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Understanding entanglement of potentially high-dimensional multipartite quantum systems is crucial across
different disciplines in quantum sciences. We take inspiration from covariance matrix based techniques to derive
a nonlinear criterion that can be used to lower bound the dimensionality vector of mixed quantum states, reveal-
ing both the level of multipartiteness and the dimensionality of the entanglement in the quantum states. The tech-
nique is based on a system of inequalities that has to be satisfied by all quantum states with a given entanglement
dimensionality vector, which can be checked via linear programming. We test our condition on paradigmatic
classes of high-dimensional multipartite entangled states like imperfect Greenberger-Horne-Zeilinger (GHZ)
states and find that, in comparison with other available criteria our method provides a significant advantage,
which is enhanced especially in the case that the dimensions of the individual particles are different from each
other.

Quantification of entanglement is a topic of wide interest
crossing various areas of physics, because of its foundational
interest, its connection to thermodynamics and also because of
its deep connections with several quantum information prob-
lems [1–6]. The task is highly non-trivial and has become
subject of intense investigation starting from the case of two
particles of relatively small dimension, but reaches a daunting
complexity when either or both the number of particles or the
particles’ dimensions increase.

In fact, multipartite entanglement is very complex to even
characterize qualitatively since different inequivalent notions
can be given and its classification is known to be itself a
very complex subject [7]. Beyond its classification, important
questions are how to witness the various forms of multipartite
entanglement and how to properly quantify it. Due to the com-
plex structure of multipartite entangled states it is often not
possible to provide a satisfactory quantification with only a
single number, but it is better to consider entanglement mono-
tones across some set of bipartitions. Concrete entanglement
monotones considered are convex-roof extended entropies of
marginal states, which are defined first for pure states as fol-
lows.

Taking first a given bipartition (α|ᾱ) we consider the en-
tropy of the single-party marginal:

S α(Ψ ) := S (trᾱ(|ψ⟩⟨ψ|)), (1)

where S (ϱ) is a given entropy, like e.g., the linear entropy
S lin(ϱ) =

√
2
[
1 − tr(ϱ2)

]
, the von Neumann entropy S vN(ϱ) =

−tr(ϱ log ϱ), or the zero entropy S zero(ϱ) = log(rank(ϱ)). For a
single bipartition, these measures are then extended to mixed
states via convex-roof, i.e., by taking the minimum over all
possible decompositions into pure states. It is here that the
complexity of all entanglement quantification tasks originates:
(almost) all states feature an infinite number of possible de-
compositions, or equivalently, an infinite set of possible prepa-
rations that lead to the experimental situation described by the

density matrix. So the convex roof basically corresponds to
the worst-case scenario among all the possible pure-state de-
compositions, i.e., which preparation needs the least amount
of entanglement. Clearly, this makes it quite complex in prac-
tical scenarios to calculate, since considering all possible (in-
finitely many) pure-state decompositions of a density matrix is
in general a very challenging task, leading to the NP-hardness
of entanglement certification [8].

In the multipartite scenario, all the above-mentioned dif-
ficulties to quantify entanglement are exacerbated, as each
decomposition element might now feature different factorisa-
tions. Hence, in order to characterize and properly quantify
the genuinely multipartite nature of the entanglement in the
state it is important not only to consider the full set of bi-
partitions, but also to take the worst-case scenario amongst
all possible mixtures of states entangled in different ways in
the different bipartitions. This translates into considering the
vector of entropies of the reductions for all possible biparti-
tions, which can be enumerated with an index going from 1
to N = 2N−1 − 1 for a N-particle system, and moreover order
such a vector, for example non-increasingly. This way, one
defines measures like

E
↓

k(ϱ) = inf
D(ϱ)

∑
k

pkS ↓k(ψk), (2)

where S ↓k are the components of the vector of entropies of
the marginal states for all partitions and the infimum is taken
over all pure state decompositions D(ϱ) = {pk, |ψk⟩} : ϱ =∑

k pk |ψk⟩⟨ψk |. Among all possible entanglement entropy vec-
tors, only the von Neumann and the 0-entropy cases feature
a nontrivial asymptotic structure that can be constrained by
linear inequalities [9–11].

In this work, we will focus on the 0-entropy case, which
is nothing but the logarithm of the rank of the density ma-
trix, which, being discrete, is also a special case that allows
for a better classification of the state as a resource as opposite
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to continuous measures [12–14]. This extends to multipar-
tite states the concept of Schmidt number (or entanglement
dimensionality) [15, 16] and, for example, is a necessary re-
source to achieve an exponential speedup in a pure-state quan-
tum circuit [12, 17]. Concretely, for pure states, one defines
the Schmidt-rank vector as the vector of Schmidt ranks with
respect to all possible bipartitions

SN (|ψ⟩) = (s1, s2, · · · , sN ) , (3)

and then orders its elements non-increasingly. As we men-
tioned, the ordering becomes crucial for extending this notion
to the multipartite case and for clarity we denote the ordered
vectors by SN↓.

To be more clear, let us first recall the definition of a Gen-
uinely Multipartite Entangled state, which is a state that is not
biseparable. A biseparable state ϱbs is defined as a mixture of
states that are separable across (at least) one partition, which
can be different for the different decomposition elements.
Such a state has an entanglement-dimensionality vector such
that its last (smallest) component is one, i.e., SN↓

N
(ϱbs) =

1. More in general, then, one defines the entanglement-
dimensionality vector element-wise via the convex roof con-
struction, i.e.,

SN
↓

k(ϱ) = inf
D(ϱ)

max
|ψi⟩∈D(ϱ)

SN
↓

k(|ψi⟩), (4)

with again the crucial requirement that the pure-state Schmidt-
rank vector is ordered non-increasingly. In other words, a den-
sity matrix has SN↓k = vk whenever it has a pure-state decom-
position such that the k-th largest Schmidt rank among all pos-
sible bipartitions is always smaller than or equal to vk. Thus,
overall a density matrix with entanglement-dimensionality
vector given by v can be decomposed as

ϱ =
∑

k

pkϱsk , (5)

where pk are probabilities and ϱsk are states with a given (un-
ordered) Schmidt number vector sk that is such that its com-
ponents, when ordered non-increasingly, satisfy s↓k ≤ vk.

