pristine video information. Due to the difficulty
in obtaining reference videos, NR-VQA enjoys
the most attention from researchers. In the early
development stages of NR-VQA, researchers often
evaluate video quality based on handcrafted fea-
tures, such as structure, texture, and statistical
features. Recently, owing to the potential in prac-
tical applications, deep-learning-based NR-VQA
models with multimodal large language models
have progressively dominated the VQA field. How-
ever, most existing VQA models are designed for
general purposes instead of exposure correction.
Few models specifically evaluate the quality of
videos correcteds by VEC algorithms, which is
possibly due to the lack of corresponding datasets.

As a result, Light-VQA [5], specialized in
LLVE, is proposed. It combines deep-learning-
based features and handcrafted features to
improve the accuracy of the assessment for low-
light videos. To the best of our knowledge, Light-
VQA is the best VQA model for assessing VEC
algorithms. One downside of Light-VQA is the
usage of several traditional feature extractors such
as standard deviation pooling that has the limited
representative ability. Besides, it also fails to take
the over-exposed videos into consideration, which
is also of vital importance.

Therefore, in this paper, we elaborately build
the Video Exposure Correction Quality Assess-
ment (VEC-QA) dataset to facilitate the work
on evaluating the performance of VEC algorithms
by expanding the LLVE-QA dataset [5]. Different
from general datasets which commonly consist of
original UGC videos with various degradations,
VEC-QA dataset contains 254 original low-light
videos and 1,806 enhanced videos from represen-
tative enhancement algorithms, and 205 original
over-exposed videos and 2,253 recovered videos
from representative recovery algorithms, each with
a corresponding Mean Opinion Score (MOS).

Subsequently, we propose a quality assessment
model for inproper-exposed video enhancement
based on Light-VQA, named Light-VQA+,
whose capability is demonstrated in Table 1.
Since brightness and noise have the most signifi-
cant impact on VEC-VQA, we specifically extract
features related to brightness, noise, and bright-
ness consistency to enhance the model’s capa-
bilities. While Light-VQA utilizes the traditional
handcrafted algorithms to extract such feartures,
Light-VQA+ borrows the strength of Multimodal
Large Language Models (MLLM) [47], leading to
a more accurate and efficient way for extracting
such features. Besides, we still need the seman-
tic features and motion features extracted from
deep neural network when evaluating the quality
of a video. The features mentioned above can be
categorized into two aspects: spatial and tempo-
ral ones. To fuse these features, a cross-attention
module [48] is deployed to combine the infor-
mation from different sources. Also, it is worth
noting that when a human watches a video, he/she
does not focus evenly on the entire video. Spe-
cific video clips would receive more attention than
others, which follows the Human Visual System
(HVS) [49]. To better imitate the HVS, a train-
able attention weights is then introduced when
obtaining the final quality score of a video. Exten-
sive experiments validate the effectiveness of our
network design.

The contributions of this paper can be sum-
marized as follows:

1. After applying advanced VEC algorithms on a
collection of over-exposed videos that feature
diverse content and varying brightness levels,
we undertake a subjective experiment to con-
struct the OEVR-QA dataset. By adding it
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to the LLVE-QA dataset, we obtain a dataset
specialized in VEC, named VEC-QA.

2. Benefiting from the developed dataset, we
propose a Light-VQA-based quality assess-
ment model: Light-VQA+, which extracts
brightness and noise features through CLIP
with vision-language guidances provided by
delicately designed prompts. Then it com-
bines spatial-temporal information via cross-
attention, followed with a quality regression to
obtain the quality score for each video clip.
Finally, a set of trainable weights are employed
on all video clips to obtain the final score,
making the assessment align with the HVS.

3. The proposed Light-VQA+ surpasses Light-
VQA on VEC-QA dataset as well as other
public datasets. We envision that Light-VQA+
holds significant promise as a pivotal metric for
the assessment as well as the development of
VEC algorithms.

2 Related Work

2.1 Video Exposure Correction

To correct the exposure of the improper exposed
videos, one straightforward way is to split the
video into frames, so as to take advantage of
existing algorithms capable of correcting the expo-
sure of images. ACE [29] utilizes local adaptive
filtering to achieve image brightness, color, and
contrast adjustments with local and nonlinear fea-
tures while satisfies both the gray world theory
and the white patch hypothesis. AGCCPF [9]
enhances the brightness and contrast of images
using the gamma correction and weighted prob-
ability distribution of pixels. GHE [15] applies
a transformation on image histogram to redis-
tribute the pixel intensity, resulting in a more
favorable visual result. BPHEME [31] corrects the
improper-exposed video by balancing the bright-
ness preserving histogram with maximum entropy.
IAGC [30] employs advanced adaptive gamma
correction for contrast enhancement in brightness-
compromised images.

In addition to traditional methods, deep-
learning-based exposure-correction algorithms are
developing rapidly. DIEREC [6] introduces an
automatic method capable of enhancing images
under varied exposure conditions with notable

quality. LMSPEC [7] advances a coarse-to-fine
DNN approach for correcting exposure inac-
curacies. LECVCM [12] employs a deep fea-
ture matching loss within its model, facilitating
exposure-invariant feature learning for consistent
image exposure. LCDP-Net [32] features a dual-
illumination learning strategy to address exposure
disparities. ECMEIQ [8] presents an end-to-end
model designed to correct both under- and over-
exposure through a structure that comprises an
image encoder, consecutive residual blocks, and
an image decoder. PSE-Net [14] introduces an
unsupervised enhancement framework, effective
across different lighting scenarios without neces-
sitating the well-exposed images for ground-truth
comparison. Zhang et al. [11] propose a consis-
tent network to improve illumination and preserve
color consistency of low-light images.

However, applying image exposure correction
algorithms directly to videos sometimes lead to
temporal consistency problems such as motion
artifacts and brightness consistency, which will
ultimately reduce the quality of videos. There-
fore, in order to maintain the temporal consistency
of videos, specific LLVE algorithms are proposed.
MBLLVEN [10] processes low-light videos via 3D
convolution to extract temporal information and
preserve temporal consistency. Wang et al. [33]
collect a new dataset that contains high-quality
spatially-aligned video pairs in both low-light and
normal-light conditions, and further design a self-
supervised network to reduce noises and enhance
the illumination based on the Retinex theory.
Chen et al. [34] propose a siamese network and
introduce a self-consistency loss to preserve color
while suppressing spatial and temporal artifacts
efficiently. StableLLVE [17] maintains the tem-
poral consistency after enhancement by learning
and inferring motion field (i.e., optical flow) from
the synthesized short-range video sequences. In
order to build our VEC-QA dataset, both image-
and video-based exposure-correction algorithms
are leveraged to increase the performance diversity
of intra-frame and inter-frame exposure recovery.

