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A quantum advantage can be achieved in the unitary charging of quantum ba�eries if their cells are inter-
acting. Here, we try to clarify with some analytical calculations whether and how this quantum advantage is
achieved for sparse Sachdev-Ye-Kitaev (SYK) interactions. By performing a simple modelization, we find that

for @-point rescaled sparse SYK interactions the quantum advantage goes as Γ ∼ #
U−@
2 + 1

2 , where U is related
to the connectivity and # is the number of cells.

I. INTRODUCTION

Isolated quantum systems can be used to temporarily store
some useful work as quantum ba�eries, which can be later
used in a consumption center (see, e.g., Ref. [1] for a review).
�e extraction of the work can be performed by a cyclical
change of the Hamiltonian parameters, and in this case the
maximum average work extractable is called ergotropy [2].
In particular, by considering # copies of the system, i.e., a
quantum ba�ery with # cells, the total ergotropy can be
larger than # times the ergotropy of the single cell [3]. Inter-
estingly, this amount of ergotropy can be also obtained with-
out generating entanglement in the work extraction time-
evolution [4]. In particular, work extraction from finite quan-
tum systems can be related to some genuine quantum fea-
tures, such as correlations [5–8] and coherence [9]. Further-
more, a more general optimization of the work extraction
protocol can be performed by taking in account also the work
fluctuations [10, 11] with a quasiprobability distribution [12–
14]. �e role of entanglement in charging quantum ba�er-
ies was also investigated (see, e.g., Ref. [15]) and, recently,
a quantum charging distance was introduced in Ref. [16].
Concerning the duration time of the protocol, the average
power of a unitary charging of a ba�ery with cells was origi-
nally investigated in Ref. [17], where the presence of interac-
tions between the cells during the charging allows to achieve
a so-called quantum advantage [18, 19]. �ere are several
proposals for the realization of quantum ba�eries, for in-
stance by using many-body interactions in spin systems [20],
with a cavity assisted charging [21–24, 26, 27, 50], in dis-
ordered chains [28] and fermionic Sachdev-Ye-Kitaev (SYK)
interactions [29–31], to name a few. In particular, the SYK
model [32, 33] has received a large interest in the last years
(see, e.g., Ref. [34] for a review). Among its properties, it dis-
plays a resistivity that is linear with respect to the tempera-
ture, exhibiting a so-called Planckian transport [34–36], a du-
ality to a two-dimensional nearly anti-de Si�er space [33, 37–
39], and many others, a�racting the a�ention of both con-
densed ma�er and high energy researchers. Concerning
its experimental realization, there are already some propos-
als, e.g., in solid state physics (see, e.g., Ref. [40] for a re-
view) and in cavity quantum electrodynamics platforms [41].
Several studies investigate the mesoscopic physics by SYK
model (see, e.g., Refs. [42–48]). Nonequilibrium dynamics
was also investigated through this model, e.g., the heating
of black holes at short times before the thermalization with

a colder bath [49–51], the current driven by a double contact
setup [52], and also a quantum quench [53]. Other studies
concern eternal traversable wormholes [54], the Bekenstein-
Hawking entropy [55] and the existence of anomalous power
laws in the temperature dependent conductance [56]. Fur-
thermore, the sparse SYK model was also investigated (see,
e.g., Refs. [57–62]). Having discussed the importance of the
SYK model, here, we aim to clarify whether and how a quan-
tum advantage in the power charging of quantum ba�eries
can be achieved by exploiting SYK interactions. In order to
do this we introduce some preliminaries notions in Sec. II and
the SYK model in Sec. III. �en, we proceed by introducing
a simple model in Sec. IV, which shows same scaling prop-
erties of SYK interactions as discussed in Sec. V. Finally, we
discuss further our results in Sec. VI

II. PRELIMINARIES

We focus on a quantum ba�ery having # cells (or copies)
andHamiltonian�0 =

∑#
8=1ℎ8 , whereℎ8 is theHamiltonian of

the single cell. �e ba�ery is initially prepared in the ground-
state |k (0)〉 = |0〉⊗# having zero energy, i.e., ℎ8 |0〉 = 0 for all
8 = 1, . . . , # . �e charging process leads the system to the fi-
nal state |k (g)〉 = *g,0 |k (0)〉 where*C,0 is the time-evolution
unitary operator generated by the time-dependent Hamilto-
nian � (C) with C ∈ [0, g] such that � (0) = � (g) = �0. �e
time-evolved state |k (C)〉 with C ∈ [0, g] defines a curve C in
the projective space having Fubini-Study length [63]

