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Abstract

The Quantum Alternating Operator Ansatz (QAOA) represents a branch of quantum algorithms
designed for solving combinatorial optimization problems. A specific variant, the Grover-Mixer
Quantum Alternating Operator Ansatz (GM-QAOA), ensures uniform amplitude across states that
share equivalent objective values. This property makes the algorithm independent of the problem
structure, focusing instead on the distribution of objective values within the problem. In this
work, we prove the probability upper bound for measuring a computational basis state from a GM-
QAOA circuit with a given depth, which is a critical factor in QAOA cost. From this, we derive the
upper bounds for the probability of sampling an optimal solution and for the approximation ratio
of maximum optimization problems, based on the objective value distribution. Using numerical
analysis, we link the distribution to the problem size and build the regression models that relate
the problem size, QAOA depth, and performance upper bound. Our results suggest that the GM-
QAOA provides a quadratic enhancement in sampling probability and requires circuit depth that
scales exponentially with problem size to maintain consistent performance.

1 Introduction

Combinatorial optimization problems are continuously studied by both industry and academia due
to their broad applicability and inherent complexity. Since the number of possible solutions grows
exponentially with the problem size, the computational cost of finding the exact optimal solution sky-
rockets. This challenge motivates the development of heuristic methods to find approximate solutions
in a reasonable time [15, 16]. In recent years, this area of research has also been activated in the
context of quantum computing [4, 11,17,19].

A popular family of quantum algorithms for addressing combinatorial optimization problems is
the Quantum Alternating Operator Ansatz (QAOA) [2, 5, 11, 12, 20]. Inspired by the principles of
adiabatic quantum computing [6], QAOA algorithms prepare a parameterized quantum state through
an alternating sequence of operations repeated for a pre-defined number of rounds p, known as the
circuit depth. Many works have theoretically and numerically analyzed the effect of circuit depth
on the quality of solutions obtained from QAOAs [1, 14, 18, 22], including Grover-Mixer Quantum
Alternating Operator Ansatz (GM-QAOA) [2,3, 8].

The GM-QAOA [2] initializes the quantum circuit in a uniform amplitude superposition of states
encoding all possible solutions in the search space, and the search space is maintained by the Grover
mixer. This allows GM-QAOA to inherently preserve feasibility for constrained problems like the
traveling salesman problem and the capacitated vehicle routing problem, given efficient preparation
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of the feasible state superposition [2,21]. Additionally, GM-QAOA assigns equal amplitudes to states
corresponding to the same objective value, causing the algorithm’s performance to be determined
solely by the distribution of objectives. [3] analyzes the least circuit depth p required by GM-QAOA to
achieve a targeted performance, establishing theoretical bounds by extending the theorem on quantum
annealing time [7]. However, this depth scaling may not be tight, as numerical experiments in [8]
suggest conflicting behaviors, showing the exponential growth of the required GM-QAOA depth as
the problem size increases.

In this work, we derive upper bounds on the performance of GM-QAOA in terms of two key
metrics: the probability of sampling the optimal solution and the approximation ratio. These bounds,
which are dependent on the objective value distribution, emerge from our proof of an upper limit on
the probability of measuring a computational basis state from the GM-QAOA circuit. To evaluate
the scalability of the GM-QAOA, we apply numerical analysis to the objective value distributions
of several widely studied combinatorial optimization problems of varying sizes, where the problem
definitions and instance sets are detailed in Section 5.3. Additionally, we propose predictive models
for these bounds and validate them through comparisons with GM-QAOA simulation results. Our
findings provide further evidence of the exponential resource requirements of GM-QAOA for solving
combinatorial optimization problems as the instance size increases.

2 Background of the GM-QAOA

A combinatorial optimization problem is defined by (F,C), where search space F represents the finite
set of possible solutions, and C : F → R is the objective function that assigns a numerical value to
each solution in F . The goal is to find an optimal solution that maximizes or minimizes the objective
function, mathematically formulated as,

argopt
f∈F

C(f). (1)

For a given problem (C,F ), QAOA approaches yield solutions by performing measurements in the
computational basis of parameterized quantum circuits, |ψ(θ)⟩. Here, the parameter θ is typically
tuned by optimizing the expected value E(θ),

E(θ) := ⟨ψ(θ)|HC |ψ(θ)⟩, (2)

where the problem Hamiltonian, HC , satisfies ⟨f |HC |f⟩ = C(f), ∀f ∈ F . Specifically, |f⟩ represents
the computational basis state encoding the solution f .

The GM-QAOA [2] prepares a parameterized state |ψp,C,F (γ,β)⟩ from a uniform amplitude super-
position, denoted as |F ⟩,

|F ⟩ := 1√
|F |

∑
f∈F
|f⟩. (3)

Then, the state evolves through p repetitions of two distinctive types of operation, U
(P )
C and U

(M)
F ,

which is given by

|ψp,C,F (γ,β)⟩ := U
(M)
F (βp)U

(P )
C (γp) · · ·U (M)

F (β2)U
(P )
C (γ2)U

(M)
F (β1)U

(P )
C (γ1)|F ⟩, (4)

where p denotes the pre-defined QAOA depth and γ = [γ1, γ2, · · · , γp]T , β = [β1, β2, · · · , βp]T are

tunable circuit parameters. The phase separation operation, U
(P )
C , functions as,

U
(P )
C (γ)|f⟩ = e−iγC(f)|f⟩. (5)

Here, we name C : F → R as the “phase function”. Generally, it is pre-defined as C(f) := C(f), and