This definition creates a structure of states with different en-
tanglement dimensionality vectors which is far more complex
than that arising in the bipartite case, especially because it is
not simply formed by nested convex sets contained into each
other. In particular, it is not possible to order all the different
entanglement dimensionality vectors, even though the states
having a particular SN↓ still form a convex set. See fig. 1 for
a pictorial representation.

Furthermore, Schmidt numbers across different bipartitions
satisfy highly nontrivial relations amongst each other, also
depending on the dimensions and number of particles [11].
These are analogous to the so-called monogamy relations aris-
ing between bipartite and multipartite entanglement mono-
tones in a multipartite state [18]. Because of this, usual meth-
ods to witness the Schmidt number become much more com-
plex when extended to the multipartite case, and thus there is a

FIG. 1. The structure of all possible Schmidt number vectors in a
4 × 3 × 2 state space.

lack of efficient methods to characterize the full entanglement
dimensionality vector in general [13, 14, 19].

Thus, it would be extremely interesting to provide new
approaches to characterize the entanglement-dimensionality
vector. This is also further motivated from the fact that high-
dimensional multipartite entanglement is known to be a re-
source for a number of tasks, like high-dimensional quantum
teleportation [20], stronger violation of multipartite Bell in-
equalities [21–25], generation of increased randomness [26]
and increased Quantum Key-Distribution (QKD) rates [27–
31]. In fact, high-dimensional multipartite entangled states
have been the target of numerous recent experiments, particu-
larly with photonic systems [20, 26, 29, 32–59].

Typical witnesses of the entanglement-dimensionality vec-
tor are given in terms of fidelities with respect to target
states [32]. Concretely, given a certain (non-increasingly or-
dered) entanglement dimensionality vector v := (v1, . . . , vN )
and a certain target state |Ψ⟩ one defines the maximum fidelity
with a generic density matrix σ with SN↓(σ) = v:

Fmax(v, Ψ ) := max
SN

↓(σ)=v
tr (σ |Ψ⟩⟨Ψ |) = max

SN
↓(ϕ)=v

|⟨ϕ |Ψ⟩ |2, (6)

where |ϕ⟩ is a generic pure state with ordered Schmidt-rank
vector given by v and the equality follows from convexity of
the fidelity. Then, whenever one finds that

tr (ϱ |Ψ⟩⟨Ψ |) > Fmax(v, Ψ ) (7)

one can conclude that ϱ is outside of the set of states with
entanglement dimensionality vector given by v.

Note once more however, that one cannot generally con-
clude that ϱ has a particular entanglement-dimensionality vec-
tor which is “greater” than v, because such an ordering is
lost in the multipartite case. Furthermore, even though the
fidelity is a convex function of the state and therefore to cal-
culate its maximum in Eq. (6) one can restrict to pure states,
one needs to know the Schmidt eigenvalues of the target state
across all bipartitions and, even after that, perform in general
a quite demanding optimization. See Supplemental Material
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for more details [60]. This is because one needs to consider
pure states with many different Schmidt-number vectors. A
great simplification to this task can come from choosing a tar-
get state which is highly symmetric, a typical example being
the Greenberger-Horne-Zeilinger (GHZ) state:

∣∣∣Ψ d
GHZ

〉
= 1
√

d

d∑
i=1

|i⟩⊗N . (8)

The simplification comes from the fact that the state is in-
variant under permutation of the parties and the one-body
marginals are all maximally mixed.

With such a target state the bound Fmax(v, Ψd
GHZ) coin-

cides for all entanglement-dimensionality vectors v that have
a given vN . In general this is one of the few examples for
which the bound in Eq. (6) is known and can thus be ap-
plied to practical entanglement detection. Beyond fidelities,
nonlinear witnesses of the entanglement dimensionality vec-
tor have been derived in [13, 61], which we summarize in the
Supplemental Material [60] and later compare to our crite-
rion. These are essentially all criteria that exist to witness the
entanglement-dimensionality vector. Because of this, it is use-
ful to find alternative criteria, especially some that would be
readily applicable even without further optimization.

Our approach is based on an alternative method that has
been extended recently to witness the Schmidt number across
bipartitions, called Covariance Matrix Criterion (CMC) [62–
66], which is written in terms of the covariance matrix of an
orthonormal operator basis for each party. Here, working ex-
plicitly in a multipartite setting, we consider single-particle
operators {g(n)

µ }
d2

n
µ=1 that satisfy tr(g(n)

µ g(n)
ν ) = δµν. Given a bi-

partition (α|ᾱ) we can construct basis for a party α by simply
taking tensor products of single-particle operators among all
the particles in α: {g(α)

K } = {g
(n)
µ ⊗ g(m)

ν ⊗ . . . }n,m···∈α. To be
more clear and compact, we used a single capitalized index
K = (µν . . . ..) for such a basis.

First, let us fix a bipartition α and consider the cross-
covariances

[X(α)
ϱ ]KL = ⟨g

(α)
K ⊗ g(α)

L ⟩ϱ − ⟨g
(α)
K ⟩ϱ⟨g

(α)
L ⟩ϱ (9)

on a quantum state ϱ. Using the results of [62] (generalizing
those of [64–66]) we know that one important corollary of the
CMC is given by the following expression, which is invariant
under change of bases for the parties (α|ᾱ):

fα(ϱ) := tr|X(α)
ϱ | −

√
[1 − tr(ϱ2

α)][1 − tr(ϱ2
ᾱ)] + 1 ≤ rα, (10)

where tr|X| = tr
√

X†X is the trace norm of a matrix and we
named the left-hand side as fα(ϱ) to shorten the notation in
the following. Eq. (10) must hold for all states ϱ that have
Schmidt number at most equal to rα across partition α.

Now, let us try to extend such a relation to detect the en-
tire entanglement dimensionality vector. For that, we need to
consider all partitions at the same time, and correspondingly
all matrices X(α)

ϱ labelled by the different bipartitions α and
obtain the following result:

Observation 1. Let us consider the functions fα(ϱ) as defined
in Eq. (10). Every density matrix ϱ that has an entanglement
dimensionality vector given by v = (v1, v2, . . . , vN ) must sat-
isfy the following system of equations:

f1(ϱ) ≤ R1,

f2(ϱ) ≤ R2,

...

fN (ϱ) ≤ RN ,

(11)

where R = (R1, . . . ,RN ) is a vector of real numbers such that

R ≺ v, (12)

which means that

K∑
k=1

R↓k ≤
K∑

k=1

vk for all K ≤ N , (13)

where R↓ are the elements of R ordered non-increasingly. This
system of equations can be solved with a linear program in the
variables Rα. If no R solution to this problem can be found,
then the state cannot have entanglement dimensionality vector
given by v.

