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Suppose that we first apply the Lasso to a design matrix, and then up-
date one of its columns. In general, the signs of the Lasso coefficients may
change, and there is no closed-form expression for updating the Lasso solu-
tion exactly. In this work, we propose an approximate formula for updating a
debiased Lasso coefficient. We provide general nonasymptotic error bounds
in terms of the norms and correlations of a given design matrix’s columns,
and then prove asymptotic convergence results for the case of a random de-
sign matrix with i.i.d. sub-Gaussian row vectors and i.i.d. Gaussian noise.
Notably, the approximate formula is asymptotically correct for most coordi-
nates in the proportional growth regime, under the mild assumption that each
row of the design matrix is sub-Gaussian with a covariance matrix having a
bounded condition number. Our proof only requires certain concentration and
anti-concentration properties to control various error terms and the number
of sign changes. In contrast, rigorously establishing distributional limit prop-
erties (e.g. Gaussian limits for the debiased Lasso) under similarly general
assumptions has been considered open problem in the universality theory. As
applications, we show that the approximate formula allows us to reduce the
computation complexity of variable selection algorithms that require solving
multiple Lasso problems, such as the conditional randomization test and a
variant of the knockoff filter.

1. Introduction. The Lasso is a commonly used method for high-dimensional regres-
sion, variable selection, and selective inference (Tibshirani, 1996)(Hastie et al., 2015)(Taylor
and Tibshirani, 2015)(Barber and Candès, 2019). In this paper we consider the scenario where
the design matrix is changed locally, and study how the corresponding solution changes.
Consider two matrices A,B ∈ Rn×p differing only in the j-th column. Let Y ∈ Rn and
λ ∈ [0,∞). Define

α̂ := argminα∈Rp

{
1

2n
∥Y −Aα∥22 + λ∥α∥1

}
;(1)

β̂ := argminβ∈Rp

{
1

2n
∥Y −Bβ∥22 + λ∥β∥1

}
.(2)

Since B is a locally updated version of A, we might expect that β̂ and α̂ are close in a certain
sense. In particular, suppose that a statistic t(j,B,Y ) is a function of β̂ by definition. We are
interested in finding a method of efficiently computing t(j,B,Y ) (possibly approximately),
assuming that α̂ is known, without computing β̂.

One motivation for considering such a problem is to efficiently implement variable selec-
tion algorithms based on resampling, such as the knockoff filter and the conditional ran-
domization test (CRT) (Candes et al., 2018)(Tansey et al., 2022)(Bates et al., 2020)(Li,
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2022). Consider, for example, the CRT algorithm, which iteratively updates each feature
vector (column of the design matrix) with a conditionally independent sample, and calcu-
lates the corresponding test statistics (which is usually a function of the Lasso coefficients).
Since the newly sampled columns are conditionally independent of the observation, we can
use t(j,B1, Y ), . . . , t(j,BK , Y ) as control variables for estimating the p-value of t(j,A,Y ),
whereB1, . . . ,BK denote the resampled matrices each differing fromA by only the j-th col-
umn. By estimating the p-values for each j, one can perform variable selection tasks such as
false discovery rate control. Experimentally, CRT often achieves higher power compared to
other variable selection methods, such as the knockoff filter (Candes et al., 2018)(Li, 2022).
However, “one major limitation of the conditional randomization method is its computational
cost” (Candes et al., 2018). Note that the complexity of solving the Lasso problem (via least
angle regression, which has the same order of computation cost as a least square fit) is O(p3)
in general (Hastie et al., 2009, p93). The computation complexity of CRT is then O(p4K)
since we need to solve a Lasso problem for each of the p locally updated design matrix, and
K denotes the number of repetitions.