; (C) =
∫ g

0
Δ� (C)3C , (1)

where Δ� 2(C) = 〈� 2 (C)〉C − 〈� (C)〉2C and the averages are
calculated with respect to the state |k (C)〉, i.e., we defined
〈- 〉C = 〈k (C) |- |k (C)〉 for any operator - . In this paper, we
focus on a charging process generated by performing two
quantum quenches at the initial and final times C = 0, g , e.g.,
as in Ref. [29]. �us, the time-dependent Hamiltonian is de-
fined such that � (C) = �0 for C = 0, g and � (C) = �1 for
C ∈ (0, g), with [�1, �0] ≠ 0 in order to achieve a non-trivial
dynamics. In this case, the unitary time-evolution operator
is *C,0 = 4−8�1C when C ∈ (0, g) and the Fubini-Study length
in Eq. (1) simplifies to

; (C) = Δ�1g , (2)
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where

Δ� 2
1 = 〈� 2

1 〉0 − 〈�1〉20 . (3)

We note that Δ� 2
1 is equal to the work variance of the first

quench at C = 0, i.e., it can be obtained as Δ� 2
1 = −� ′′ (0),

where � (D) = ln〈48�1D〉0 is the cumulant generating func-
tion of the work done in the first quench. �us, since ; (C)
does not scale with the number # of cells, from Eq. (2) the
duration time g scales with # as g ∼ 1/Δ�1 and its scaling
is completely determined by the quench at C = 0. To define
a quantum advantage, we always choose �1 such that the
gap Δ�1 = �<0G − �<8= between its maximum and minimum
eigenvalues, which are �<0G and �<8=, is not larger than the
gap Δ�0 between the maximum and the minimum eigenval-
ues of �0. �en, by considering �0 with a maximum eigen-
value that linearly scales with # , we get Δ�1 ≤ Δ�0 ∼ # .
From the Bhatia–Davis inequality we get

Δ� 2
1 ≤ (�<0G − `) (` − �<8=) , (4)

where ` = 〈�1〉0, from which we get Δ� 2
1 . # 2 and the

bound g & 1/# . Let us examine two different situations. In
the first one the duration time is denoted with g ‖ and the
charging process is obtained with �1 =

∑#
8=1 E8 , where E8 is a

local operator of the i-th cell, so that there are no interactions
among the cells. In this case, from Eq. (3) we deduce Δ� 2

1 ∼
# , thus the charging time scales as g ‖ ∼ 1/

√
# . �en, since

the average power is % ‖
= , ‖/g ‖ , where , ‖

= 〈�0〉g ‖ is
the average work, which scales as , ‖ ∼ # , we get % ‖ ∼
#

3
2 . In contrast, in the second situation the duration time

is denoted with g♯ and interactions are allowed during the
charging process, e.g.,�1 =

∑

81,82,...,8@ E81E82 · · · E8@ , and we can
get the scaling g♯ ∼ 1/#0 , with 0 ∈ (1/2, 1]. In this case the

average power is %♯ = , ♯/g♯, and if the average work is

, ♯
= , ‖ , and so it scales as, ♯ ∼ # , we get the quantum

advantage

Γ =
%♯

% ‖ =
g ‖

g♯
, (5)

which scales as Γ ∼ #0−1/2 . In particular, since 0 ≤ 1, we get
the bound

Γ . #
1
2 . (6)

III. MODEL

We focus on a charging process performed through@-point
sparse fermionic interactions, i.e., �1 = �(. ,@ with

�(. ,@ = 8
@
2

∑

1≤81<82<...<8@≤2#
G8182...8@ 98182...8@W81W82 · · ·W8@ , (7)

where {W8 , W 9 } = 2X8, 9 , and the quenched disorder 98182...8@ has

a Gaussian distribution with zero mean and variance 9 2(@ −
1)!/#@−1, where 9 ∼ O(1). We consider G8182...8@ = 1 with

probability ? and G8182...8@ = 0 with probability 1− ? , defining
the connectivity of the fermions. We define

�@ =

∑

1≤81<82<...<8@≤2#
G8182...8@ ∼ ?#@ , (8)

where the bar denotes the average over the disorder. For our
purposes, we focus on

�@ ∼ #U , (9)

where U ≤ @. We note that the maximum eigenvalue of the

Hamiltonian in Eq. (7) scales as �<0G ∼
√
# , so that the

bound of Eq. (6) cannot be saturated, since from Eq. (4) we
get Δ� 2

1 . # , and thus Γ . O(1). �en, in order to get a
quantum advantage we rescale the energy spectrum, i.e., we
define

�1 =
√
#�(. ,@ . (10)

For U = @ we expect that the bound in Eq. (6) is saturated,
since the interactions are fermionic and fully-connected. In
the next sections, we aim to clarify the role of the interac-
tions and connectivity through a suitable simplification of the
Hamiltonian �1.