The technical details of the proof of this statement can be
found in the Supplemental Material [60]. Note that a similar
idea can be applied to other corollaries of the CMC poten-
tially, whenever they are found, which is a task that we leave
for further investigation. Here we just consider Eq. (10) as
a prototypical example which is relevant for concrete situa-
tions. Note also that simpler conditions can be obtained from
this system of equations, e.g., by summing up all equations
and obtaining:

N∑
α=1

fα(ϱ) ≤
N∑

k=1

vk. (14)

An even simpler criterion can be derived from Eq. (10)
by further bounding its left-hand side. Consider orthonormal
bases of the single particle operator space for each particle
{g(n)
µ }

d2
n
µ=1 and let d = minn dn be the smallest among the single-

particle dimensions. The following inequality

d2∑
µ=1

⟨g(1)
µ ⊗ · · · ⊗ g(N)

µ ⟩ϱ ≤ vN , (15)

must be satisfied by all states that are such that the last ele-
ment of their entanglement dimensionality vector is given by
vN . Thus, a violation of this inequality implies that ϱ has the
minimal entanglement dimensionality which is larger than vN .
This condition simply follows from the fact that the left-hand
side of Eq. (10), i.e., fα(ϱ) is larger than that of Eq. (15) for
every α. Thus, we can take the minimum among all α and we
obtain that Eq. (15) is valid for pure states. At the same time,
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the left-hand side is linear under mixing the quantum state
and thus it is immediately extended to all density matrices. In
this derivation, we can also observe the important difference
with respect to Eq. (11): Taking the expression minα fα(ϱ) is
by itself neither linear nor concave under mixing the quan-
tum state. Thus, even though the analogous condition as in
Eq. (15) holds for pure states, it cannot be readily extended to
mixed states of the form (5). For that, it was needed to con-
sider the whole set { fα} with the corresponding bounds chang-
ing from the set of rα to a set of real number Rα that only has
to satisfy a weaker constraint R ≺ v.

As a result, we get two independent conditions, Eqs. (11)
and (15) that provide complementary information about the
entanglement-dimensionality vector, as we will clarify after-
wards with some examples. In particular, the condition in
Eq. (15) it is nothing but the fidelity bound with respect to
a target state of the form

|Ψ⟩⟨Ψ | =
1
d

d2∑
µ=1

g(1)
µ ⊗ · · · ⊗ g(N)

µ , (16)

which is such that its single-particle marginals are all maxi-
mally mixed (such a state is called 1-uniform in the literature
about multipartite entanglement classification [67–69]), and
in that sense is analogous to the GHZ state. A detailed proof
of Eq. (15) and its relation with fidelities to 1-uniform states
can be found in the Supplemental Material [60].

Let us now investigate the practical applicability of our re-
sults, also in comparison with other methods. First of all, it
is clear that the combination of the two inequalities (11,15)
provides a witness which is stronger than the fidelity witness
with respect to an optimal 1-uniform state that depends on ϱ.
Moreover, although it is hard to make fully general statements
due to the variety and complexity of all the potential cases, we
can observe that our method outperforms also the other known
entanglement-dimensionality witnesses, at least in several im-
portant cases. First of all, we can consider the most common
example of high-dimensional multipartite entangled states,
which are GHZ states mixed with white noise. The noise-
less case is actually a very important target state [35, 70–75]
for several tasks in which distribution of entanglement is re-
quired among many parties, for example error-correction [67–
69] and quantum communication [32], and the white noise
provides a general worst-case scenario for practical imperfec-
tions. In fact, known witnesses for genuine multipartite entan-
glement were tested on these states [19, 76, 77].

In fig. 2 we make an explicit comparison among all known
methods and we can see that there is a noise region in
which Eq. (11) actually improves the detection of the whole
entanglement-dimensionality vector as compared to the fi-
delity witness alone. All other methods are also clearly
weaker in this case.

Besides this important paradigmatic case, we tested our
method on other example states and randomly sampled states
and we can summarize our findings as follows. In short, we
find that our criterion is significantly advantageous when the

FIG. 2. Comparison among correlation tensor norm criterion, linear
entropy criterion and the fidelity witness criterion Eq.(15) alone or
used in combination with Eq.(11). The target state is a GHZ state
with d1 = d2 = d3 = 3 mixed with white noise. The horizontal
axis represents increasing probability p, and different entanglement-
dimensionality vectors are drawn in different colors.

dimension of one subsystem is higher than that of all other
subsystems. Let us elucidate that with a concrete example.
Consider the Hilbert spaceH = C2 ⊗C3 ⊗C4 and the follow-
ing pure state, that has a Schmidt number vector (4, 3, 2):

|ψ432⟩ (c) := c1 |000⟩ + c2 |111⟩ + c3 |012⟩ + c4 |123⟩ (17)

where c = (c1, c2, c3, c4) is a unit vector of complex coeffi-
cients. The case with all ci =

1
2 was considered in [13] as

a simple paradigmatic example to show the partial ordering
structure of the Schmidt number vector SN(|ψ432⟩). In our
simulations we then mix such randomly sampled pure states
with white noise and consider the state

ϱ(p, c) = p |ψ432⟩⟨ψ432| (c) + (1 − p)
1
24
. (18)

We then try to detect the state mixed with white noise us-
ing Eq. (11) and the fidelity with respect to |ψ432⟩ for com-
parison. All other criteria mentioned earlier are worse than
either our method or the fidelity with respect to |ψ432⟩. To
certify SN(|ψ432⟩) = (4, 3, 2), one must exclude (4, 2, 2) and
(3, 3, 2) simultaneously, while these two subsets are not com-
parable, i.e., they are addressed by two bounds individually.
We make this comparison between the two criteria using com-
pletely random coefficients ci across a total of 10000 sam-
ples. We use t-Distributed Stochastic Neighbor Embedding
(t-SNE) [78] as a dimension reduction technique to show the
sample data. This is a method that ensures that states with
coefficient vectors c that are close to each other, remain close
also in the lower-dimensional projected figure. The results are
shown in fig. 3.