In this paper, we show that under rather general non-Gaussian correlated design settings,
the signs of α̂ and β̂ only differ in a vanishing fraction of coordinates. As a consequence,
if t(·) is an appropriately constructed statistic based on the debiased Lasso coefficient, then
it is indeed possible to approximately compute t(j,B,Y ) using α̂. Let us first recall the
debiased Lasso coefficients in the setting of Javanmard and Montanari (2014b). Suppose that
A has i.i.d. rows following the normal distribution N (0,Σ), and Y = Aα+ w, where w is
an independent Gaussian noise vector, and α ∈Rp. The “number of nonzero coefficients” is
defined by

k := ∥χα∥0,(3)

where

ψα :=
1

nλ
A⊤R, R := Y −Aα̂,(4)

χαj := 1{ψαj = 1} − 1{ψαj =−1}.(5)

Note that ψα is the subgradient of the ℓ1 norm, so k ≥ ∥α̂∥0, although equality is achieved in
most cases. We use the definition (3) instead of ∥α̂∥0 since α̂ may not be unique, due to the
lack of strong convexity of the optimization, whereas ψα, and hence χα, is always uniquely
defined. Similarly χαj can be understood as the ‘essential sign’ of α̂j . Then, the debiased
Lasso defined in Javanmard and Montanari (2014b) is

α̂u := α̂+
1

n− k
Σ−1A⊤(Y −Aα̂).(6)

Under suitable conditions, it has been shown that α̂u ≈ α + τΣ−1/2z, where z ∼ N (0, I)
and τ ∈ (0,∞) is a constant determined by a set of fixed point equations (Javanmard and
Montanari, 2014b). Rigorously establishing such Gaussian limit properties for general non-
GaussianA in the proportional growth regime (p, n, and the sparsity level s have fixed ratios)
is challenging; see discussions in the Related work section.

In this work, we introduce a modified definition of the debiased Lasso estimator in (6). Let
A:\j ∈Rn×p denote the matrix obtained by excluding the j-th column of A. Set

Ǎ:j :=A:j −E[A:j |A:\j ].(7)

Thus in the case of Gaussian A, we have the expression Ǎ:j :=A:j −A:\jΣ
−1
\j Σ\jj in terms

of the covariance matrix Σ, but this is not necessarily true in the case of non-Gaussian A.
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Then we define a modified version of the debiased estimator in (6),

α̂Uj := α̂j +

(
1

n
Ǎ⊤

:j (I − PA)A:j

)−1 Ǎ⊤
:jR

n
,(8)

where

A := {l ̸= j : χαl ̸= 0},(9)

and PA denotes the projection onto the columns of A corresponding to A. Again, we adopt
the convention in (3) when α̂ is not unique. Note that the definition of α̂Uj uses only (Y,A)

and has no reference to B, hence we can use α̂Uj to build t(j,A,Y ).
We will see that α̂Uj ≈ α̂uj under certain regularity assumptions on the distribution of the

feature vectors. However, our modified definition of the debiased Lasso in (8) allows us to
prove an approximate update formula under much more general assumptions. Define β̂Uj
similarly to α̂Uj , i.e.,

β̂Uj := β̂j +

(
1

n
B̌⊤

:j (I − PB)B:j

)−1 B̌⊤
:jS

n
,(10)

where B̌:j := B:j − E[B:j |B:\j ], S := Y − Bβ̂, and PB denotes the projection onto the
columns of A (equivalently, columns of B) corresponding to B := {l ̸= j : χβl ̸= 0}. For
any given (A,B,Y ), we can show the approximate formula (Theorem 1)

B̌⊤
:j (I − PB)B:j β̂

U
j ≈ B̌⊤

:jR+ B̌⊤
:j (I − PA)A:jα̂j .(11)

If B:j and A:j are independent conditioned on A:\j , we can further show that the right side
of (11) is approximately B̌⊤