U
(P )
C := e−iγHC . [9] introduces a threshold-based strategy,

C(f) =

{
1 C(f) ⩽ th

0 otherwise
(6)
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where threshold, th, is an additional tunable parameter. The mixing operation U
(M)
F in the GM-QAOA

is defined as,

U
(M)
F (β) := e−iβ|F ⟩⟨F |

= I − (1− e−iβ)|F ⟩⟨F |,
(7)

which has a Grover-like form [10].
We adopt two metrics to evaluate the effectiveness of states prepared by the GM-QAOA:

Definition 1 (Probability of sampling the optimal solution). Given a problem (F,C), let F ∗ denote
the set of optimal solutions, where F ∗ := {f∗|f∗ = argoptf∈F C(f)}. Let |ψ(θ)⟩ be the prepared
quantum state (i.e., |ψp,C,F (γ,β)⟩ in the GM-QAOA), then the probability of sampling the optimal
solution denoted λ, is defined as,

λ :=
∑

f∗∈F ∗

|⟨f∗|ψ(θ)⟩|2; (8)

Definition 2 (Approximation ratio). Given a maximum optimization problem (F,C), let HC de-
note the problem Hamiltonian. the approximation ratio of a prepared quantum state, |ψ(θ)⟩ (i.e.,
|ψp,C,F (γ,β)⟩ in the GM-QAOA), denoted α, is defined as,

α :=
⟨ψ(θ)|HC |ψ(θ)⟩
maxf∈F C(f)

. (9)

The probability of sampling an optimal solution, λ, directly influences the QAOA time-to-solution
(TTS), which is defined as 1

λ [18]. This represents the expected number of measurements required to
sample an optimal solution from the QAOA state. Additionally, the approximation ratio, α, is widely
adopted in the research for evaluating approximation algorithms. It provides a measure of how close
the solution given by QAOA is to the optimal solution. This work establishes upper bounds for both
metrics of the constant depth GM-QAOA circuits.

3 Results

3.1 Performance Upper Bound

In this section, we introduce theoretical upper limits on the probability of measuring a computational
basis state from GM-QAOA circuits. Building on this foundational result, we further derive upper
bounds for the probability of sampling the optimal solution and the approximation ratio achieved by
GM-QAOA. Both bounds are established following definitions of statistical metrics that assess the
distribution of objective function values.

Theorem 1. Given a problem defined with the search space F , using any phase function C : F → R,
the probability of sampling a computational basis state |f⟩ from a depth-p GM-QAOA circuit has an
upper bound that,

|⟨f |ψp,C,F (γ,β)⟩|2 <
(2p+ 1)2

|F |
. (10)

Proof. See Section 5.1 for details and the proof sketch is as follows. The proof begins by expanding
the probability |⟨f |ψp,C,F (γ,β)⟩|2 and introducing a relaxation function G by including new variables,
allowing the same or greater range. The search for the maximum is then narrowed to the set of points
where the partial derivatives of G are zero. This set is further reduced by identifying subsets yielding
identical G outputs. Finally, the maximum value of G is found within this restricted search space,
thereby establishing the upper bound of the probability |⟨f |ψp,C,F (γ,β)⟩|2.

Definition 3 (Optimality density). Given a problem (F,C), and let F ∗ denote the set of optimal
solutions, where F ∗ := {f∗|f∗ = argoptf∈F C(f)}. Then, the optimality density, denoted ρ, is defined
as,

ρ :=
|F ∗|
|F |

. (11)
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Definition 4 (Top-r-percentage mean-max ratio). Given a problem (F,C), sort the solutions as
f (1), f (2), · · · , f (|F |), based on their objective function values, such that

C(f (1)) ⩾ C(f (2)) ⩾ · · · ⩾ C(f (|F |)). (12)

The top-r-percentage mean-max ratio, µr, measures the mean value of top r percentage objective values
over the maximum value, defined as,

µr :=

∑⌈r|F |⌉
i=1 C(f (i))

r|F |C(f (1))
. (13)

Theorem 2. Given a problem (C,F ), where the optimality density of the distribution of objective
values is ρ. Then, the probability of sampling the optimal solution from a depth-p GM-QAOA circuit
is bounded as,

λ < (2p+ 1)2ρ. (14)

Proof. By applying the probability upper bound from Theorem 1 to each optimal solution and sum-
ming over, then, we get the upper bound for probability of sampling the optimal solution.

Theorem 3. Given a problem (C,F ), where the top-r-percentage mean-max ratio is considered as µr.
Then, a depth-p GM-QAOA circuit can achieve an approximation ratio, α, with an upper bound given
by,

α ⩽ µ 1
(2p+1)2

. (15)

Proof. See Section 5.2.

3.2 Optimal Solution Sampling Probability Scaling

In this section, we examine the optimality density (ρ) of the objective value distribution for increasing
problem sizes across three specific problems, where the search space can be limited to feasible sets
when using GM-QAOA: traveling salesman problem, max-k-colorable-subgraph, and max-k-vertex-
cover [2,20]. Then, from Theorem 2, we can assess the upper bound of the probability that GM-QAOA
samples the optimal solution (λ).