2.2 VQA Datasets

With the purpose of facilitating the development
of VQA algorithms, many VQA datasets have
been proposed. Videos in LIVE-Qualcomm [50]
contain the following 6 distortion types: color,
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Table 2: Comprison of Existing VQA Dataset

Dataset Source Number Length Resulution Specialized in VEC

Live-Qualcomm [50] mobile devices 208 15s 1080p ✘

Live-VQC [51] 43 device models 585 10s Varies from 240p to 1080p ✘

UGC-VIDEO [52] TikTok 50 10s 720p ✘

LIVE-WC [53] Live-VQC 3,740 10s Varies from 360p to 1080p ✘

KoNVID-1K [54] YFCC100m [55] 1,200 8s 540p ✘

Youtube-UGC [56] https://youtube.com 1,500 20s Varies from 240p to 4k ✘

VDPVE [57] Other Datasets 1,211 8-10s 720p, 1080p ✘

VEC-QA Internet & Other Datasets 4,518 8-10s 720p ✔

exposure, focus, artifacts, sharpness, and sta-
bilization. LIVE-VQC [51] contains 585 videos,
which are captured by various cameras with dif-
ferent resolutions. In addition to the common dis-
tortions, the visual quality of UGC videos is influ-
enced by compression generated when uploading
to and downloading from the Internet. UGC-
VIDEO [52] and LIVE-WC [53] simulate the
specific distortion by utilizing several video com-
pression algorithms. KoNViD-1k [54], YouTube-
UGC [56], and LSVQ [58] extensively collect in-
the-wild UGC videos from the Internet, greatly
expanding the scale of VQA datasets. Besides,
VDPVE [57] is constructed to fill in the gaps of
VQA datasets specially for video enhancement,
which can further promote the refined develop-
ment of VQA models. However, most of existing
datasets only contain unprocessed UGC videos
with various distortions. While VDPVE takes
enhanced videos into account, it is still general
and not targeted. LLVE-QA [5] is a VQA dataset
specialized in low-light video enhancement. How-
ever, LLVE-QA fails to take the over-exposed
video recovery into consideration. Our VEC-QA
dataset focus on videos with original poor expo-
sure and their corrected versions, establishing a
strong foundation for developing the specialized
VQA models for exposure correction. The details
of these datasets can be found in Tab. 2.

2.3 CLIP Model

CLIP [47] (Contrastive Language-Image Pre-
Training) is a neural network trained on a vari-
ety of image-text pairs. Given an image, CLIP
can predict the most relevant text snippet with

the instruction from natural language without
directly optimizing for the task, similarly to the
zero-shot capabilities of GPT-2 and 3 [59, 60].
Its simplicity and effectiveness are demonstrated
through impressive outcomes in zero-shot text-
image retrieval, classification, text-to-image gen-
eration guidance, open-domain detection, segmen-
tation, and of course, quality assessment. CLIP-
IQA [61], as well as BIQA [62], have proven the
effectness of CLIP in assessing the quality of a
certain image with delicately designed prompts. It
can be seen that the strength of CLIP could also
be utilized in evaluating the quality of videos.

2.4 NR-VQA Models

The traditional and naive NR-VQA [46] models
are based on handcrafted features. These hand-
crafted features, including spatial features, tem-
poral features, statistical features, etc., can be
extracted to learn the quality scores of videos.
For example, V-BLIINDS [63] builds a Natural
Scene Statistics (NSS) module to extract spatial-
temporal features and a motion module to quan-
tify motion coherency. The core of TLVQM [64]
is to generate video features in two levels, where
low complexity features are extracted from the full
sequence first, and then high complexity features
are extracted in key frames which are selected by
utilizing low complexity features. VIDEVAL [65]
combines existing VQA methods together and
proposes a feature selection strategy, which can
choose appropriate features and then fuse them
efficiently to predict the quality scores of videos.

With the rapid pace of technological advance-
ments, VQA models based on deep learning have

5
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Original ACE [29] AGCCPF [9] Original ACE [29] AGCCPF [9]

BPHEME [31] Cap-Cut [13] DIEREC [6] BPHEME [31] Cap-Cut [13] DIEREC [6]

LMSPEC [7] LECVCM [12] IAGC [30] LMSPEC [7] LECVCM [12] IAGC [30]

LCDP-Net [32] ECMEIQ [8] PSE-Net [14] LCDP-Net [32] ECMEIQ [8] PSE-Net [14]

Fig. 1: Representative frames of two original over-exposed videos and their corresponding recovered
videos.

progressively emerged as the prevailing trend. For
example, based on a pre-trained DNN model and
Gated Recurrent Units (GRUs), VSFA [66] reflects
the temporal connection between the semantic
features of key frames well. BVQA [67] and
Simple-VQA [1] further introduce motion features
extracted by the pre-trained 3D CNN models.
Wang et al. [68] propose a DNN-based frame-
work to measure the quality of UGC videos
from three aspects: video content, technical qual-
ity, and compression level. FAST-VQA [2] cre-
atively introduces a Grid Mini-patch Sampling
to generate fragments, and utilizes a model
with Swin-Transformer [69] as the backbone to
extract features efficiently from these fragments.
RAPIQUE [70] leverages quality-aware statistical
features and semantics-aware convolutional fea-
tures, which first attempts to combine handcrafted
and deep-learning-based features.

Lately, Multimodal Large Language Models
(MLLM) have gained researchers’ attention for
their incredible performance in multimodal learn-
ing. MaxVQA [3] combines CLIP, DOVER [71],
and Fast-VQA to extract features from the input
videos, making the process of VQA explainable.
Q-Align [4] borrows the strength of LLaVA [72–
74] as well as LoRA [75] to evaluate the quality of

all image and video related contents. With well-
designed prompts and powerful inference abilities,
Q-Align outperforms many deep-learning-based
methods in many downstream tasks.

While prior VQA models are designed for gen-
eral UGC videos without exception, our model
focuses on VEC quality assessment exclusively. We
also utilize the multimodal large laguage model
CLIP to enhance the assessment accuracy, stabil-
ity and interpretability of our model.

3 DATASET
PREPARATION

3.1 Video Collection

LLVE-QA [5] has already constructed a well-
equipped dataset to assess LLVE. However, in
the field of over-exposure recovery, as opposite to
low-light enhancement, there is no such dataset
functioning in assessing the quality of recov-
ered over-exposed videos. To fill in the gap, we
additionally gather 205 such videos from diverse
sources including KoNVID-1K [54], VDPVE [57],
YouTube-UGC [56], LIVE-VQC [51] dataset, and
UGC-video websites including https://youtube.
com and https://vimeo.com. These selected videos
feature a wide range of content and brightness

6

https://youtube.com
https://youtube.com
https://vimeo.com


Algorithm 1 Video Quality Assessment Process

Grading Scale:
The scale is centesimal with video quality divided into five categories: Very Poor (0-20), Poor (20-40),
Average (40-60), Good (60-80), Excellent (80-100).
Key Grading Factors:
Primary factors are Video Brightness and Stability of Brightness. Secondary factor is Presence of Visual
Noise.
Assessment Process:
1. Determine initial category from the five based on whether overall brightness affects viewing.
2. Adjust category based on brightness stability:

• Minor flickering results in a downgrading by 2-3 categories from the initial grade.
• Severe flickering results in categorizing as Very Poor (0-20) directly.

3. Adjustments based on visual noise:
• Severe distortion: Directly categorized as Very Poor (0-20).
• Significant noise distortion: Downgrade by 1-2 categories from the initial grade.
• Minor noise distortion: Score in the lower half range of the initial category.
• No distortion: Score in the upper half range of the initial category.

levels. To recover the exposure of these videos,
we apply 10 different over exposure recovery
algorithms on the collected videos: ACE [29],
AGCCPF [9], BPHEME [31], DIEREC [6],
LMSPEC [7], LECVCM [12], IAGC [30], LCDP-
Net [32], ECMEIQ [8], PSE-Net [14], and the
commercial software CapCut [13]. This process
yields 2,253 enhanced videos. Along with the
original 205 over-exposed videos, we form the
Over-Exposure Video Recovery Quality Assess-
ment (OEVR-QA) dataset, which is constructed
symmetrically to LLVE-QA [5]. By integrating
OEVR-QA with LLVE-QA, we form the com-
prehensive Video Exposure Correction Quality
Assessment (VEC-QA) dataset, which is of signif-
icance for developing well-performed VQA models
for exposure correction. To the best of our knowl-
edge, VEC-QA is the first dataset in this kind that
aims explicitly at assessing the performance of
VEC algorithms. Representative frames from two
original videos and their corresponding enhanced
versions are illustrated in Fig. 1.