As shown in the plot, our method outperforms the fidelity
witness in most of the cases (about 92%). It is also worth
noting that the points that are detected by our method mostly
coincide with states that have a relatively high value of the so-
called genuine multipartite concurrence, which is defined as
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FIG. 3. Comparison of fidelity-witness based criterion and Eq. (11)
over random states of the form (18), visualized with a 2-dimensional
clustering made using t-SNE. (a) Blue points represent states de-
tected with higher white-noise (1 − p) by our criterion (11). Con-
versely, red points correspond to states that are detected with a
higher tolerance by the fidelity witness with respect to the state
|ψ432⟩ (c). (b) Blue points represent states for which the GM con-
currence CGM > 0.8, while orange points correspond to those with
CGM ≤ 0.8. The region in figure (a) where the fidelity witness is
stronger roughly corresponds to the area in figure (b) with lower GM
concurrence.

the lowest element of the entropy vector in Eq. (2) where the
entropy of choice is the linear entropy [79–81]:

CGM(ϱ) := (E↓k)lin(ϱ) = min
α

inf
D(ϱ)

∑
k

pkS lin
α (ψk). (19)

However, notice that CGM is not high enough to witness aSN
better than either our criterion (11) or the fidelity with respect
to |ψ432⟩.

In conclusion, we have presented a new approach to find
witnesses for the entanglement dimensionality vector in mul-
tipartite systems, which is based on extending corollaries of
the bipartite Covariance Matrix Criterion to the multipartite
case. We have applied this idea explicitly to a known corollary
of the CMC, which leads to a criterion that is strictly stronger
than fidelity witnesses with respect to 1-uniform states such as
the GHZ states, which represent in practice the most widely
used witnesses. Moreover, we have shown that this criterion
also improves over known methods on a wide class of states,
which include important paradigmatic examples useful for ap-
plications. Further developments of our approach can be ob-
tained by finding new corollaries to the CMC, or in general
nonlinear witnesses of the Schmidt number in the bipartite
case, which thus represents a promising direction for further
research in this topic.
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Supplemental Material

Known entanglement-dimensionality-vector witnesses

Here we present and discuss known witnesses of the entanglement-dimensionality vector.

Fidelity-based witnesses

First let us start with the fidelity witness, defined formally in Eqs. (6) and (7). In the bipartite case they are among the most
typical Schmidt-number witnesses used in experiments [37, 53, 82, 83]. In that case, given a target state written in its Schmidt
decomposition

|Ψ⟩ =
∑

i

√
λi |iaib⟩ , (20)

where λi are the squared Schmidt coefficients which are ordered non-increasingly, one can easily calculate its maximal fidelity
with any state ϱ with Schmidt number bounded by r. This is simply given by

Fmax(r, Ψ ) := max
SN(ϱ)=r

tr (σ |Ψ⟩⟨Ψ |) = max
SN(ψr)=r

| ⟨ψr |Ψ⟩|
2 =

r∑
i=1

λi, (21)

i.e., by the sum of the r largest squared Schmidt coefficients of the target state.
Let us now elucidate how to extend this result to the multipartite case, in which many possible bipartitions have to be consid-

ered. Let us start with the simple question: Is the smallest Schmidt number across all possible bipartitions larger than a given
vN? Again, in the particular case vN > 1 the state is called Genuinely Multipartite Entangled.

To obtain this fidelity bound we have to allow the possibility that the value vN corresponds to the Schmidt-rank across any
bipartition. Using Eq. (21) we know that the fidelity between |Ψ⟩ and a state with Schmidt-rank equal to vN across partition α
will be given by

∑vN
i=1 λ

(α)
i at most, where again λ(α)

i are the non-increasingly ordered squared Schmidt coefficients of |Ψ⟩ across
the bipartition α. Thus, scanning across all partitions we get

Fmax(vN , Ψ ) = max
α

 vN∑
i=1

λ(α)
i

 , (22)

which follows from the fact that we want to take the worst-case scenario.
Next, suppose that we want to find the fidelity bound with such a given target state among all possible density matrices that

have SN↓1(σ) = vN and SN↓2(σ) = vN−1, i.e., the two smallest Schmidt numbers are vN and vN−1 respectively. Once again, we
have to check all pure states that have Schmidt ranks equal to vN and vN−1 across any pair of partitions and these are the two
smallest. Now, given a pure state

∣∣∣ΦαN=vN ,αN−1=vN−1

〉
that has Schmidt ranks equal to vN and vN−1 across partitions αN and αN−1

we know that its fidelity with respect to |Ψ⟩ is upper bounded by

Fmax(ΦαN=vN ,αN−1=vN−1 , Ψ ) ≤ min{
vN∑
i=1

λ(αN )
i ,

vN−1∑
i=1

λ(αN−1)
i }. (23)

Because of that, again scanning all states with these two Schmidt ranks across all possible pairs of partitions we get

Fmax((vN , vN−1), Ψ ) = max
(αN ,αN−1)

min{
vN∑
i=1

λ(αN )
i ,

vN∑
i=1

λ(αN−1)
i }, (24)

and so on an so forth for increasing number of entanglement-dimensionality vector elements.
In general, the maximal fidelity with respect to the target state |Ψ⟩ obtained for any state, given a fixed entanglement dimen-

sionality vector v is calculated as

Fmax(v, Ψ ) = max
(α1,...,αN )

min{
vN∑
i=1

λ(αN )
i , . . . ,

v1∑
i=1

λ(α1)
i }, (25)

where λ(α j)
i are the non-increasingly ordered squared Schmidt coefficients of |Ψ⟩ across the bipartition α j.
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Let us clarify this with a concrete example in a tripartite system with Hilbert space H = C3 ⊗ C3 ⊗ C3. Let us consider as a
target the GHZ state as in Eq. (8) with d = 3 and N = 3, which has entanglement dimensionality vectorSN↓

(∣∣∣Ψ3
GHZ

〉)
= (3, 3, 3).