:jR, although the right side of (11) is already computable without
using β̂. Thus, for any given Y , if we define

t(j,A,Y ) := Ǎ⊤
:j (I − PA)A:jα̂

U
j ;(12)

t(j,B,Y ) := B̌⊤
:j (I − PB)B:j β̂

U
j ,(13)

then we can compute t(j,A,Y ) and (approximately) t(j,B,Y ) using only α̂ rather than β̂.
We then specialize the approximation error bound to the case of Y =Aα+w and design

matrices whose rows are i.i.d. with covariance of bounded max and min eigenvalues and with
bounded sub-Gaussian variance proxy. Also assume that B:j and A:j are i.i.d. given A:\j . In
this setting, we show that the approximation error in (11) vanishes asymptotically for almost
all j (see Definition 1 and Theorem 3). Our proof only uses certain concentration and anti-
concentration properties to give order-wise control of quantities, rather than more precise
calculation of limits, which may require stronger assumptions.

We can show that 1
nB̌

⊤
:j (PB − PA)B:j is small under the above conditions. If we further

assume that 1
nB̌

⊤
:j (I − PA)B:j is bounded away from 0, then we have from (11) that

β̂Uj ≈
B̌⊤

:jR+ B̌⊤
:j (I − PA)A:jα̂j

B̌⊤
:j (I − PA)B:j

.(14)

We can show that this is the case if E[|B̌1j |2] is bounded away from 0 (see (31)).
Further, if we have

1

n
B̌⊤

:j (I − PA)B:j ≈ (1− k

n
)Σj|\j ,(15)
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then β̂Uj ≈ β̂uj . For example, (15) is true in the case of Gaussian feature vector, as a con-
sequence of concentration of the chi-square distribution. Under more general distribution
assumptions however, (15) may no longer be true, since E[B:j |A:\j ] =A:\jΣ

−1
\j Σ\jj may not

hold (see Remark 10). This is our main motivation for introducing β̂Uj .
To see the implication of (11) for CRT, suppose that for each of j = 1, . . . , p, we resample

the j-th column of A to get a new design matrix B(j), and approximately compute tj :=
t(j,B(j), Y ) from (11). We can repeat this process for K times to get t1j , . . . , t

K
j . Suppose

that we also compute t0j := t(j,A,Y ) from (12). Then t0, . . . , tK can be used for running
CRT. That is, since t0j , . . . , t

p
j have the same distribution under the j-th null (by symmetry),

we can obtain an estimate of the p-value associated with t0j using the ranking of these K +1

numbers. We can show that running CRT using approximate formula takes onlyO(p3+p2K)
time, in contrast to the O(p4K) time using the exact calculation. As noted in Candes et al.
(2018), it is often necessary to choose a large K , say order p, to obtain a good estimate of the
tail of the null distribution, in which case the approximate formula gives us order p2 times
speed up.

Since previously the debiased Lasso α̂u often appears in the literature on asymptotic nor-
mality, and asymptotic normality results can be used to directly estimate the p-value of α̂u,
one might ask what is the benefit of resampling B:j and using β̂Uj to estimate the p-values.
The answer is that asymptotic normality requires more stringent conditions than the validity
of the update formula. One simple example is the limiting case where the Lasso is reduced
to a least square problem (n > p and λ→ 0). In this case, (11) is in fact equality regardless
of the distributions and the dimensions, whereas asymptotic normality results may not hold
for some distributions. For the general λ case, as mentioned before, our proof of the approx-
imation in (11) only uses certain concentration and anti-concentration properties to control
the order of the errors, rather than more precise characterization of limits such as Gaussian
convergence. Indeed, our Theorem 3 shows asymptotic approximation assuming that the co-
variance matrix Σ of B1: has bounded conditional numbers, and that B1: is a sub-Gaussian
vector. In contrast, a Gaussian limit result for α̂u in similarly general settings is not available
(see discussions in Related work).

Related work.

• Debiasing the Lasso for inference was suggested by Zhang and Zhang (2014), Bühlmann
(2013), van de Geer et al. (2014), and Javanmard and Montanari (2014b). The replica
analysis heuristic calculation in Javanmard and Montanari (2014b) was perhaps the first to
show that βu in (6) satisfies asymptotic normality in the proportional growth regime, with
i.i.d. N (0,Σ) rows in the design matrix. More specifically, in a suitable sense there is the
approximation

α̂u − α≈ τΣ−1/2z(16)

for some z ∈ N (0, I), where α is the ground truth, Y = Aα + w, w ∼ N (0, nI), and
τ is the solution to a fixed point equation. The replica calculation relies heavily on the
assumption of random design with i.i.d. rows, and is not rigorous.