3.2 Subjective Experiment

A high-quality dataset is a prerequisite for a well-
performed model. To collect accurate annotations
of the VEC-QA, we invite 21 experienced data
labeling evaluators for a subjective experiment.
Participants are tasked with rating video qual-
ity on a scale from 0 to 100, where a higher
score indicates better quality. To ensure evaluators

Fig. 2: The scoring interface during the subjective
experiment.

focus on perceptual quality rather than content,
we guild the evaluators with a custom scoring
process, details of which are shown in Algorithm
1. Participants are first required to evaluate the
original video and then assess its corrected coun-
terparts placed aside in a random order. Using
this random order rather than a fixed one can
more accurately reflect the perceptual differences
attributed to exposure correction in the subjective
experiment. To achieve this, we have developed a
customized scoring interface shown in Fig. 2.

After conducting the subjective experiment,
we gathered a total of 51,660 scores, calculated as
21 × 205 × 12. To mitigate subjective discrepan-
cies between the LLVE-QA dataset and our newly
collected OEVR-QA dataset, we applied a linear

7
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Fig. 3: Framework of Light-VQA+. The model contains the spatial and temporal information extraction
module via CLIP [47], the feature fusion module via cross-attention, and the quality regression module
with HVS [49]. Concretely, Spatial Information contains semantic, brightness, and noise features, while
Temporal Information contains motion and brightness consistency features. [Key: SF: Semantic Features;
BNF: Brightness & Noise Features; BCF: Brightness Consistency Features; MF: Motion Features]

transformation to both datasets as follows:

MOS
′

i = 100× MOSi −MOSmin

MOSmax −MOSmin
, (1)

where MOS
′

i , MOSi, MOSmax, and MOSmin

represent the transformed, original, the maximum,
and the minimum Mean Opinion Score (MOS)
respectively. This transformation aims to sym-
metrize the scores of under/over-exposed videos
relative to their brightness levels and reduce the
subjective errors.

4 Proposed Method

Benefiting from the constructed VEC-QA dataset
as well as the success of Light-VQA [5], we further
update the model into Light-VQA+, a multi-
dimensional quality assessment model specialized
in assessing exposure-corrected videos with vision-
language guidance. This enhanced model explores
the ability of multimodal large language models,
whose structure is depicted in Fig. 3. Among the
open MLLMs with the ability of image-text inter-
action, CLIP and LLaVA [72–74] are the top per-
formers to date. LLaVA employs the image-text
pairing capabilities of CLIP, enhanced by integra-
tion with the strengths of LLaMA [76] in language

processing. However, its capacity for image pro-
cessing remains identical to that of CLIP. Given
that our model does not require natural lan-
guage generation, we choose to directly employ
CLIP instead of LLaVA to conserve computa-
tional resources. At the beginning, we divide the
input video into 8 clips. Then, on each video clip,
with the purpose of assessing them from a more
comprehensive perspective, we extract both the
spatial and temporal information for evaluation.
To be specific, the Spatial Information (SI) is com-
posed of deep-learning-based semantic features
via Swin-Transformer [69] and CLIP [47]-captured
brightness and noise features, while the Temporal
Information (TI) consists of deep-learning-based
motion features via SlowFast Model [77] and
CLIP-captured brightness consistency features.
These extracted features need a fusion procedure
to create a quality-aware representation since they
are generated from different perspectives. To this
end, a cross-attention module [48] is applied to
integrate them, followed by a two Fully-Connected
(FC) layers that is designed for regressing these
fused features into a unified video quality score
for each clip. Last but not least, after obtain-
ing a quality score for each video clip, we assign
these video clips a set of trainable weights that
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Prompts for Brightness:

This is a(an) well-exposed photo. 
Candidates:  underexposed,  slightly-underexposed,

well-exposed, slightly-overexposed,  underexposed 

Prompts for Noise:

This is a photo with little noise. 

Candidates:  no,  little,  considerable, serious,  extreme 

Fig. 4: The prompts utilized for extracting the brightness & noise information in Light-VQA+.

are autonomously learned to be consistent with
HVS [49]. Based on HVS weights, the weighted
average of different video clips is calculated to
predict the final assessment score.

4.1 Spatial Information

Spatial Information (SI) mainly focuses on a cer-
tain video from the intra-frame perspective. Since
the adjacent frames of a video contain plenty of
redundant contents, spatial information shows the
extreme sensitivity to the video resolution and
is not quite relevant to the video frame rate.
Therefore, in order to reduce the computational
complexity, from each video clip, we select one
key frame to calculate the spatial information. In
Light-VQA+, we design two branches to simul-
taneously extract features. Concretely, one is for
deep-learning-based features, which contain rich
semantic information. The features extracted by it
are denoted as SF (Semantic Features). The other
one is for CLIP-captured features, which contain
specifically designed brightness and noise features,
denoted as BNF (Brightness and Noise Features).

Swin-Transformer has achieved more excellent
performance than traditional CNNs. For deep-
learning-based features, we utilize the semantic
information extracted from the last two stages of

the pre-trained Swin-Transformer:

αj = GAP (V F j
i ), j ∈ {1, 2},

SFi = α1 ⊕ α2, i ∈ {1, ..., k}.
(2)

Here for the i-th sampled key frame of a video,
SFi represents the extracted semantic features,
⊕ denotes the concatenation operation, GAP (·)
indicates the Global Average Pooling operation,
V F j

i refers to the feature maps from the i-th key
frame produced by the j-th last stage of the Swin-
Transformer, and αj stands for the features from
post-average pooling.

To provide our model with high-quality vision-
language guidance, based on the designed a set of
prompts, we utilize the pre-trained CLIP model to
extract brightness and noise features. The CLIP
model takes an image and a series of text-prompts,
and then outputs the matching probability of the
image to each prompt. Since the image size of
standard input for CLIP (224× 224) is incompat-
ible with our video size (1, 280× 720), and simply
resizing the frames on such large scale could cause
severe information loss, it is essential to properly
pre-process the size of input images. To this end,
we first resize the image slightly to 1, 120 × 672,
and then slice one input frame into 15 sub-images
to (224× 5)× (224× 3) that fit the input size for
CLIP.
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Equally important is the design of prompts as
vision-language guidance for our model, which is
composed of two branches: brightness and noise.
The training process of CLIP involves millions
of text-image pairs with various textual prompts.
To avoid the inaccuracy caused by using only
single prompt, we design a series of prompts
with progressive descriptions related to the frame
brightness and noise when applying CLIP. To this
end, we design 5 parallel sets of prompts as illus-
trated in Fig. 4. To be specific, the usage of these
prompts is as follows:

• Brightness: This is a(an) <sys hint> photo.
• Noise: This is a photo with <sys hint> noise.

With the assistance of image and text encoder in
CLIP, the probabilities of the image that match
the prompts are obtained via Softmax. In total,
we obtain 10 probabilities from 5 × 2 prompts
and utilize them as the brightness and noise fea-
tures. By concatenating the brightness and noise
features extracted from the 15 (5×3) sub-images,
we obtain a 150-dimensional (15 × 5 × 2) feature
vector:

BNi = BFi ⊕NFi, (3)

where BNi denotes the combined brightness and
noise information of a key frame, with BFi and
NFi specifically representing the brightness and
noise features.

Furthermore, in order to retain more infor-
mation, we also extract the brightness and noise
features on all frames from a video clip and then
average them to obtain two overall features, one
for brightness and the other for noise. By integrat-
ing the features from key frame with those from
entire video clip, our model enables considering
the overall details of the video. The procedure of
extracting the brightness and noise features are
demonstrated in Fig. 5.