IV. INTERACTIONS

In order to perform some analytical calculations, we aim

to modelize an interaction �1 giving the average power %
♯ of

the SYK interactions in Eq. (10). �us, we consider

�1 = (�+ ): , (11)

where + is a certain operator and we introduced a coupling
� such that Δ�1 ∼ # for any positive integer : . Since for
: = 1, the gap scales as Δ�1 ∼ # , we consider the coupling

� = # − :−1
: . In this case we get

〈48D�1〉0 = 〈48D ( �+ ): 〉0 . (12)

Since we are interested only to the variance Δ� 2
1 , we aim to

calculate Eq. (12) for D → 0. We search a function 5 (I) such
that

48DG
: ∼

∫

�

3I48 5 (I)/D+8IG (13)

as D → 0, where � is a stationary phase path so that the
dominant contribution will be given by the stationary point
of 5 (I)/D + IG . We get

5 (I)
D

= 2

(

I:

D

)

1
:−1

, (14)

where 2 is a number that does not depend on D. For instance,
for : = 2 Eq. (13) reduces to the Hubbard-Stratonovich trans-
formation. �us, we get

〈48D�1〉0 ∼
∫

�

3I48 5 (I)/D 〈48I�+ 〉0 . (15)
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As # → ∞, to do some calculation we consider the generat-
ing function

〈48I�+ 〉0 ∼ 48#
1
: 6 (I) , (16)

where 6(I) is a certain function, such that 6′(0) ∼ O(1),
whereas higher derivatives can scale with # , e.g., 6′′ (0) ∼
# V . We consider that the stationary point I approaches to
zero as D → 0, thus we can consider the Taylor expansion
6(I) = 6′(0)I +6′′ (0)I2/2 + · · · in the integral in Eq. (15). By
calculating the stationary point up to O(D3) terms, we get

〈48D�1〉0 ∼ exp
(

8D6′: (0)# + 2′D26′:−1(0)6′′ (0)# 2:−1
: + O(D3)

)

,

(17)
where 2′ is a number that does not depend on D and different
from 2 . �us, from Eq. (17) we get

Δ� 2
1 ∼ #

2:−1
: +V , (18)

from which, if, ♯ ∼ # , the quantum advantage scales as

Γ ∼ #
:−1
2: + V

2 . (19)

Aswewill discuss in the next section, the quantumadvantage
in Eq. (19) scales as the one achieved for �1 in Eq. (10) with
@ = 2: . �us, V is expected to be related to the connectivity,
i.e., to U defined in Eq. (9).

V. CONNECTIVITY

We consider an operator + of the form

+ =

∑

8, 9

~8 9_8 9E8E 9 +
∑

8

_8F8 , (20)

whereF8 are local operators commutating with the local op-
erators E8 , i.e., [F8 , E 9 ] = 0 for all 8 and 9 , _8 and _8 9 are cou-
plings, and ~8 9 = 1 with probability ? and ~8 9 = 0 with prob-
ability 1 − ? . If _8 9 = 0, it is easy to see that 6′(0) ∼ O(1)
but 6′′ (0) ∼ O(� ), thus V = (: − 1)/: . �en, from Eq. (19),
Γ ∼ O(1) and there is no quantum advantage, as expected.
Let us consider _8 9 nonzero and random with a Gaussian dis-
tribution having zeromean and variancef2. We start to focus
on ? = 1. If E8 are bosonic operators, i.e., [E8 , E 9 ] = 0 for all 8
and 9 , by averaging over the disorder we get

〈48I�+ 〉0 ∼ 〈48I�
∑

8 _8F84−
1
2I

2 � 2f2 ∑

8,9 E
2
8 E

2
9 〉0 . (21)