The solutions of the TSP are encoded on permutation matrices, using (n − 1)2 bits, where n
represents the number of locations [13]. where the distances between locations vary, there are only 2
optimal solutions. Thus, the optimality density is given

ρ =
2

(n− 1)!
, (16)

and for a depth-p GM-QAOA circuit, the upper bound on the probability of sampling the optimal
solution is

λ <
2(2p+ 1)2

(n− 1)!
. (17)

For the max-k-colorable-subgraph and max-k-vertex-cover problems, we set the k as 3 and n
2 ,

respectively, where n is the graph vertices number. As illustrated in Figure 1, the optimality density
(ρ) for both problems shows an exponential decrease as the problem size (n) increases. Using linear
regression on log(ρ) against n, we develop a predictive model for the upper bound of λ as,

λ̂θ(n, p) := min
(
(2p+ 1)2eθ1n+θ2 , 1

)
(18)

where θ = [θ1, θ2] is the regression coefficient.
Figure 2 further validates the tightness of these upper bounds by comparing them with λ sampled

from optimized GM-QAOA circuits across depths ranging from 1 to 9. In this analysis, the circuit
parameters are tuned to maximize λ, directly. The (fitted) upper bounds exhibit a consistent downward
trend to the sampled λ, as the problem size increases. Meanwhile, the benefits of increasing the
circuit depth progressively diminish in the logarithm, indicating the depth-quadratic enhancement of
λ provided by GM-QAOA cannot offset the exponential decrease in the optimality density.
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Figure 1: Optimality density (ρ) sampling from max-k-colorable problems (a) and max-k-vertex prob-
lems (b), across various problem sizes (i.e., number of graph vertices, n), with 48 instances for each
size. Blue points represent the sampled data, with error bars indicating the 0.95 confidence interval
for the mean. Red lines show the linear regression results, illustrating an exponential decrease in
optimality density.
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(c) max-k-vertex-cover

Figure 2: Probability of sampling the optimal solution (λ) and its upper bound for GM-QAOA circuits
in solving the traveling salesman problem (a), max-k-colorable-subgraph problems (b), and max-k-
vertex-cover problems (c), across various problem sizes n, with 48 instances for each size. The upper
bounds for the traveling salesman problems are derived from Equation (17), while those for the other
two problem types are obtained from Equation (18).

3.3 Approximation Ratio Scaling

This section extends the investigation to the pattern of the top-r-percentage mean-max ratio, µr. We
sample distributions of objective values from three maximizing problems: max-k-colorable-subgraph,
max-cut, and max-k-vertex-cover. Figure 3 visualizes how µr varies with the changes in the problem
size n, and log(1r ), where data points with similar µr values are connected by lines. The plot shows
that for a constant µr, log(

1
r ) exhibits an approximately linear behavior with respect to problem size

n. We further assume that log(1r ) has a quadratic relationship with µr, then the fitting model for µr
can be built as,

µ̂θ(n, r) :=

√
− log(r)

θ1n+ θ1
+

θ3

1 + e−θ4(n−θ5)
, (19)

where θ = [θ1, θ2, . . . , θ5] is the regression parameter. For the max-k-colorable-subgraph problems,
since the sampled distribution exhibits the same value for µ1, we adjust the model as,

µ̂θ(n, r) :=

√
− log(r)

θ1n+ θ1
+ θ3, (20)
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Figure 3: Top-r-percentage mean-max ratio (µr) of max-k-colorable-subgraph, max-cut and max-k-
vertex-cover problem. Each data point is composed of (n, log(1r ), µr), where n is the problem size, and
µr is the averaged value of µr over 48 different instances of the respective problems. The lines connect
data points with the similar µr value. The color bar maps the colors of lines and data points to the
corresponding µr value.
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Figure 4: Regression results for the top-r-percentage mean-max ratio (µr). The averaged values of
sampled µr are visualized using pink wireframes. The fitted values, µ̂θ(n, r), where r is set to

1
(2p+1)2

,

are depicted using lines colored with the Viridis palette. The color bar maps these colors to their
corresponding p values.

where θ3 is specifically set to equal µ1. The fitting results are presented in Table 1 and visualized in
Figure 4.

Using the fitting results, we can predict the upper bound for the approximation ratio achieved by
depth-p GM-QAOA as,

α̂θ(n, p) := min

(
µ̂θ(

1

(2p+ 1)2
, n), 1

)
. (21)

Figure 5 presents a comparative analysis between α̂ and the empirically obtained approximation ratios
α from optimized GM-QAOA circuits across depths ranging from 1 to 9. The results show that most
of the predicted upper bounds are higher than the true values of α. Furthermore, the data points are
generally close to the line of equality, which implies the gap between the predicted upper bound and
the true value is controlled, making these upper-bound predictions reliable. Hence, according to the
definition of the fitting model, we conjecture as follows.

Conjecture 1. Given a family of problems with a certain objective function structure. As the problem
size increases, achieving a target approximation ratio greater than a certain value requires the depth
of GM-QAOA to grow exponentially with respect to the problem size.
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Table 1: Regression results for top-r-percentage mean-max ratio µr

parameters of regression model

θ1 θ2 θ3 θ4 θ5

max-k-colorable-subgraph 7.68e+ 0 −1.12e+ 1 6.67e− 1 – –
max-cut 1.38e+ 1 −1.20e+ 2 8.09e− 1 7.19e− 2 −1.10e+ 1
max-k-vertex-cover 5.21e+ 1 −5.98e+ 2 8.90e− 1 1.20e− 1 −6.21e+ 0
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Figure 5: Comparison of Approximation ratio (α) and predicted upper bound (α̂). The dashed gray
line represents the line of equality.