The last step is to concatenate the local and
global features together:

BNFi = BNi ⊕BNi, (4)

where BNFi symbolizes the brightness and noise
features for a video clip, while BNi represents the
averaged brightness and noise features across the
entire video clip. The features from key frame and
from entire video clip focus on local and global
video attributes respectively. By combining them,
we enhance the representation of frame bright-
ness and noise. The final spatial information is
formulated as:

SIi = SFi ⊕BNFi, (5)

where SIi indicates the ultimate spatial informa-
tion of the i-th video clip.

4.2 Temporal Information

Temporal Information (TI) mainly evaluates a
video from the perspective of inter-frame. Differ-
ent from SI, TI is extremely susceptible to video
frame-rate variations but not sensitive to resolu-
tion. Note that each video in our VEC-QA dataset
can be uniformly split into 8 clips. Therefore,
in order to preserve adequate temporal informa-
tion while reducing computational complexity, we
extract TI on all the video clips (denoted as
V1−8) separately. Concretely, similar to the extrac-
tion of SI, we design two branches to obtain
deep-learning-based and CLIP-captured features
respectively. One is for Motion Features (MF), and
the other is for Brightness Consistency Features
(BCF), serving as a significant factor of temporal
consistency.

For deep-learning-based features, we employ a
pre-trained Slow-Fast network [77] to extract the
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MF from each video clip:

MFi = ϕ(Vi), (6)

where Vi represents the i-th video clip, ϕ(·)
symbolizes the extraction operation for motion
feature, and MFi denotes the motion features
extracted from the i-th video clip.

To extract the BCF, we still choose to harness
the capabilities of CLIP. Since BCF only concerns
the brightness information, the same brightness-
related prompts shown in Fig. 4 are employed
again as the vision-language guidance:

• Brightness: This is a(an) <sys hint> photo.

To be specific, just as the BNF, we firstly slice
a frame into 15 sub-images with the size of 224×
224. Then we use the brightness prompts to obtain
a 75-dimensional (15 × 5) brightness feature for
each frame. After extracting the features from all
frames in a video clip, we calculate the variance
on each dimension, resulting in a feature with 75
dimensions. We denote this process as BCF (·).

However, utilizing the brightness variance
within video clip to depict brightness consistency
for entire video may not be sufficient. For example,
the brightness change is not severe within a video
clip but prominent between video clips. In such
scenario, the aforementioned method may perform
poorly.

To address this limitation, we implement a
novel 4-level view strategy that focuses more
comprehensively on the entire video rather than
isolated video clips. We suppose the video con-
tains 8n frames and employ a systematic approach
to break down and reassemble the video into
various “sub-videos” across different levels. For
each level l, the video is divided into 2l−1 parts,
with each part generating 24−l “sub-videos”. Each
“sub-video” captures frames with a stride of 24−L,
starting from the frame index k:

V p
l,k = {V Fk+24−l·(t+pn)}, (7)

where l is the level index (1 to 4), k ∈
{1, 2, ..., 24−l}, t ∈ {0, 1, ..., n − 1}, and p ∈
{0, 1, ..., 2l−1 − 1}. V Fx denotes the x-th frame of
the entire video.

• Level 1 (Lv1): The video is not divided, and 8
“sub-videos” are created by sampling every 8
frames.

• Level 2 (Lv2): The video is split into 2 parts,
with each part generating 4 “sub-videos” by
sampling every 4 frames.

• Level 3 (Lv3): The video is divided into 4
quarters, with each quarter generating 2 “sub-
videos” by sampling every 2 frames.

• Level 4 (Lv4): The video is divided into 8
segments, with each segment generating a “sub-
video” by sampling every frame. Note that in
this level, the “sub-videos” are equal to video
clips.

In each video segment, we calculate the bright-
ness consistency of “sub-videos” in it and average
the variances of them to obtain the features that
describe the overall video’s brightness consistency
at different levels of granularity:

BCFl,p = Mean(BCF (V p
l,k)), (8)

where BCFl,p denotes the feature of the p-th video
segment from Level l, and Mean(·) denotes the
mean of values corresponding to all instances of
k. The symbol BCF (·) refers to the method for
extracting a 75-dimensional feature via CLIP that
quantifies the consistency of brightness in a video.

Now we have already generated 15 features
(1 + 2 + 4 + 8), each focusing on different seg-
ments of the entire video. The final BCF for a
certain video clip is composed of features from
4 levels. For every level, since there is only one
feature that contains the information of current
video clip, we only need to select this particular
feature that fully covers the video clip. For exam-
ple, when evaluating the 3-rd video clip, we choose
the only feature in Lv1, the first feature in Lv2
since it covers the 3-rd video, the second feature
in Lv3 for the same reason, and the third feature
in Lv4 that is extracted from the 3-rd video, as
shown in Fig. 5. This multi-level method enhances
the extraction of brightness consistency informa-
tion, providing a more detailed and comprehensive
analysis. The final brightness consistency of the
given video clip is extracted by concatenating the
chosen 4 features:

BCF i = BCF1 ⊕BCF2 ⊕BCF3 ⊕BCF4, (9)

where the final brightness consistency feature is
denoted as BCF i, and the chosen Lvj brightness
consistency feature is represented by BCLj . Fig.
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5 is an illustration for the aforementioned process.
With this novel process, our model can evaluate
the video from dynamic perspectives at different
levels, and eventually provide a more thorough
assessment. The final temporal information is
formulated as:

TIi = MFi ⊕BCFi, (10)

where TIi indicates the temporal information of
the i-th video clip.

4.3 Feature Fusion Module

After acquiring both SI and TI, it becomes impor-
tant to fuse them to achieve a more comprehen-
sive representation of features, given that they
originate from different perspectives. The cross-
attention module [48], known for its effectiveness
in integrating features from disparate sources,
plays an important role in many tasks, such as
in Stable Diffusion [78]. Consequently, in this
paper, we employ the cross-attention module as
our fusion module to incorporate the SI with TI
effectively. We first normalize the dimensions of
the SI and TI by two linear layers, denoted as
A and B, respectively. Following this, we apply
a multi-head cross-attention module, denoted as
C. Specifically, the fusion process is conducted in
two steps to underscore the equal importance of
both SI and TI. In the first step, we treat the
normalized SI as both keys and values, with the
normalized TI serving as the query. In the second
step, we reverse these roles: the normalized TI is
used as keys and values, while the normalized SI
functions as the query. This symmetrical approach
allows us to derive two distinct features, empha-
sizing the balanced integration of both types of
information. Subsequently, we concatenate these
two features and apply an additional linear layer,
denoted as F , to produce the final fused feature.
The overall feature fusion module are represented
as follows:

SI
′

i = A(SIi), T I
′

i = B(TIi), (11)

FFi = F(C(SI
′

i , T I
′

i)⊕ C(TI
′

i , SI
′

i)), (12)

where A, B, and F represent different linear lay-
ers, C represents the multi-head cross-attention
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Fig. 6: The HVS weights under different models.

module, and SI
′

i , TI
′

i , and FFi represent the nor-
malized SI, TI, and the fused feature for the i-th
video clip, respectively.

4.4 Quality Regression

Subsequently, we employ two Fully Connected
(FC) layers to regress the fused feature (FFi) into
the video quality score:

Qi = FC(FFi), (13)

where Qi denotes the quality score for the i-th
video clip. Upon calculating the quality scores
for each of the video clips, we introduce eight
trainable parameters into our model to perform a
weighted average calculation of these scores. These
parameters allow the model to learn the relative
importance of each video clip in determining the
overall video quality, thus allocating more weight
to those clips that have a greater impact.