In this case we also simply have

λ(α=1) = λ(α=2) = λ(α=3) =
(

1
3 ,

1
3 ,

1
3

)
, (26)

because the state is invariant under permutation of the parties and the one-body marginals are all maximally mixed. Let us now
try to find the maximal fidelity with

∣∣∣Ψ 3
GHZ

〉
among all states that have an ordered Schmidt number vector given by v = (3, 3, 2),

namely calculate Fmax(v = (3, 3, 2), Ψ3
GHZ). For this case, we have to check all pure states that have (non-ordered) Schmidt rank

vectors given by s1 = (3, 3, 2), s2 = (3, 2, 3) and s3 = (2, 3, 3). For this specific target state we actually always get the same
bound, which is

Fmax(v = (3, 3, 2), Ψ3
GHZ) ≤

2
3
. (27)

At the same time, the symmetry of the state has also the consequence that the same bound holds for all given v such that their
smallest element is a given vN (which is equal to two in this example). Thus, with the fidelity with GHZ states we can only
distinguish states with a given vN . In particular, for a canonical GHZ state (8) with all particles of dimension d and we get the
bound

Fmax(vN , Ψd
GHZ) ≤

vN
d
, (28)

which we are going to explain in more detail later.

Correlation tensor norm

Klöckl and Huber proposed a criterion for entanglement-dimensionality vector based on the 2-norm of the correlation ten-
sor [61], which we are going to summarize in the following. Let us consider a N-qudit density matrix and expand it in terms of
single-particle orthonormal bases:

ϱ =
∑

µ1,...,µN

⟨g(1)
µ1
⊗ · · · ⊗ g(N)

µN
⟩g(1)
µ1
⊗ · · · ⊗ g(N)

µN
, (29)

and consider single-particle bases g(1)
µk that are composed of the identity matrix g(n)

0 = 1d/
√

d and the (normalized) generators of
the su(d) algebra {σ(n)

1 , . . . , σ(n)
d2−1}. In this generalized Bloch decomposition all relevant information about the density matrix is

carried by the correlation tensor among su(d) operators for all possible subsystems. In particular, in [61] the authors considered
the correlations of su(d) observables among all particles[84]:

Tµ1,...,µn = ⟨σ
(1)
µ1
⊗ · · · ⊗ σ(N)

µN
⟩, (30)

where note that the indices µn now run from 1 to d2−1 for each particle. Partitioning the N-particle system in two parts (α|ᾱ) the
marginal state with respect to party α composed of particles {k1, . . . , k|α|} ⊂ {1, . . . ,N} is then characterized by the corresponding
|α|-body tensor:

T (α)
µ1,µ2,...,µ|α|

:= ⟨σ(k1)
µk1
⊗ · · · ⊗ σ

(k|α|)
µk|α|
⟩. (31)

Let us now consider its 2-norm, defined as

∥T (α)∥2 :=
√ ∑

µ1,µ2,...,µ|α|

(
T (α)
µ1,µ2,...,µ|α|

)2
, (32)

where again the indices run from 1 to d2 − 1 for each particle. We then take the K-particle correlation tensor norm, which is
defined as

CK(ρ) :=
N∑

m=K

∑
|α|=m

∥∥∥T (α)
∥∥∥2

2 , (33)
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where m is the number of single parties included in the party α. For example, the 2-particle correlation tensor norm of a tripartite
state is

C2 (ϱ) =
∥∥∥T (12)

∥∥∥2
2 +

∥∥∥T (23)
∥∥∥2

2 +
∥∥∥T (13)

∥∥∥2
2 +

∥∥∥T (123)
∥∥∥2

2 . (34)

Now, since CK(ϱ) is convex, it is possible to find upper bounds that are valid for all pure states with a given Schmidt rank vector
v, and then those will be immediately valid for all mixed states with entanglement dimensionality vector given by v.

To find such an upper bound, the authors of [61] used the constraint

∑
µn

⟨σ(n)
µn
⟩2 ⩾

1
d

(
d
kn
− 1

)2

, (35)

which is valid for all pure states such that the ranks of the single-particle marginals have are kn, along with the relation

tr
(
ϱ2

)
=

 N∑
m=0

∑
|α|=m

∣∣∣T (α)
∣∣∣2 = 1, (36)

where now also the case zero particles subsystems |α| = 0 is formally included.
Thus, every pure state |Ψ⟩ that is such that its single-particle ranks are (k1, k2, . . . , kN), must satisfy the inequality

C2 (|Ψ⟩) ⩽ dN + N − 1 −
∑

n

d
kn
, (37)

which is then extended by convexity to all mixed states such that their single-particle marginals have Schmidt numbers given by
the kn.

As a consequence, violating Eq. (37) indicates that at least one of the single-particle Schmidt numbers of ϱ is greater than the
corresponding rank in the vector (k1, k2, . . . , kN). Different from the full entanglement-dimensionality vector, this vector only
contains local ranks of single particles. The two vectors only coincide for the case N = 3, which corresponds to our examples in
the main text.

Linear entropy vector

Huber et al. introduced a criterion in [13, 14] based on the convex-roof-extended linear entropy vector Elin with elements
defined in Eq. (19) and ordered non-increasingly. Let us recall their method in the following. Let us consider a generic N-
particle pure state, expanded in the computational basis

|Ψ⟩ =
∑
η

cη|η⟩, (38)

where η = (i1, . . . , iN) is a multi-index with N entries, taking values from 0 to dn − 1, where dn is the dimension of particle n. Let
us now consider a partition (α|ᾱ) and denote by (ηα, η′α) the pair of multi-indices that is obtained from (η, η′) by exchanging all
indices corresponding to party α.

For a pure state expanded as in Eq. (38), the linear entropy relative to party α can be expressed as

S lin
α (Ψ ) =

∑
η,η′

∣∣∣cηcη′ − cηαcη′α
∣∣∣2 , (39)

and given any subset of pairs of multi-indices C can be lower bounded as

S lin
α (Ψ ) ≥

1
√
|C|

∑
η,η′∈C

(∣∣∣cηcη′ ∣∣∣ − ∣∣∣cηαcη′α
∣∣∣) . (40)

Because of that, the k-th element of the ordered vector of linear entropies of the marginals can be lower bounded, for pure states,
as

(S ↓k)lin(Ψ ) ≥
1
√
|C|

∑
η,η′∈C

∣∣∣cηcη′ ∣∣∣ − min
Rk⊂{1,...,N}

k∑
m=1

∣∣∣cηαm
cη′αm

∣∣∣ , (41)
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where the minimization is over all subsets of bipartitions Rk = {α1, . . . , αk} ⊂ {1, . . . ,N} with cardinality equal to k.
This relation can be generalized to mixed states through the application of inf(A − B) ≥ inf A − sup B, which then allows

to minimize over all decomposition D(ρ). As a result one gets the following lower bound for the k-th component of the linear
entropy vector:

(E↓k)lin(ϱ) ≥
1
√
|C|

∑
η,η′∈C

∣∣∣⟨η| ϱ ∣∣∣η′〉∣∣∣ −min
Rk

k∑
m=1

√〈
ηαm

∣∣∣ ϱ ∣∣∣ηαm

〉 〈
η′αm

∣∣∣ ϱ ∣∣∣η′αm

〉 , (42)

which depends on a chosen subset of pair of indices C. Then the elements vk in the Schmidt number vector are bounded by using
the relation

(E↓k)lin(ϱ) ≤

√
2
(
1 −

1
vk

)
, (43)

which must hold for all states such that

SN
↓

k(ϱ) ≤ vk. (44)

This method thus, gives some flexibility in choosing the best set of indices C so to optimize the detection of a given state. For
example, for the GHZ state

∣∣∣Ψ 3
GHZ

〉
= 1
√

3
(|000⟩+ |111⟩+ |222⟩), that is the paradigmatic example that we consider for comparison,

proper choices of C are Ck = {(000, 111), (000, 222), (111, 222)}, with k = 1, 2, 3.
The other exemplary states that we consider are of the form (17), namely

|ψ432⟩ (c) := c1 |000⟩ + c2 |111⟩ + c3 |012⟩ + c4 |123⟩ (45)

mixed with white noise. For such states in our numerical calculations we consider the following choices:

C1 = {(000, 111), (000, 123), (012, 123), (000, 012), (111, 123), (111, 012)},
C2 = {(000, 111), (000, 123), (012, 123), (000, 012), (111, 123)},
C3 = {(000, 111), (000, 123), (012, 123)}.

(46)

The CMC for Schmidt number and its corollary

We consider the (symmetric) covariance matrix, that for a generic vector of (hermitian) operators M = (M1, . . . ,MK) is
defined as

[Γϱ(M)] jk := 1
2 ⟨M jMk + Mk M j⟩ϱ − ⟨M j⟩ϱ⟨Mk⟩ϱ. (47)

The covariance matrix is: (i) positive for all states ϱ and all vectors of operators M and (ii) concave for mixing the quantum
state, i.e., Γpϱ1+(1−p)ϱ2 ≥ pΓϱ1 + (1 − p)Γϱ2 .

In particular, fixed a bipartition αwe consider the covariance matrix of a couple of orthonormal bases g = (gα, gᾱ). Calculated
on a generic mixed state ϱ, this assumes the block form

Covϱ(g) := Γ(α)
ϱ =

(
γα Xϱ

XT
ϱ γᾱ

)
, (48)

in which the diagonals γα := Covϱα (gα) and γᾱ := Covϱᾱ (gᾱ) are the covariance matrices of each party, and the off-diagonal
blocks are

(Xϱ)kl = ⟨g
(α)
k ⊗ g(ᾱ)

l ⟩ϱ − ⟨g
(α)
k ⟩ϱ⟨g

(ᾱ)
l ⟩ϱ, (49)

namely the cross-covariances between the single-party observables vectors. It is useful to recall that this matrix can be brought
in a block singular value decomposition with a suitable local orthogonal transformation OΓ(α)

ϱ OT , with O = Oa ⊕ Ob. This
corresponds to an orthonormal change of local bases g 7→ g′ = Og.

Let us then consider a density matrix ϱ such that its Schmidt number across bipartition labelled by α is s(ϱ) ≤ rα. We
know [62] that every such a density matrix must satisfy

Γ(α)
ϱ ≥

∑
k

pkΓ
(α)
ψrα

k
, (50)
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where
∣∣∣ψrα

k

〉
are generic pure states with Schmidt rank smaller or equal to rα across partition (α|ᾱ) that provide the boundary

covariance matrices. This has been proven in [62] by using essentially concavity of the covariance matrix, and at the same time
a general form of the boundary covariance matrices for the pure Schmidt-rank-r states has been provided.

Corollaries of Eq. (50) were also studied in [62], and especially one can write the following relation in terms of the trace norm
of the blocks:

fα(ϱ) := tr|X(α)
ϱ | −

√
[1 − tr(ϱ2

α)][1 − tr(ϱ2
ᾱ)] + 1 ≤ rα, (51)

which is a relation that must hold for all states that have a Schmidt number of at most rα across the bipartition (α|ᾱ). Here, ϱα is
the reduced density matrix relative to party α and ϱᾱ is the reduced density matrix of its complement. Below we repeat the idea
of the proof as an illustration for the subsequent proof of our criterion in the multipartite scenario.

Consider the matrix ∆ := Γϱ −
∑

k pkΓ
(k)
r , which due to Eq. (50) must be positive for all Schmidt-number-r states. Positivity

of a block matrix implies the inequality (see e.g., [85])

tr|∆α| · tr|∆ᾱ| ≥ tr|(∆T
X∆X)1/2|2, (52)

where we have labelled the blocks ∆α,ᾱ,X in analogy with a generic covariance matrix. The above inequality is equivalent to the
following family of inequalities

tr(∆α) + 4t2tr(∆ᾱ) ≥ 4|t|tr|∆X | ≥ 4|t|(tr|Xϱ| − tr|Xψr |), (53)

where t is a real parameter. Here, in the last inequality we substituted the expression ∆X = Xϱ − Xψr and used the triangle
inequality.