4 Conclusion

In this work, we prove an upper bound of (2p+1)2

|F | on the probability of measuring a computational

basis state from a depth-p GM-QAOA state, where |F | denotes the number of solutions within the
search space. Based on this result, we derive upper bounds on two performance metrics for the GM-
QAOA: the probability of sampling the optimal solution (λ), and the approximation ratio (α). These
upper bounds are formulated in terms of the statistical metrics we defined for objective value distri-
bution, namely the optimality density (ρ) and the top-r-percentage mean-max ratio (µr), respectively.
Through regression analysis on ρ and µr, we developed predictive models that enable us to estimate
the upper bounds of λ and α for problem instances according to the problem size. The tightness of
these predicted upper bounds is validated by comparing them against the λ and α values obtained from
optimized GM-QAOA circuits. As the enhancement in measurement probability offered by increasing
the depth of GM-QAOA is at best quadratic, thus, from the definition of the predictive model, we
conjecture that as the problem size scales up, GM-QAOA would necessitate an exponential increase
in circuit resources to maintain a consistent level of performance.

5 Methods

5.1 Proof of Theorem 1

In this section, we present the derivation of our main result, Theorem 1, which provides the upper
bound on the probability of measuring a computational basis state from a GM-QAOA state with a
given depth. We begin by introducing two key notations and deriving two essential lemmas.

Notation 1. Define
([p]
k

)
as the set of all possible combinations of choosing k elements from [p] :=

{1, 2, · · · , p}, where each combination s ∈
([p]
k

)
is a vector whose entries are in ascending order.

Notation 2. Let S be a set of vectors, where each s = [s1, s2, · · · , s|s|]. Define the operations ◁nS
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and S▷n as follows,

◁n S :=
{
[n, s1, s2, · · · , s|s|]

∣∣s ∈ S} , (s0 := n,∀s ∈ ◁nS),

S▷n :=
{
[s1, s2, · · · , s|s|, n]

∣∣s ∈ S} , (22)

where ◁nS prepends and S▷n appends the number n to every vector in the set S, respectively, resulting
in new sets of vectors.

Lemma 1. Consider a depth-p GM-QAOA circuit with parameters β ∈ Sm, Sm :=
⋃

s∈([p]m)
{β | βi =

2kiπ, ki ∈ Z,∀i ∈ s;βj ∈ R,∀j /∈ s}, containing m elements as integral multiples of 2π, while the
remaining p−m parameters are any real number, then, this depth-p circuit reduces to a depth-(p−m)
circuit.

Proof. From Equation 7, for any search space F , operation U
(M)
F (2kπ) = I, ∀k ∈ Z, resulting in no

alteration to the circuit’s behavior.
When βp = 2kπ, k ∈ Z, the circuit,

|ψp,C,F (γ,β)⟩ = U
(P )
C (γp)U

(M)
F (βp−1)U

(P )
C (γp−1) · · ·U (M)

F (β1)U
(P )
C (γ1)|F ⟩. (23)

According to Equation 5, the last operation, U
(P )
C (γp) merely shifts the phase of each computational

basis state without altering the measurement probabilities. Consequently, operation U
(M)
F (βp)U

(P )
C (γp)

can be considered canceled.
When βj = 2kπ, k ∈ Z, j ̸= p, the circuit,

|ψp,C,F (γ,β)⟩ = · · ·U (M)
F (βj+1)U

(P )
C (γj+1)U

(P )
C (γj) · · · |F ⟩. (24)

From Equation 5, we can derive,

U
(P )
C (γj+1)U

(P )
C (γj)|f⟩ =e−i(γj+1+γj)C(f)|f⟩

=U
(P )
C (γj+1 + γj)|f⟩, f ∈ F.

(25)

Hence, let γj+1 ← γj+1 + γj , the operation U
(M)
F (βj)U

(P )
C (γj) is equivalent to being canceled.

Lemma 2. Given a problem defined with the search space F . Consider a depth-p GM-QAOA circuit
using a phase function C, with parameters γ ∈ Sm, Sm :=

⋃
s∈([p]m)

{γ | γiC(f) = 2ki,fπ, ki,f ∈ Z,∀i ∈
s, ∀f ∈ F ; γj ∈ R,∀j /∈ s}, then, this depth-p circuit reduces to a depth-(p−m) circuit.

Proof. From Equation 5, if γC(f) = 2kfπ, kf ∈ Z, ∀f ∈ F , then U (P )
C (γ)|f⟩ = |f⟩, ∀f ∈ F , resulting

in no alteration to the circuit’s behavior.
When γ1C(f) = 2kfπ, kf ∈ Z, ∀f ∈ F , the circuit,

|ψp,C,F (γ,β)⟩ = U
(M)
F (βp)U

(P )
C (γp)U

(M)
F (βp−1) · · ·U (M)

F (β2)U
(P )
C (γ2)U

(M)
F (β1)|F ⟩

= e−iβ1U
(M)
F (βp)U

(P )
C (γp)U

(M)
F (βp−1) · · ·U (M)

F (β2)U
(P )
C (γ2)|F ⟩.

(26)

As global phase e−iβ1 is not observable when measuring, the operation U
(M)
F (β1)U

(P )
C (γ1) can be

regarded as canceled.
When γjC(f) = 2kfπ, kf ∈ Z, ∀f ∈ F and j ̸= 1, the circuit,

|ψp,C,F (γ,β)⟩ = · · ·U (M)
F (βj)U

(M)
F (βj−1)U

(P )
C (γj−1) · · · |F ⟩. (27)

From Equation 7, we can derive,

U
(M)
F (βj)U

(M)
F (βj−1) =I − (1− e−i(βj+βj−1))|F ⟩⟨F |

=U
(M)
F (βj + βj−1).