The final score is derived using the following
weighted average:

Q =

k∑
i=1

wi ×Qi

k∑
i=1

wi

, (14)

where Q represents the overall quality score of the
video, and wi denotes the weight assigned to the
i-th video clip’s quality score.

To evaluate the effectiveness of this method,
we conducted a series of experiments. Initially,
identical HVS weights are assigned to all eight
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Fig. 7: Distributions of MOS, brightness,
contrast, and colorfulness over the original
under/over-exposed videos as well as correspond-
ing exposure corrected videos in our VEC-QA
dataset.

video clips. This method was then applied across
various models, and we tracked the convergence
of their parameters. The results demonstrate that,
irrespective of the model used, the final HVS
weights tend to be similar, as depicted in Figure
6. These results are consistent with the HVS
that human perception usually pays more atten-
tion to the beginning of a video, confirming the
effectiveness of our method.

4.5 Loss Function

Our training loss function comprises two com-
ponents: the Mean Absolute Error (MAE) loss
(Lmae) and the rank loss (Lrk) [79]. The MAE
loss, a common metric in various deep learning
applications, is defined as:

Lmae =
1

N

N∑
m=1

|Qm − Q̂m|, (15)

whereQm, Q̂m represent the ground-truth and the
predicted MOS of the m-th video within a batch,
and N denotes the batch size.

The rank loss is particularly useful for learning
the relative quality among videos, aligning with

our goal to evaluate the performance of different
VEC algorithms. It is calculated as follows:

Lrk =
1

N2

N∑
m=1

N∑
n=1

Lm,n, (16)

Lm,n = max(0, |Q̂m − Q̂n| − em,n), (17)

em,n =

{
Qm −Qn, if Q̂m ≥ Q̂n,

Qn −Qm, if Q̂m < Q̂n,
(18)

where m and n represent different videos within
the same training batch.

The overall training loss is then defined by
combining these losses:

L = Lmae + β · Lrk, (19)

where β is a hyper-parameter used to balance the
MAE and rank losses.

5 Experiments

5.1 Data Analysis

In order to measure the perceptual differences
between original and corrected videos, we calcu-
late 4 video attributes: MOS, brightness, contrast,
and colorfulness, which are normalized and shown
in Fig. 7 in the form of violin plots. The MOS
of the over-exposed videos are significantly higher
in general. This is quite reasonable since the
over-exposed videos often have better brightness,
resulting in more favorable visual experience than
low-light ones. Colorfulness is not significantly
changed before and after exposure correction. In
comparison, the contrast and brightness change
greatly, which is in line with visual perception.
Since there is a large amount of redundant infor-
mation between adjacent frames, we only select
a subset of all video frames for processing, i.e.,
choosing one frame from every four continuous
frames. The concrete calculation process is listed
as follows:

(1) Brightness: Given a video frame, we con-
vert it to grayscale and compute the average of
pixel values. Then the brightness result of a video
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is obtained by averaging the brightness of all
selected frames.

(2) Contrast: For a video frame, its contrast is
obtained simply by computing standard deviation
of pixel grayscale intensities. Then we average the
contrast results of all selected frames to get the
contrast of a video.

(3) Colorfulness: We utilize Hasler and
Suesstrunk’s metric [80] to calculate this attribute.
Specifically, given a video frame in RGB format,
we compute rg = R − G and yb = 1

2 (R +
G) − B first, and the colorfulness is calculated

by
√

σ2
rg + σ2

yb +
3
10

√
µ2
rg + µ2

yb, where σ2 and µ

represent the variance and mean values respec-
tively. Finally, we average the colorfulness values
of all selected frames to obtain the colorfulness of
a video.

5.2 Performance Comparisons

To validate the effectiveness of Light-VQA+ on
the constructed VEC-QA dataset, we choose
Light-VQA [5] as our baseline model, and compare
their performance with 6 SOTA VQA models: V-
BLIINDS [63], VIDEVAL [65], Simple-VQA [1],
FAST-VQA [2], MaxVQA [3], and Q-Align [4],
among which MaxVQA applies CLIP [47], and Q-
Align applies LLaVA [72–74] as well as LoRA [75].
We utilize the same training strategy to train all
models on the VEC-QA dataset and ensure their
convergence. To be specific, our training process
is to first train the models on the training data,
then select the model that performs best on the
validation data. At last, the selected model is
tested on the test data. For Q-Align, we apply
its pretrained one-align model and finetune it on
our VEC-QA dataset via LoRA. The numbers
of videos in training dataset, validation dataset,
and test dataset are 3,162, 451, and 905 respec-
tively. The test dataset is composed of 411 videos
from LLVE-QA and 494 videos from OEVR-QA.
The overall experimental results on VEC-QA test
dataset and its LLVE-QA and OEVR-QA subsets
are shown in Tab. 3.

Fig. 8 shows the scatter plots of the predicted
MOS v.s. the ground-truth MOS on VEC-QA
dataset for 7 VQA models. The shown curves are
obtained by a four-order polynomial nonlinear fit-
ting. According to Tab. 3, Light-VQA+ achieves
the best performance in all 7 models and leads
the second best method (i.e., Light-VQA) by a

large margin, which demonstrates its effective-
ness for the perceptual quality assessment of video
exposure correction.

5.3 Cross-Dataset Validation

To evaluate the cross-dataset performance of
the model, we conduct experiments using mixed
subsets of videos with improper exposure from
three sources: VDPVE [57], KoNViD 1k [54], and
Live-VQC [51]. After selecting videos from these
datasets, we combine them and divided them into
three subsets, designated as Mixed-A, Mixed-B,
and Mixed-C from over-exposed, low-light, and
merged perspectives, each containing 600 videos.
We then directly apply models pre-trained on the
VEC-QA dataset to test these new subsets, facili-
tating an efficient assessment process. The overall
experimental results are presented in Tab. 4.

It is important to note that the VEC-QA
dataset is specifically designed to include videos
with improper exposure as well as their corrected
counterparts, making it suitable for training
exposure-related quality assessment models. How-
ever, the test subsets are not originally intended
for this task. This mismatch in dataset design has
led to less effective performance of the quality-
aware representations learned from the VEC-QA
dataset, resulting in a performance decline across
all tested methods. Despite this general downturn,
our proposed Light-VQA+ method still manages
to outperform the other seven VQA methods,
showcasing its robust generalization ability in
assessing the quality of exposure-corrected videos.

5.4 Ablation Studies

In this subsection, we conduct a series of ablation
studies to evaluate the individual contributions of
different modules within Light-VQA+. The results
of these ablation studies are presented in Tab. 5.
Model 1 removes the BNF and BCF extracted
via CLIP, the cross-attention module [48], and
the HVS weights. Based on Model 1, Model 2
utilizes the handcrafted methods to extract the
BNF and BCF. Model 3 utilizes the local features
extracted by CLIP, which are the local BNF in
SI and the Lv4 BCF in TI. Opposing to Model
3, Model 4 exploits the global features (i.e., the
global BNF and the BCF from Lv1 to Lv3). Model
5 removes the cross-attention module and applies
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Table 3: Experimental performance on our constructed VEC dataset along with its sub-
set. Our proposed Light-VQA+ achieves the best performance. “HC”, “DL” and “MLLM” denote
Hand-Crafted-based, Deep-Learning-based and Large-Language-Models-based features respectively. The
handcrafted models are inferior to deep-learning-based models, and deep-learning-based models are
inferior to MLLM-involved models. [Key: Best; Second Best]