Since ∆α and ∆ᾱ are positive (being principal minors of ∆) we have

tr(∆α) = tr(γα) − tr(κα) = 1 − tr(ϱ2
α) − EL(ψr) (54)

and analogously for tr(∆ᾱ) where where EL(ψ) = 1 −
∑

k(λψ)2
k is the linear entanglement entropy of a pure bipartite state with

squared Schmidt coefficients given by (λψ)k. To derive Eq. (54) we used that

tr(γϱ) = d − tr(ϱ2) (55)

holds for a generic single qudit covariance matrix and we consider the generic (optimal) pure Schmidt rank-r state |ψr⟩.
The rest of the proof consists basically in exploiting the bound

tr|Xψr | ≤ r − 1 + EL(|ψr⟩), (56)

which was proven in [62]. Substituting all the relations above into Eq. (53) we obtain

1 − tr(ϱ2
α) − EL(|ψr⟩) + 4t2(1 − tr(ϱ2

ᾱ) − EL(|ψr⟩)) ≥ 4|t|(tr|Xϱ| − r + 1 − EL(|ψr⟩)), (57)

which can be rearranged to

(1 − 4|t| + 4t2) ≥ (1 − 4|t| + 4t2)(1 − EL(|ψr⟩)) ≥ tr(ϱ2
α) + 4t2tr(ϱ2

ᾱ) + 4|t|(tr|Xϱ| − r). (58)

Thus, we have that

(1 − 4|t| + 4t2) − tr(ϱ2
α) − 4t2tr(ϱ2

ᾱ) − 4|t|(tr|Xϱ| − r) ≥ 0 (59)

holds for all values of t. Minimizing the left-hand side over t we get that the minimum is achieved for 2|t| = (tr|Xϱ| − r + 1)/(1 −
tr(ϱ2

ᾱ)) and results in Eq. (51).
Afterwards, we observe that given the inequality (51) one can find weaker conditions. For example, by using the inequality

between arithmetic and geometric mean, we can find the bound

fα(ϱ) ≥ tr|X(α)
ϱ | +

tr(ϱ2
α) + tr(ϱ2

ᾱ)
2

≥ tr(X(α)
ϱ ) +

tr(ϱ2
α) + tr(ϱ2

ᾱ)
2

, (60)

which would lead to the criterion:

tr(X(α)
ϱ ) +

tr(ϱ2
α) + tr(ϱ2

ᾱ)
2

≤ rα. (61)
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Note that this criterion can be also directly obtained from Eq. (59) for t = 1/2. Interestingly, an even weaker criterion is related
to the fidelity with respect to states that are maximally entangled across the partition α and reads

d2
α∑

K=1

⟨g(α)
K ⊗ g(ᾱ)

K ⟩ϱ ≤ rα, (62)

where dα is a shorthand notation for min{dα, dᾱ}, i.e., the smaller of the two dimensions between the parties and {g(α)
µ }, {g

(ᾱ)
µ } are

basis of observables for the two parties. To prove Eq. (62) we simply observe that

tr(ϱ2
α) + tr(ϱ2

ᾱ) + 2tr|X(α)
ϱ | ≥

d2
α∑

K=1

(
⟨g(α)

K ⟩
2 + ⟨g(ᾱ)

K ⟩
2 − 2⟨g(α)

K ⟩⟨g
(ᾱ)
K ⟩ + 2⟨g(α)

K ⊗ g(ᾱ)
K ⟩

)
=

d2
α∑

K=1

[(
⟨g(α)

K ⟩ − ⟨g
(ᾱ)
K ⟩

)2
+ 2⟨g(α)

K ⊗ g(ᾱ)
K ⟩

]
≥ 2

∑
K

⟨g(α)
K ⊗ g(ᾱ)

K ⟩,

(63)

where {g(α)
K } and {g(ᾱ)

K } are optimally chosen as the bases that bring X(α)
ϱ in its singular-value decomposition. Note also that we

can derive a bound similar to the above by considering any other two bases {g̃(α)
K } and {g̃(ᾱ)

K } and also by discarding some of the
indices K. This is because each of the terms inside the sum in Eq. (63) come from the singular value decomposition of X(α)

ϱ and
are positive.

When there is only one bipartition, i.e., in the bipartite case, the criterion in Eq. (62) is related to the fidelity with respect to a
(optimal) maximally entangled state ∣∣∣Ψd

〉
=

1
2

∑
K

gK ⊗ gK , (64)

that is constructed from the optimally chosen bases {g(α)
K } and {g(ᾱ)

K } [62].

Proof of Eq. (11)

Let us consider a mixed state ϱ such thatSN↓(ϱ) = (v1, v2, . . . , vN ). From the assumption on the entanglement dimensionality
vector we know that we can find a decomposition of the form

ϱ =
∑

k

pkϱsk , (65)

where pk are probabilities and ϱsk are states with a given (unordered) Schmidt number vector sk that is such that (s↓k) j ≤ v j when
the components of sk are ordered non-increasingly. Thus, simply from concavity of the covariance matrix, we can derive the
matrix inequality analogous to Eq. (50) for the covariance matrix of ϱ relative to the partition α, which we write as

Γ(α)
ϱ ≥

∑
k

pkΓ
(α)
sk := Γ(α)

v , (66)

where the bound on the right-hand side contains a mixture of covariance matrices of pure states with different Schmidt numbers
sk,α.

For these pure state boundary covariance matrices, we can use the relation

tr|Xψ| ≤ s − 1 + EL(ψ), (67)

and summing up all the terms in the decomposition in Eq. (65) we get that

tr|X(α)
v | ≤

∑
k

pk
(
sk,α − 1 + EL(ψk,α)

)
, (68)

where X(α)
v denotes the off-diagonal block of the boundary covariance matrix Γ(α)

v .
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The diagonal blocks of Γ(α)
v are given by

κ(α)
v =

∑
k

pkκ
(α)
sk ,

κ(ᾱ)
v =

∑
k

pkκ
(ᾱ)
sk ,

(69)

where κ(α)
sk and κ(ᾱ)

sk are covariance matrices of pure states with Schmidt number vector given by sk. Thus, we can again bound
their traces by using the relation

tr(κ(α)
sk ) = dα − 1 + EL(ψk,α),

tr(κ(ᾱ)
sk ) = dᾱ − 1 + EL(ψk,α),

(70)

where EL(ψk,α) is the linear entanglement entropy of the pure boundary state
∣∣∣ψk,α

〉
, that has Schmidt number vector sk.