(28)

Hence, let βj−1 ← βj + βj−1, the operation U
(M)
F (βj)U

(P )
C (γj) is equivalent to being canceled.
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Proof of Theorem 1. Expand the prepared states of the GM-QAOA, we get,

|ψp,C,F (γ,β)⟩

=U
(M)
F (βp)U

(P )
C (γp) · · ·U (M)

F (β2)U
(P )
C (γ2)U

(M)
F (β1)U

(P )
C (γ1)|F ⟩

=
(
U

(P )
C (γp)− (1− e−iβp)|F ⟩⟨F |U (P )

C (γp)
)
· · ·
(
U

(P )
C (γ1)− (1− e−iβ1)|F ⟩⟨F |U (P )

C (γ1)
)
|F ⟩

=
∑

s∈([p]k ),
k∈{0,1,··· ,p}

 k∏
j=1

(e−iβsj − 1)

U
(P )
C (

p∑
j=sk+1

γj)|F ⟩⟨F |U (P )
C (

sk∑
j=sk−1+1

γj) · · · |F ⟩⟨F |U (P )
C (

s1∑
j=1

γj)|F ⟩

=
∑

s∈([p]k ),
k∈{0,1,··· ,p}

 k∏
j=1

(e−iβsj − 1)

U (P )
C (

p∑
j=sk+1

γj)|F ⟩


∑
f∈F

e
−i
∑sk

j=sk−1+1 γjC(f)

|F |
· · ·

∑
f∈F

e−i
∑s1

j=1 γjC(f)

|F |

=
1√
|F |

∑
f∈F

∑
s∈◁0([p]k ),

k∈{0,1,··· ,p}

 k∏
j=1

(e−iβsj − 1)




k∏
j=1

∑
f ′∈F

e
−i
∑sj

l=sj−1+1 γlC(f
′)

|F |

 e
−i
∑p

j=sk+1 γjC(f)|f⟩ (29)

Then, the probability of measuring a computational basis state |f⟩, f ∈ F , is given as,

|⟨f |ψp,C,F (γ,β)⟩|2

=
1

|F |

∣∣∣∣∣∣∣∣∣∣
∑

s∈◁0([p]k ),
k∈{0,1,··· ,p}

e
−i
∑p

j=sk+1 γjC(f)
k∏

j=1

(e−iβsj − 1)
k∏

j=1

∑
f ′∈F

e
−i
∑sj

l=sj−1+1 γlC(f
′)

|F |

∣∣∣∣∣∣∣∣∣∣

2

.
(30)

Here, we assume a tunable phase function C, and introduce a vector parameter v ∈ R|F |, where each
component represents C(f ′), f ′ ∈ F . Additionally, we define another parameter z ∈ R, independent
of v, to specifically replace C(f) outside the product of sums. Then, we have a new function,

Gp(γ,β,v, z) :=
1

|F |
|gp(γ,β,v, z)|2, (31)

where

gp(γ,β,v, z) :=
∑

s∈◁0([p]k ),
k∈{0,1,··· ,p}

e
−i
∑p

j=sk+1 γjz
k∏

j=1

(e−iβsj − 1)
k∏

j=1

|F |∑
m=1

e
−i
∑sj

l=sj−1+1 γlvm

|F |
. (32)

We can find the upper bound of |⟨f |ψp,C,F (γ,β)⟩|2 by maximizing Gp, as naturally,

max
γ∈Rp,β∈Rp,C

|⟨f |ψp,C,F (γ,β)⟩|2 ⩽ max
γ∈Rp,β∈Rp,v∈R|F |,z∈R

Gp(γ,β,v, z). (33)

The partial derivative of Gp(γ,β,v, z) with respect to vm,m ∈ {1, 2, · · · , |F |}, is given by,

∂Gp(γ,β,v, z)

∂vm
=

2

|F |
Re(

∂gp(γ,β,v, z)

∂vm
gp(γ,β,v, z)), (34)
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where Re(·) returns the real part of the given number, and,

∂gp(γ,β,v, z)

∂vm
gp(γ,β,v, z) =

=
∑

s∈◁0([p]k ),
k∈{1,2,··· ,p}



e
−i
∑p

j=sk+1 γjz

 k∏
j=1

(e−iβsj − 1)

×
k∑

j=1

−i
(∑sj

l=sj−1+1 γl

)
e
−i
∑sj

l=sj−1+1 γlvm

|F |

k∏
j′=1,
j′ ̸=j

|F |∑
m′=1

e
−i
∑sj′

l=sj′−1+1 γlvm′

|F |


×

∑
s∈◁0([p]k ),

k∈{0,1,··· ,p}

e
i
∑p

j=sk+1 γjz
k∏

j=1

(eiβsj − 1)

k∏
j=1

|F |∑
m′=1

e
i
∑sj

l=sj−1+1 γlvm′

|F |

=− i
∑

s∈◁0([p]k ),
s′∈◁0([p]k′),
k∈{1,2,··· ,p},
k′∈{0,1,··· ,p}



k∏
j=1

(e−iβsj − 1)
k′∏
j=1

(e
iβs′

j − 1)

 ∑
t∈[|F |]k′

e
i

(∑k′
j=1

∑sj
l=sj−1+1 γlvtj+

∑p

j=s′
k′+1

γlz

)

|F |k′



k∑
j=1

∑
t∈[|F |]j−1

∑
t′∈[|F |]k−j

(
∑sj

l=sj−1+1 γl)e

−i



j−1∑
j′=1

sj′∑
l=sj′−1+1

γlvtj′ +

sj∑
l=sj−1+1

γlvm

k∑
j′=j+1

sj′∑
l=sj′−1+1

γlvt′
j′−j

+

p∑
l=sk+1

γlz


|F |k



.