VQA Model HC DL MLLM
LLVE-QA OEVR-QA VEC-QA

SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

V-BLIINDS [63] ✔ 0.6414 0.6591 18.5885 0.4553 0.4971 12.5661 0.7413 0.7655 15.5921

VIDEVAL [65] ✔ 0.7624 0.7658 15.2591 0.4499 0.4529 12.0544 0.7865 0.8323 13.6037

Simple-VQA [1] ✔ 0.8955 0.8983 9.3784 0.5771 0.5894 10.2310 0.8608 0.9090 9.9034

FAST-VQA [2] ✔ 0.9130 0.9138 9.0714 0.5440 0.5608 10.5926 0.8574 0.9126 9.9307

MAX-VQA [3] ✔ ✔ 0.9056 0.9084 13.9633 0.3856 0.4565 17.8459 0.8219 0.9007 16.1984

Q-Align [4] ✔ 0.9105 0.9107 8.8343 0.5257 0.5162 11.3640 0.8500 0.9069 10.2925

Light-VQA [5] ✔ ✔ 0.9215 0.9239 8.1662 0.5991 0.6358 9.7752 0.8712 0.9223 9.1832

Light-VQA+ ✔ ✔ 0.9404 0.9393 7.3710 0.7407 0.7661 8.3181 0.9121 0.9449 7.7744

Table 4:Cross-dataset validation on different VQA datasets. Our proposed Light-VQA+ achieves
the best performance. “HC”, “DL” and “MLLM” denote Hand-Crafted-based, Deep-Learning-based and
Large-Language-Models-based features respectively. The handcrafted models are inferior to deep-learning-
based models, and deep-learning-based models are inferior to MLLM-involved models. [Key:Best; Second
Best]

VQA Model HC DL MLLM
Mixed-A Mixed-B Mixed-C

SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

V-BLIINDS [63] ✔ 0.5493 0.5617 15.9107 0.6534 0.6695 15.1749 0.5922 0.5916 19.4193

VIDEVAL [65] ✔ 0.6556 0.6539 14.3835 0.6667 0.6817 15.0229 0.6665 0.6671 16.8866

Simple-VQA [1] ✔ 0.7116 0.7094 12.5252 0.6845 0.7176 13.8639 0.7477 0.7678 12.2789

FAST-VQA [2] ✔ 0.7396 0.6859 14.0843 0.6919 0.6988 15.4489 0.7675 0.7545 13.4308

MAX-VQA [3] ✔ ✔ 0.6824 0.6525 22.0832 0.5466 0.5895 16.8935 0.6075 0.6161 16.2767

Q-Align [4] ✔ 0.7391 0.6797 15.5960 0.6516 0.6639 17.1240 0.8000 0.7882 14.9778

Light-VQA [5] ✔ ✔ 0.7284 0.7286 12.1709 0.6358 0.6836 14.5292 0.7872 0.8091 11.2627

Light-VQA+ ✔ ✔ 0.7435 0.7419 11.9154 0.7328 0.7601 12.9351 0.8016 0.8181 11.0225

a MLP [81] instead, while Model 6 uses a simple
average to replace the parameters that align with
the HVS. The last one, Light-VQA+, is the com-
plete model we propose, in which we fuse all the
spatial and temporal information, and obtain the
best results. Based on the results of the 7 models,
we can analyze the contribution of each modules
in Light-VQA+.

5.4.1 Feature Extraction Module

For Light-VQA+, a significant advancement lies
in the method that extracts the BNF and
BCF. Notably, multimodal large language models

demonstrate the superior performance compared
to traditional methods in assessing video quality.
Model 1 and Model 2 are specifically designed to
evaluate the efficacy of CLIP in capturing features.
To ensure that the test results remain unaffected
by the feature-fusion and regression modules,
we also disabled the cross-attention module and
weight parameters in both Model 1 and Model
2. The results clearly indicate that CLIP signif-
icantly outperforms the traditional methods in
extracting such features from frames. Further-
more, the results of Model 3 and Model 4 validate
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(a) V-BLIINDS [63]
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(b) VIDEVAL [65]
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(c) Simple-VQA [1]
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(d) Fast-VQA [2]
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(e) Max-VQA [3]
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(f) Q-Align [4]
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(g) Light-VQA [5]
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(h) Light-VQA+

Fig. 8: The scatter plots of the predicted scores v.s. the MOS. The curves are obtained by a four-order
polynomial nonlinear fitting. For a model, there are 3 scatter plots, standing for the testing results on
VEC-QA, LLVE-QA, and OEVR-QA respectively. It is evident that the predicted scores of our proposed
VQA bear the closest resemblance to the MOS.

Table 5: Experimental performance of ablation studies on our constructed VEC dataset
along with its subset. [Key: Best; Second Best; HVS-W: HVS weights]

Model BN & BC Fusion HVS-W
LLVE-QA OEVR-QA VEC-QA

SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

1 None MLP ✘ 0.9125 0.9159 8.5649 0.5591 0.5947 10.1813 0.8614 0.9138 9.6487

2 Handcraft MLP ✘ 0.9215 0.9239 8.1662 0.5991 0.6358 9.7752 0.8712 0.9223 9.1832

3 MLLM (Local) MLP ✘ 0.9231 0.9261 8.0513 0.7118 0.7260 8.7087 0.9010 0.9343 8.4690

4 MLLM (Global) MLP ✘ 0.9231 0.9260 8.0588 0.7098 0.7316 8.6338 0.9021 0.7378 0.9350

5 MLLM (Both) MLP ✔ 0.9317 0.9324 7.7131 0.7061 0.7264 8.7039 0.9010 0.9367 8.3187

6 MLLM (Both) Cross-Attn ✘ 0.9290 0.9310 7.7910 0.7215 0.7457 8.4386 0.9056 0.9384 8.2094

Light-VQA+ MLLM (Both) Cross-Attn ✔ 0.9428 0.9450 6.9803 0.7462 0.7772 7.9690 0.9177 0.9480 7.5597

the effectiveness of integrating both local and
global perspectives.

5.4.2 Feature Fusion & Regression
Modules

Extracting features is as crucial as utilizing them
effectively. To this end, verifying the efficacy of the
cross-attention module is essential.
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Table 6: The detailed qualitative compar-
isons of experiments. The videos we test are
the original low-light and over-exposed videos from
VEC-QA corrected by the pre-trained and fine-
tuned FEC-Net models. The scores presented are
the average of the corrected 100 videos assessed by
Light-VQA+. The figures below are the example
frames from the corrected videos. [Key: OE: Over
Exposed; LL: Low Light; Score: OE/LL; Best; Sec-
ond Best]

Video Original Pre-trained Fine-tuned

Score 68.1/46.2 69.6/59.8 74.2/64.0

OE

LL

To this end, Model 5 is crafted to test the
effectiveness of the cross-attention module by
excluding it from the final model. Additionally,
the importance of HVS weights should also be ver-
ified. Thus, Model 6 excludes these HVS weights
during the training process. By comparing the out-
comes from Model 5 and Model 6 with our full
model (i.e., Light-VQA+), it becomes apparent
that both the cross-attention and HVS weights
play significant roles in enhancing the predictive
performance of Light-VQA+.

5.5 Benefits to Exposure Correction
Algorithms

To demonstrate that our Light-VQA+ can serve
as an effective metric for facilitating the develop-
ment of exposure correction algorithms, we utilize
the Light-VQA+ to fine-tune a recent exposure
correction algorithm, FEC-Net [82]. We leverage
the released FEC-Net model that is pre-trained
on SICE dataset, which consists of two subsets
that collect the low-light and over-exposed images
respectively.