Thus, the trace norms of the diagonal blocks of Γ(α)
v (which are positive) are given by

tr|κ(α)
v | = tr(κ(α)

v ) =
∑

k

pktr(κ(α)
sk ) =

∑
k

pkdα − 1 +
∑

k

pkEL(ψk,α),

tr|κ(ᾱ)
v | = tr(κ(ᾱ)

v ) =
∑

k

pktr(κ(ᾱ)
sk ) =

∑
k

pkdᾱ − 1 +
∑

k

pkEL(ψk,α).
(71)

Using these bounds and following the steps of the proof of Eq. (51) we get to the bound

tr|X(α)
ϱ | −

√(
1 − tr(ϱ2

α)
) (

1 − tr(ϱ2
ᾱ)

)
≤ Rα − 1, (72)

where Rα =
∑

k pk sk,α. Considering all the inequalities of this form for all α we also get the constraints on the full vector R to be
R ≺ v, i.e.,

K∑
l=1

R↓l ≤
K∑

l=1

∑
k

pk s↓k,l ≤
K∑

l=1

vl. (73)

This is due to the fact that the vector R↓ =
∑

k pk s↓k = MR where M is a doubly stochastic matrix and the elements of the vector
s↓k are upper bounded by the elements of v. □

Proof of Eq. (15)

Here we derive a condition analogous to Eq. (62) for the multipartite case. This case is more complex because the various
bipartitions have different bases with different dimensions. In such a case, one way to relate the expression in Eq. (62) to fidelities
is as follows. Let us consider the bases of the parties α and ᾱ constructed from the single-particle bases:

{g(α)
K } = {g

(n)
µ ⊗ g(m)

ν ⊗ . . . }n,m···∈α, (74)

and similarly for {g(ᾱ)
K }. Let us also consider only the indices K = (µ, µ, µ . . . ) with 1 ≤ µ ≤ d and d = minn dn being the minimal

dimension among the particles.
Let us now consider the criterion in Eq. (62), now for pure states that have Schmidt rank at most rα across partition α. By

considering the above bases with the restricted set of indices, Eq. (62) can be rewritten as

d2∑
K=1

⟨g(α)
K ⊗ g(ᾱ)

K ⟩ϱ =

d2∑
µ=1

⟨g(1)
µ ⊗ · · · ⊗ g(N)

µ ⟩ ≤ rα, (75)

and in this way the left-hand side is the same for all partitions. This is important because in this way we get a condition that can
be minimized over all α and leads to

d2∑
K=1

⟨g(1)
µ ⊗ · · · ⊗ g(N)

µ ⟩ ≤ min
α

rα := vN , (76)
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which is thus a criterion that must be valid for all pure states such that their minimal entanglement dimensionality is smaller
than or equal to vN . The other advantage now is that the left-hand side is linear under mixing the quantum state. Thus the same
criterion remains valid for all density matrices of the form

ϱ =
∑

k

pkϱsk , (77)

where the ϱsk are pure states such that their minimal entanglement dimensionality across all partitions is upper bounded by vN .
Afterwards, we can also observe that such a criterion relates to fidelities with 1-uniform states. To observe this let us consider

the following state: ∣∣∣Ψ d
1−uni

〉〈
Ψ d

1−uni

∣∣∣ = 1
d

d2∑
µ=1

g(1)
µ ⊗ · · · ⊗ g(N)

µ . (78)

It is easy to see that the fidelity between a density matrix ϱ and
∣∣∣Ψ d

1−uni

〉
is given by

tr
(
ϱ
∣∣∣Ψ d

1−uni

〉〈
Ψ d

1−uni

∣∣∣) = 1
d

d2∑
µ=1

⟨g(1)
µ ⊗ · · · ⊗ g(N)

µ ⟩ϱ. (79)

Now, let us also derive the bound on such a fidelity for states with a given entanglement-dimensionality vector v. As we explained
earlier, we have to maximize the overlap between

∣∣∣Ψ d
1−uni

〉
and any pure state |Φr⟩ with ordered Schmidt rank vector given by v

and this is obtained by considering the Schmidt decompositions of
∣∣∣Ψ d

1−uni

〉
for all bipartitions.

We consider here for simplicity the case in which the state is invariant under permutation of the particles. This is obtained
when the matrices g(n)

µ are equal for all the parties. Thus, to understand its Schmidt rank across different bipartitions what matters
is just the number of particles in each given party. For example, let us consider the bipartition α = (1|2 . . .N). The vector of
squared Schmidt coefficients of

∣∣∣Ψ d
1−uni

〉
across this bipartition is given by:

λ(α=1)(Ψ d
1−uni) =

(
1
d , . . .

1
d , 0, . . . , 0

)
, (80)

where the number of coefficients equal to 1/d is d. The same vector of squared Schmidt coefficients we would get for every
partition that is of the form (1|N−1), i.e., one particle is on party a and N−1 particles are on party b. Actually the same vector of
squared Schmidt coefficients arises for every bipartition, i.e., there are always just d nonzero values of λ(α)

k , which are all equal
to 1/d. Thus, the Schmidt number vector of such a state is given by

v(Ψ d
1−uni) = (d, . . . , d). (81)

Now, let us look for the maximal fidelity of such a state with any pure N-qudit state that is such that its Schmidt rank across the
bipartition labelled by α (e.g., α = (1|2 . . .N)) is equal to rα. Again, this is given by

rα∑
k=1

λ(α)
k =

rα
d
, (82)

and the same expression is obtained for all partitions. Thus, we have that the maximal overlap between
∣∣∣Ψd

1−uni

〉
and any pure

state |Φr⟩ with Schmidt rank vector given by r = (r1, . . . , rN ) is given by∣∣∣∣〈Φr
∣∣∣Ψ d

1−uni

〉∣∣∣∣2 ≤ min
α

rα∑
k=1

λ(α)
k = min

α

rα
d
, (83)

which then leads to the fidelity bound:

tr
(
ϱ
∣∣∣Ψ d

1−uni

〉〈
Ψ d

1−uni

∣∣∣) = 1
d

d2∑
µ=1

⟨g⊗N
µ ⟩ϱ ≤ min

α

rα
d
. (84)

Here in the equality we used the expression in Eq. (79). We have thus observed that Eq. (76) is equivalent to a fidelity bound
with respect to a 1-uniform state, of which the GHZ state is an example. Note also that, for a given ϱ one can consider many
possible bases g(n)

µ and thus many possible corresponding fidelities to target 1-uniform states. The optimal case is given by a
basis of this type that is also such that the matrix X(α)

ϱ with α = (n|1 . . . n − 1n + 1 . . .N) is in its singular value decomposition.
Hence, this can be obtained by performing a singular value decomposition of the different X(n)

ϱ for all the bipartitions of the form
(n|1 . . . n − 1n + 1 . . .N).
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