(35)

When β ∈ {β | βi = 2kiπ, ki ∈ Z,∀i ∈ [p]}, the partial derivative, ∂Gp(γ,β,v,z)
∂vm

= 0. From Lemma 1, all
phase separation and mixing operations cancel out, leaving the circuit in the initial state |F ⟩, where
the measurement probability of each computational basis state that encoded a possible solution is 1

|F | ,

which is not the maximum. Alternatively, when (γ,β,v, z) ∈ T (1)
p , where

T (1)
p :=

{
γ,β,v, z

∣∣∣∣∣(βi=aiπ) ∧ (γivj+di=bi,jπ) ∧ (γiz+di=ciπ)∧
(ai ∈ Z, bi,j ∈ Z, ci ∈ Z, di ∈ R),∀i ∈ [p], ∀j ∈ [|F |]

}
, (36)

∂gp(γ,β,v,z)
∂vm

gp(γ,β,v, z) retains only the imaginary part that
∂Gp(γ,β,v,z)

∂vm
= 0,∀m ∈ [|F |]. The points

where Gp attains its maximum value are certainly among T
(1)
p as,

max
γ∈Rp,β∈Rp,v∈R|F |,z∈R

Gp(γ,β,v, z) = max
(γ,β,v,z)∈T (1)

p

Gp(γ,β,v, z). (37)
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Let (γ,β,v, z) ∈ T (1)
p , then, we get

Gp(γ,β,v, z) =
1

|F |

∣∣∣∣∣∣∣∣∣∣∣
∑

s∈◁0([p]k ),
k∈{0,1,··· ,p}

e
−i
∑p

j=sk+1(clπ−dl)
k∏

j=1

(e−iasjπ − 1)

k∏
j=1

|F |∑
m=1

e
−i
∑sj

l=sj−1+1(bl,mπ−dl)

|F |

∣∣∣∣∣∣∣∣∣∣∣

2

=
1

|F |

∣∣∣∣∣∣∣∣∣∣∣
∑

s∈◁0([p]k ),
k∈{0,1,··· ,p}

e
−i
∑p

j=sk+1 clπ
k∏

j=1

(e−iasjπ − 1)
k∏

j=1

|F |∑
m=1

e
−i
∑sj

l=sj−1+1 bl,mπ

|F |

∣∣∣∣∣∣∣∣∣∣∣

2

,

(38)

where ai ∈ Z, bi,j ∈ Z, ci ∈ Z, di ∈ R, ∀i ∈ [p],∀j ∈ [|F |]. Following this, we can further narrow the

search space for finding the maximum of the Gp to the set, T
(2)
p ,

T (2)
p :=

{
γ,β,v, z

∣∣∣γ ∈ {0, π}p,β ∈ {0, π}p,v ∈ Z|F |, z ∈ Z
}
, (39)

such that,
max

(γ,β,v,z)∈T (1)
p

Gp(γ,β,v, z) = max
(γ,β,v,z)∈T (2)

p

Gp(γ,β,v, z). (40)

We first consider the case that γ = π1p,β = π1p, where π1p represents a length-p vector with all
elements π, we get,

Gp(γ = π1p,β = π1p,v ∈ Z|F |, z ∈ Z)

=
1

|F |

cos(pπz) +

p∑
k=1

cos((p− k)πz)
k−1∑
j=0

∑
s∈◁0([k−1]

j )▷k

(−2)j+1
j+1∏
i=1

|F |∑
m=1

cos((si − si−1)πvm)

|F |



2

.
(41)

Assume there are n odd numbers and m even numbers in v, and let r := −n+m
|F | , then, we can define

Hk(r) =
k−1∑
j=0

∑
s∈◁0([k−1]

j )▷k

(−2)j+1
j+1∏
i=1

h(sj , sj−1, r), (42)

where

h(sj , sj−1, r) :=

|F |∑
m=1

cos((sj − sj−1)πvm)

|F |
=

{
1 sj − sj−1 is even,

r sj − sj−1 is odd.
(43)

Expand Hk+1(r), we get,

Hk+1(r) =

k∑
j=0

∑
s∈◁0([k]j )▷k+1

(−2)j+1
j+1∏
i=1

h(sj , sj−1, r)

=
∑

s∈◁0([k−1]
j )▷k▷k+1,

j∈{0,1,...,k−1}

(−2)j+2
j+2∏
i=1

h(sj , sj−1, r) +
∑

s∈◁0([k−2]
j )▷k−1▷k+1,

j∈{0,1,...,k−2}

(−2)j+2
j+2∏
i=1

h(sj , sj−1, r) +
∑

s∈◁0([k−2]
j )▷k+1,

j∈{0,1,...,k−2}

(−2)j+1
j+1∏
i=1

h(sj , sj−1, r)
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=− 2h(k + 1, k, r)
k−1∑
j=0

∑
s∈◁0([k−1]

j )▷k▷k+1

(−2)j+1
j+1∏
i=1

h(sj , sj−1, r)

− 2h(k + 1, k − 1, r)
k−2∑
j=0

∑
s∈◁0([k−2]

j )▷k−1▷k+1

(−2)j+1
j+1∏
i=1

h(sj , sj−1, r)

+
k−2∑
j=0

∑
s∈◁0([k−2]

j )▷k+1

(−2)j+1
j+1∏
i=1

h(sj , sj−1, r)

=− 2rHk(r)− 2Hk−1(r) +Hk−1(r) = −2rHk(r)−Hk−1(r). (44)

Consider z ∈ Z as a constant number, we define a function of r as,

Gp,z(r) =
1

|F |

(
cos(pπz) +

p∑
k=1

cos((p− k)πz)Hk(r)

)2

,

Hk+1(r) = −2rHk(r)−Hk−1(r), H1(r) = −2r, H2(r) = 4r2 − 2.