Subsequently, the Light-VQA+ is utilized to
fine-tune the FEC-Net. During the fine-tuning
phase, the result of Light-VQA+ is incorporated
as part of the loss function. After training and fine-
tuning, we randomly choose 50 over-exposed and
50 low-light original videos from VEC-QA, and

use the pre-trained and fine-tuned FEC-Net mod-
els to correct them. Finally, we assess the quality
of corrected videos.

As shown in Tab. 6, the pre-trained FEC-
Net model is capable of correcting the improper
exposed videos. With the help of Light-VQA+,
the performance of fine-tuned FEC-Net is further
improved in exposure correction, which justifies
the effectiveness of our quality assessment model.

6 Limitation

Although Light-VQA+ has demonstrated impres-
sive performance on our VEC-QA dataset, there
remains potential for further improvement. It is
important to note that the CLIP is not specifically
designed for VQA tasks. In general, modifying
CLIP through fine-tuning could enhance its effec-
tiveness for this specific application. However, the
lack of suitable datasets for the quality assessment
task hinders us from fine-tuning the CLIP. In the
future, we plan to collect a specific dataset that
can support the CLIP fine-tuning.

7 Conclusion

In this paper, we focus on the issue of evaluating
the quality of VEC algorithms. To facilitate our
work, we construct a VEC-QA dataset containing
4,518 videos that feature diverse content with
various brightness levels. Further, we propose
an effective VQA model named Light-VQA+.
Concretely, we integrates the exposure-sensitive
CLIP-captured features into both spatial and
temporal features. After the feature fusion, we
perform a quality regression to obtain assess-
ment scores for each video clip. Finally, we apply
a weighted average on these results with the
HVS weights to obtain the final quality assess-
ment score. Our experimental results confirm
the effectiveness of Light-VQA+ as a video
quality assessment model for exposure correc-
tion. Besides, the Light-VQA+ is capable of
boosting the performance of video exposure cor-
rection methods. Therefore, we envision that the
Light-VQA+ would be widely considered while
developing them.

Data Availability. The datasets used for exper-
iments during the current study are all publicly
available. The KoNViD-1k is available at https://
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database.mmsp-kn.de/konvid-1k-database.html.
The VDPVE dataset is available at https:
//github.com/YixuanGao98/VDPVE-VQA-
Dataset-for-Perceptual-Video-Enhancement.
The YouTube-UGC dataset is available
at https://media.withyoutube.com/. The
LIVE-VQC is available at https://live.ece.
utexas.edu/research/LIVEVQC/index.html.
The SICE dataset is available at https:
//github.com/KevinJ-Huang/FECNet.

Acknowledgement. The work was supported in
part by the National Natural Science Founda-
tion of China under Grant 62301310, and in part
by the Shanghai Pujiang Program under Grant
22PJ1406800.

References

[1] Sun, W., Min, X., Lu, W., Zhai, G.: A deep
learning based no-reference quality assess-
ment model for ugc videos. In: Proceedings
of the 30th ACM International Conference on
Multimedia, pp. 856–865 (2022)

[2] Wu, H., Chen, C., Hou, J., Liao, L., Wang, A.,
Sun, W., Yan, Q., Lin, W.: FAST-VQA: Effi-
cient End-to-end Video Quality Assessment
with Fragment Sampling (2022)

[3] Wu, H., Zhang, E., Liao, L., Chen, C., Hou,
J., Wang, A., Sun, W., Yan, Q., Lin, W.:
Towards explainable video quality assess-
ment: A database and a language-prompted
approach. In: ACM MM (2023)

[4] Wu, H., Zhang, Z., Zhang, W., Chen, C.,
Liao, L., Li, C., Gao, Y., Wang, A., Zhang, E.,
Sun, W., Yan, Q., Min, X., Zhai, G., Lin, W.:
Q-Align: Teaching LMMs for Visual Scoring
via Discrete Text-Defined Levels (2023)

[5] Dong, Y., Liu, X., Gao, Y., Zhou, X., Tan, T.,
Zhai, G.: Light-VQA: A Multi-Dimensional
Quality Assessment Model for Low-Light
Video Enhancement (2023)

[6] Zhang, Q., Nie, Y., Zheng, W.-S.: Dual Illu-
mination Estimation for Robust Exposure
Correction (2019)

[7] Afifi, M., Derpanis, K.G., Ommer, B., Brown,

M.S.: Learning multi-scale photo exposure
correction. In: 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), pp. 9153–9163 (2021)

[8] Eyiokur, F.I., Yaman, D., Ekenel, H.K.,
Waibel, A.: Exposure Correction Model to
Enhance Image Quality (2022)

[9] Gupta, B., Tiwari, M.: Minimum mean
brightness error contrast enhancement of
color images using adaptive gamma correc-
tion with color preserving framework. Optik
127(4), 1671–1676 (2016)

[10] Lv, F., Lu, F., Wu, J., Lim, C.: Mbllen: Low-
light image/video enhancement using cnns.
In: BMVC, vol. 220, p. 4 (2018). Northumbria
University

[11] Zhang, Z., Zheng, H., Hong, R., Xu, M., Yan,
S., Wang, M.: Deep color consistent network
for low-light image enhancement. In: Pro-
ceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(CVPR), pp. 1899–1908 (2022)

[12] Nsampi, N.E., Hu, Z., Wang, Q.: Learning
exposure correction via consistency modeling.
In: British Machine Vision Conference (2021)

[13] ByteDance: CapCut (2017)

[14] Nguyen, H., Tran, D., Nguyen, K., Nguyen,
R.: PSENet: Progressive Self-Enhancement
Network for Unsupervised Extreme-Light
Image Enhancement (2022)

[15] Somal, S.: Image enhancement using local
and global histogram equalization technique
and their comparison. In: Luhach, A.K.,
Kosa, J.A., Poonia, R.C., Gao, X.-Z., Singh,
D. (eds.) First International Conference on
Sustainable Technologies for Computational
Intelligence, pp. 739–753. Springer, Singapore
(2020)

[16] Zheng, S., Gupta, G.: Semantic-guided
zero-shot learning for low-light image/video
enhancement. In: Proceedings of the
IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pp. 581–590

18

https://database.mmsp-kn.de/konvid-1k-database.html
https://database.mmsp-kn.de/konvid-1k-database.html
https://github.com/YixuanGao98/VDPVE-VQA-Dataset-for-Perceptual-Video-Enhancement
https://github.com/YixuanGao98/VDPVE-VQA-Dataset-for-Perceptual-Video-Enhancement
https://github.com/YixuanGao98/VDPVE-VQA-Dataset-for-Perceptual-Video-Enhancement
https://media.withyoutube.com/
https://live.ece.utexas.edu/research/LIVEVQC/index.html
https://live.ece.utexas.edu/research/LIVEVQC/index.html
https://github.com/KevinJ-Huang/FECNet
https://github.com/KevinJ-Huang/FECNet


(2022)

[17] Zhang, F., Li, Y., You, S., Fu, Y.: Learn-
ing temporal consistency for low light video
enhancement from single images. In: Pro-
ceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(CVPR), pp. 4967–4976 (2021)

[18] Shi, Z., Liu, X., Li, C., Dai, L., Chen, J.,
Davidson, T.N., Zhao, J.: Learning for uncon-
strained space-time video super-resolution.
IEEE Transactions on Broadcasting (2021)

[19] Liu, X., Shi, K., Wang, Z., Chen, J.: Exploit
camera raw data for video super-resolution
via hidden markov model inference. IEEE
Transactions on Image Processing (2021)

[20] Liu, X., Kong, L., Zhou, Y., Zhao, J.,
Chen, J.: End-to-end trainable video super-
resolution based on a new mechanism for
implicit motion estimation and compensa-
tion. In: IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV)
(2020)