If 〈0|F2
8 |0〉 − 〈0|F8 |0〉2 = 0 for all 8 , e.g., F8 are c-numbers,

from Eq. (21), we deduce that 6′′ (0) ∼ O(�#f2). However,
if E8 are bosonic operators then _8 9 ∼ 1/# in order to have
Δ�1 ∼ # , so that f2 ∼ # −2 and V = 1/: − 2 and there is
no quantum advantage at all, although ? = 1, since, from
Eq. (19), Γ → 0. In contrast, let us consider ? arbitrary and E8
as fermionic operators. In this case _8 9 ∼ O(1), i.e., f ∼ O(1),
in order to have Δ�1 ∼ # . In order to connect this simplified
model to �1 in Eq. (10), we can focus on �1 in Eq. (11) with

+ = 8
∑

8, 9

~8 9_8 9W8W 9 +F# , (22)

whereF is a c-number. �ere are two extreme cases: ~8 9 = 1
for all 8 and 9 , or ~8 9 = 1 for 8 = 2; − 1 and 9 = 2; with
; = 1, . . . , # and ~8 9 = 0 otherwise. In the first case ? =

1 and we get a full-connectivity. In this case, from Eq. (22)
we already get Δ� 2

1 ∼ # 2 for : = 2. To explicitly prove it,
we can focus on _8 9 such that is nonzero only for odd 8 and
even 9 , so that from an explicit calculation of the average in
Eq. (3) we get Δ� 2

1 ≥ f4(# − 1)2/4 for : = 2, thus we deduce
V = 2 − (2: − 1)/: . In the second case, which is equivalent
to ? ∼ 1/# , we get + = 8

∑

; _2;−1,2;W2;−1W2; + F# , and by
averaging over the disorder we get

〈48I�+ 〉0 ∼ 48I� F#4−
1
2I

2 � 2f2# , (23)

such that we get 6′′ (0) ∼ O(�f2) and V = 1/: − 1. �en,
from Eq. (19), Γ ∼ O(1). To derive V for an arbitrary ? we
have to calculate the disorder average of 〈48I�+ 〉0 in general.
We find 6′′ (0) ∼ O(? �# ), thus by noting that @ = 2: , since+
is a quadratic form in the fermionic operators, and ? ∼ #U−@

from Eq. (9), we get

V = U − @ + 2

@
, (24)

where the exponent U characterizes the connectivity as
Eq. (9). �us, for �1 in Eq. (10), Eq. (19) simplifies to

Γ ∼ #
U−@
2 + 1

2 , (25)

which is our main result. In particular, we note that, while
for ? ∼ 1/# we get @−U = 1 and there is no quantum advan-
tage, the bound in Eq. (6) is saturated for U = @. In particu-
lar, this result can be also achieved directly from the average
over the disorder of Eq. (3) by using the Wick’s theorem. In
the end, we note that the disorder is crucial in order to get
this quantum advantage. For instance, for the disorder free
fully-connected Hamiltonian in Eq. (10) achieved for ? = 1

and by replacing 98182 ...8@ with a constant that scales as #
1−@
2 ,

we can easily calculate Δ� 2
1 from Eq. (3) by using the Wick’s

theorem, achieving the scaling Δ� 2
1 ∼ # , so that there is no

quantum advantage.

VI. CONCLUSION

Recently, the charging of quantum ba�eries has received a
large a�ention from the scientific community. Here, we per-
formed some analytical calculations with the aim to under-
stand the charging of these quantum ba�eries through SYK
interactions. �us, we focused on a sparse SYKmodel, andwe
analyzed the resulting quantum advantage. We determined
the exact form of the quantum advantage scaling exponent,
which is I = (U−@)/2+1/2, where U is related to the connec-
tivity, i.e., how much the interactions are sparse, and @ to the
order of the interaction, i.e., the number of points involved.
From the found expression of I, we see that as U approaches
to@, the scaling exponent reaches the maximum value of 1/2,
so that the quantum advantage scales as the square root of the
number of cells and we get the best possible performance for
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this charging process. Interestingly, we can see how, while
more connectivity enhances the charging performance, an
increasing of@ reduces it ifU remains constant. In conclusion,
we hope that our results can be useful to clarify the charging
of quantum ba�eries when SYK interactions are employed, at

least from a theoretical point of view, and how improved per-
formance can be achieved with many-body interactions. In
particular, ba�eries made with fermions showing quenched
disorder in the interactions are indispensable in order to get
the scaling achieved for the quantum advantage.
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