(45)

Then, we can find the maximal points of Gp(γ = π1p,β = π1p,v ∈ Z|F |, z ∈ Z), by solving the
problem:

max
r
Gp,z(r), s.t. r2 − 1 ⩽ 0. (46)

Using the method of Lagrange multiplier, we have the Lagrange function as,

L(r, ν) = −Gp,z(r) + ν(r2 − 1), (47)

where ν is the Lagrange multiplier. Then, the problem is transformed as,

∂L(r, ν)
∂r

= − 2

|F |

(
cos(pπz) +

p∑
k=1

cos((p− k)πz)Hk(r)

)(
p∑

k=1

cos((p− k)πz)∂Hk(r)

∂r

)
+ 2νr = 0

r2 − 1 ⩽ 0,

ν ⩾ 0,

ν(r2 − 1) = 0.

(48)

In the case of where z is even. We find that if r = −1,

Hk(−1) = 2,
∂Hk(r)

∂r

∣∣∣∣
r=−1

= −2k2, ∀k ∈ [p],

Gp,z(−1) =
(2p+ 1)2

|F |
,

ν =
p(p+ 1)(2p+ 1)2

3|F |
> 0.

(49)

In the case of where z is odd. We find that if r = 1,

Hk(1) = 2(−1)k, ∂Hk(r)

∂r

∣∣∣∣
r=−1

= 2(−1)kk2, ∀k ∈ [p],

Gp,z(1) =
(2p+ 1)2

|F |
,

ν =
p(p+ 1)(2p+ 1)

|F |
> 0.

(50)
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Hence, when z is even, r = −1, or when z is odd, r = 1, Gp,z(r) attains its maximum (2p+1)2

|F | . Following
this, we get,

max
v,z

Gp(γ = π1p,β = π1p,v ∈ Z|F |, z ∈ Z) =
(2p+ 1)2

|F |
,

argmax
v,z

Gp(γ = π1p,β = π1p,v ∈ Z|F |, z ∈ Z) ∈ T (3)
p ,

(51)

where

T (3)
p :=

{
v, z

∣∣∣∣∣(vi=2ai+1 ∧ z=2b, ai ∈ Z, b ∈ Z,∀i ∈ [|F |])∨
(vi=2ai ∧ z=2b+1, ai ∈ Z, b ∈ Z,∀i ∈ [|F |])

}
. (52)

For the case that the parameters (γ,β) ∈ Sm, Sm :=
⋃

s∈([p]m)
{γ,β | βi = 0 ∨ γi = 0,∀i ∈ s;βj =

π ∧ γj = π,∀j /∈ s}, we consider back to the Lemma 1, and Lemma 2, the depth reduces to p −m.
Then, since

max
v,z

Gp−m(γ = π1p−m,β = π1p−m,v ∈ Z|F |, z ∈ Z) =
(2(p−m) + 1)2

|F |
<

(2p+ 1)2

|F |
, ∀m ∈ [p], (53)

Thus,

max
γ∈Rp,β∈Rp,v∈R|F |,z∈R

Gp(γ,β,v, z) = max
(γ,β,v,z)∈T (2)

p

Gp(γ,β,v, z) =
(2p+ 1)2

|F |
. (54)

According to Equation (38), we get,

argmax
γ,β,v,z

Gp(γ ∈ Rp,β ∈ Rp,v ∈ R|F |, z ∈ R) ∈ Tp, (55)

where

Tp :=

γ,β,v, z

∣∣∣∣∣∣∣
(βi=(2ai+1)π, ai ∈ Z,∀i ∈ [p])∧(
(γivj+di=2bi,jπ ∧ γiz+di=(2ci+1)π, bi,j , ci, di ∈ Z, ∀i ∈ [p], ∀j ∈ [|F |])∨
(γivj+di=(2bi,j+1)π ∧ γiz+di=2ciπ, bi,j , ci, di ∈ Z, ∀i ∈ [p], ∀j ∈ [|F |])

) .

(56)

Finally, according to Equation 56, when Gp attains its maximum, z ̸= vi,∀i ∈ [|F |], we arrive
at the conclusion that the probability of sampling a computational basis state |f⟩ from a depth-p
GM-QAOA circuit satisfies as,

|⟨f |ψp,C,F (γ,β)⟩|2 < max
γ∈Rp,β∈Rp,v∈R|F |,z∈R

Gp(γ,β,v, z) =
(2p+ 1)2

|F |
. (57)

5.2 Proof of Theorem 3

Proof of Theorem 3. From Definition 2 and Definition 4, we get,

µ 1
(2p+1)2

− α

=
(2p+ 1)2

∑⌈
|F |

(2p+1)2

⌉
i=1 C(f (i))

|F |C(f (1))
−
∑|F |

i=1 |⟨f (i)|ψp,C,F (γ,β)⟩|2C(f (i))
C(f (1))

=

∑⌈
|F |

(2p+1)2

⌉
i=1

(
(2p+1)2

|F | − |⟨f (i)|ψp,C,F (γ,β)⟩|2
)
C(f (i))

C(f (1))
−

∑|F |
i=
⌈

|F |
(2p+1)2

⌉
+1
|⟨f (i)|ψp,C,F (γ,β)⟩|2C(f (i))

C(f (1))
.