[21] Liu, X., Chen, L., Wang, W., Zhao, J.: Robust
multi-frame super-resolution based on spa-
tially weighted half-quadratic estimation and
adaptive btv regularization. IEEE Transac-
tions on Image Processing (2018)

[22] Yin, G., Qu, Z., Jiang, X., Jiang, S., Han,
Z., Zheng, N., Liu, X., Yang, H., Yang, Y.,
Li, D., Qiu, L.: Online video streaming super-
resolution with adaptive look-up table fusion.
arXiv preprint arXiv:2303.00334 (2023)

[23] Shi, Z., Xu, X., Liu, X., Chen, J., Yang, M.-
H.: Video frame interpolation transformer.
In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR)
(2022)

[24] Shi, Z., Liu, X., Shi, K., Dai, L., Chen,
J.: Video frame interpolation via generalized
deformable convolution. IEEE Transactions
on Multimedia (2021)

[25] Wu, G., Liu, X., Luo, K., Liu, X., Zheng,
Q., Liu, S., Jiang, X., Zhai, G., Wang, W.:

Accflow: Backward accumulation for long-
range optical flow. In: International Confer-
ence on Computer Vision (2023)

[26] Li, W., Wu, G., Wang, W., Ren, P., Liu, X.:
Fastllve: Real-time low-light video enhance-
ment with intensity-aware lookup table. In:
The 31st ACM International Conference on
Multimedia (2023)

[27] Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye,
J.: Object Detection in 20 Years: A Survey
(2023)

[28] Long, J., Shelhamer, E., Darrell, T.: Fully
Convolutional Networks for Semantic Seg-
mentation (2015)

[29] Ooi, C.H., Mat Isa, N.A.: Adaptive con-
trast enhancement methods with brightness
preserving. IEEE Transactions on Consumer
Electronics 56(4), 2543–2551 (2010)

[30] Cao, G., Huang, L., Tian, H., Huang, X.,
Wang, Y., Zhi, R.: Contrast enhancement
of brightness-distorted images by improved
adaptive gamma correction. Computers &
Electrical Engineering 66, 569–582 (2018)

[31] Wang, C., Ye, Z.: Brightness preserving his-
togram equalization with maximum entropy:
a variational perspective. IEEE Transactions
on Consumer Electronics 51(4), 1326–1334
(2005)

[32] Wang, H., Xu, K., Lau, R.W.H.: Local
color distributions prior for image enhance-
ment. In: Avidan, S., Brostow, G., Cissé, M.,
Farinella, G.M., Hassner, T. (eds.) Computer
Vision – ECCV 2022, pp. 343–359. Springer,
Cham (2022)

[33] Wang, R., Xu, X., Fu, C.-W., Lu, J., Yu,
B., Jia, J.: Seeing dynamic scene in the
dark: A high-quality video dataset with
mechatronic alignment. In: Proceedings of
the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 9700–9709
(2021)

[34] Chen, C., Chen, Q., Do, M.N., Koltun, V.:
Seeing motion in the dark. In: Proceedings of

19



the IEEE/CVF International Conference on
Computer Vision (ICCV) (2019)

[35] Kou, T., Liu, X., Zhang, Z., Li, C., Wu, H.,
Min, X., Zhai, G., Liu, N.: Subjective-aligned
dataset and metric for text-to-video quality
assessment. arXiv preprint arXiv:2403.11956
(2024)

[36] Wu, H., Zhu, H., Zhang, Z., Zhang, E.,
Chen, C., Liao, L., Li, C., et al.: Towards
open-ended visual quality comparison. arXiv
preprint arXiv:2402.16641 (2024)

[37] Zhang, Z., Li, C., Sun, W., Liu, X., Min,
X., Zhai, G.: A perceptual quality assessment
exploration for aigc images. In: IEEE Inter-
national Conference on Multimedia and Expo
Workshops (ICMEW) (2023)

[38] Zhang, Z., Sun, W., Zhou, Y., Wu, H., Li,
C., Min, X., Liu, X., Zhai, G., Lin, W.:
Advancing zero-shot digital human quality
assessment through text-prompted evalua-
tion. arXiv preprint arXiv:2307.02808 (2023)

[39] Li, C., Zhang, Z., Wu, H., Sun, W., Min,
X., Liu, X., Zhai, G., Lin, W.: Agiqa-3k: An
open database for ai-generated image quality
assessment. IEEE Transactions on Circuits
and Systems for Video Technology (2023)

[40] Li, C., Wu, H., Zhang, Z., Hao, H., Zhang,
K., Bai, L., Liu, X., Min, X., Lin, W.,
Zhai, G.: Q-refine: A perceptual quality
refiner for ai-generated image. arXiv preprint
arXiv:2401.01117 (2024)

[41] Zhang, Z., Zhou, Y., Li, C., Fu, K., Sun,
W., Liu, X., Min, X., Zhai, G.: A reduced-
reference quality assessment metric for tex-
tured mesh digital humans. In: International
Conference on Acoustics, Speech, and Signal
Processing (2024)

[42] Kou, T., Liu, X., Jia, J., Sun, W., Zhai, G.,
Liu, N.: Stablevqa: A deep no-reference qual-
ity assessment model for video stability. In:
Proceedings of the 31st ACM International
Conference on Multimedia (2023)

[43] Zhang, Z., Wu, H., Ji, Z., Li, C., Zhang, E.,

Sun, W., Liu, X., et al.: Q-boost: On visual
quality assessment ability of low-level multi-
modality foundation models. arXiv preprint
arXiv:2312.15300 (2023)

[44] Bampis, C.G., Li, Z., Bovik, A.C.: Spatiotem-
poral feature integration and model fusion for
full reference video quality assessment. IEEE
Transactions on Circuits and Systems for
Video Technology 29(8), 2256–2270 (2019)

[45] Soundararajan, R., Bovik, A.C.: Video qual-
ity assessment by reduced reference spatio-
temporal entropic differencing. IEEE Trans-
actions on Circuits and Systems for Video
Technology 23(4), 684–694 (2013)

[46] Saad, M.A., Bovik, A.C., Charrier, C.: Blind
prediction of natural video quality. IEEE
Transactions on Image Processing 23(3),
1352–1365 (2014)

[47] Radford, A., Kim, J.W., Hallacy, C., Ramesh,
A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G.,
Sutskever, I.: Learning Transferable Visual
Models From Natural Language Supervision
(2021)

[48] Gheini, M., Ren, X., May, J.: Cross-Attention
is All You Need: Adapting Pretrained Trans-
formers for Machine Translation (2021)

[49] Lubin, J.: A human vision system model for
objective picture quality measurements. In:
1997 International Broadcasting Convention
IBS 97, pp. 498–503 (1997)

[50] Ghadiyaram, D., Pan, J., Bovik, A.C., Moor-
thy, A.K., Panda, P., Yang, K.-C.: In-capture
mobile video distortions: A study of subjec-
tive behavior and objective algorithms. IEEE
Transactions on Circuits and Systems for
Video Technology 28(9), 2061–2077 (2018)

[51] Sinno, Z., Bovik, A.C.: Large-scale study of
perceptual video quality. IEEE Transactions
on Image Processing 28(2), 612–627 (2019)

[52] Li, Y., Meng, S., Zhang, X., Wang, S., Wang,
Y., Ma, S.: UGC-VIDEO: perceptual quality
assessment of user-generated videos (2019)

20



[53] Yu, X., Birkbeck, N., Wang, Y., Bampis,
C.G., Adsumilli, B., Bovik, A.C.: Predicting
the quality of compressed videos with pre-
existing distortions. IEEE Transactions on
Image Processing 30, 7511–7526 (2021)

[54] Hosu, V., Hahn, F., Jenadeleh, M., Lin, H.,
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