(58)
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From equation 12,

(58) ⩾

∑⌈
|F |

(2p+1)2

⌉
i=1

(
(2p+1)2

|F | − |⟨f (i)|ψp,C,F (γ,β)⟩|2
)
C(f (i))

C(f (1))

−
C(f

(
⌈

|F |
(2p+1)2

⌉
+1)

)
∑|F |

i=
⌈

|F |
(2p+1)2

⌉
+1
|⟨f (i)|ψp,C,F (γ,β)⟩|2

C(f (1))

=

∑⌈
|F |

(2p+1)2

⌉
i=1

(
(2p+1)2

|F | − |⟨f (i)|ψp,C,F (γ,β)⟩|2
)
C(f (i))

C(f (1))

−
C(f

(
⌈

|F |
(2p+1)2

⌉
+1)

)

(
1−

∑⌈
|F |

(2p+1)2

⌉
i=1 |⟨f (i)|ψp,C,F (γ,β)⟩|2

)
C(f (1))

.

(59)

As
∑⌈

|F |
(2p+1)2

⌉
i=1

(2p+1)2

|F | ⩾ 1,

(58) ⩾

∑⌈
|F |

(2p+1)2

⌉
i=1

(
(2p+1)2

|F | − |⟨f (i)|ψp,C,F (γ,β)⟩|2
)
C(f (i))

C(f (1))

−
C(f

(
⌈

|F |
(2p+1)2

⌉
+1)

)
∑⌈

|F |
(2p+1)2

⌉
i=1

(
(2p+1)2

|F | − |⟨f (i)|ψp,C,F (γ,β)⟩|2
)

C(f (1))

=

∑⌈
|F |

(2p+1)2

⌉
i=1

(
(2p+1)2

|F | − |⟨f (i)|ψp,C,F (γ,β)⟩|2
)(

C(f (i))− C(f (
⌈

|F |
(2p+1)2

⌉
+1)

)

)
C(f (1))

(60)

From Theorem 1 that (2p+1)2

|F | > |⟨f (i)|ψp,C,F (γ,β)⟩|2, we finally get,

(58) ⩾ 0. (61)

5.3 Problem Definition and Instance Sets

5.3.1 Traveling Salesman Problem

The traveling salesman problem seeks to find the shortest possible route that visits each city once and
returns to the original city. Here, following [13], we fix the first city, and formulate an n-city traveling
salesman problem instance (C,F ) as follows,

min
x∈F

C(x);

C(x) =
n−1∑
i=1

w0,ix1,i +
n−1∑
i=1

wi,0xn−1,i +
n−1∑
t=2

∑
i,j=1,
i ̸=j

wi,jxt−1,ixt,j ;

F =

{
x

∣∣∣∣∣x ∈ {0, 1}(n−1)2 ; ∀t ∈ [n−1],
n−1∑
t=1

xt,i = 1; ∀i ∈ [n−1],
n−1∑
i=1

xt,i = 1

}
,

(62)

where wi,j ∈ R represents the distance between city i and city j.
Our instance sets include problems ranging from 7-city to 13-city, and 48 instances for each size.

The coordinates of the cities are sampled from a uniform distribution within interval [0, 1].
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5.3.2 Max-k-Colorable-Subgraph Problem

The max-k-colorable-subgraph problem seeks to find a subgraph with the maximum number of edges
that can be properly colored using at most k colors, such that no two adjacent vertices share the same
color. Here, we use the definition in [20], given an n-vertex undirected graph with the edge set E, the
max-k-colorable-subgraph problem instance (C,F ) is formulated as follows,

max
x∈F

C(x);

C(x) = |E| −
k∑

v=1

∑
(i,j)∈E

xi,vxj,v;

F =

{
x

∣∣∣∣∣x ∈ {0, 1}n×k; ∀i ∈ [n],
k∑

v=1

xi,v = 1

}
.

(63)

Our instance sets include problems ranging from graphs with 11 to 17 vertices, and the color
number k is set to 3. We generate 48 instances for each vertex number. The graphs are generated
randomly, but we specifically select graphs where the solution is the given graph itself, which increases
the difficulty of the problem.

5.3.3 Max-Cut Problem

The max-cut problem is equivalent to the max-k-colorable-subgraph problem with k = 2. Since there
are only two colors, we can encode the color using a single bit. Given an n-vertex undirected graph
with the edge set E, the max-cut problem instance (C,F ) is formulated as follows,

max
x∈F

C(x);

C(x) =
∑

(i,j)∈E

(xi − xj)2;

F = {0, 1}n.

(64)

It is worth noting that whether using this formulation or the max-k-colorable-subgraph formulation
(i.e., Equation 63) with k = 2, the resulting objective value distribution remains the same.

Our instance sets include problems with 3-regular graphs having 16, 18, 20, 22, 24, 26, and 28
vertices. We randomly generate 48 instances for each vertex number.

5.3.4 Max-k-Vertex-Cover Problem

The max-k-vertex-cover problem aims to find a subset of vertices with a size of k in an undirected
graph, such that the number of edges incident to the vertices in the subset is maximized. Here, we use
the definition in [2], given an n-vertex undirected graph with the edge set E, the max-k-vertex-cover
problem instance (C,F ) is formulated as follows,

max
x∈F

C(x);

C(x) = |E| −
∑

(i,j)∈E

(1− xi)(1− xj);

F =

{
x

∣∣∣∣∣x ∈ {0, 1}n;
n∑

i=1

xi = k

}
.

(65)

Our instance sets include problems ranging from graphs with vertex number, n ∈ {18, 20, . . . , 30},
and k is set to n

2 . We generate 48 instances for n. The graphs are generated using the Erdős–Rényi
model with an edge probability of 0.5.
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