• Leave-one-out analysis is a fruitful approach for establishing limiting distributions or algo-
rithmic properties of regression (El Karoui et al., 2013)(Ma et al., 2018)(Chen et al., 2020),
and is closely related to techniques of the present paper. In El Karoui et al. (2013), it is
shown using the leave-one-out technique that the M-estimator converges asymptotically
to a normal distribution (see also El Karoui (2018) and Lei et al. (2018)). The problem
considered there is different from the distribution of the Lasso considered in the present
paper: the M-estimation problem concerns the n > p regime, and there is no need for
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debiasing; the asymptotic normality follows immediately from the rotation invariance of
the distribution. We remark that a duality between M-estimation estimation and penalized
least squares was mentioned in Donoho and Montanari (2016). However, the duality only
applies when the design matrix of the lasso has orthonormal rows, which does not cover
the setting of the present paper.

• A leave-one-out analysis for the Lasso was carried out in Javanmard and Montanari (2018).
In addition to bounded singular values of Σ, their analysis requires bounded ℓ1 norms of
the rows of the inverses of the submatrices of Σ (see (Javanmard and Montanari, 2018,
Theorem 3.8)). The latter condition can be more restrictive than ours in Definition 1: for
example a k× k random matrix with independent entries of scale 1/

√
k has spectral norm

of order O(1), yet the ℓ1 norm of each of its row has order Ω(
√
k) which is unbounded.

Furthermore, (Javanmard and Montanari, 2018, Theorem 3.8) requires a sublinear spar-
sity level s0 = o(n/(log p)2). In that regime, there is no need for the degrees of freedom
adjustment factor 1

n−k in (6), and in fact in the approximation formula (11) it suffices to
replace R with the noise w (see (Javanmard and Montanari, 2018, eq. (61))). An extension
of the analysis was done in Bellec and Zhang (2022), where the role of degrees-of-freedom
adjustment was highlighted for sparsity level s0≫ n2/3, but still s0/p→ 0 is required. In
contrast, the present paper considers the regime of proportional sparsity level.

• It appears that the first asymptotic normality result for debiased Lasso estimates in the
proportional regime for correlated designs was derived in Bellec and Zhang (2019) (see the
discussions therein). The technique of Bellec and Zhang (2019) (see also Bellec and Zhang
(2021)) was based on the Second Order Stein theorems bounding the non-Gaussianity of
a random variable of the form z⊤f(z)− divf(z), where z ∼ N (0, I). To apply it to the
debiased Lasso problem, consider given A:\j (the submatrix of B formed by excluding

the j-th column), ground truth α and noise w. Let A:j :=A:\jΣ
−1
\j Σ\jj+ z

√
(Σ−1)−1

jj and
Y =Aα+w, which are both viewed as functions of z. Let f(z) :=Aα̂−Y . Then it can be
verified that z⊤f(z)−divf(z) is the debiased Lasso estimate up to a linear transform. The
method of Bellec and Zhang (2019) made essential uses of the Gaussian random design
assumption, e.g. Gaussian integration by parts.

• Gaussian comparison is another powerful approach for deriving the asymptotic distribu-
tion of the Lasso. Building on an earlier idea of Thrampoulidis et al. (2015) that constructs
a simpler but comparable Gaussian process, Miolane and Montanari (2021) proved asymp-
totic normality of (6) (in the Wasserstein distance in Rp) for i.i.d. N (0, I) rows, and Ce-
lentano et al. (2023) extended the result to i.i.d. N (0,Σ) rows. By nature, the Gaussian
comparison argument strongly relies on the Gaussianity of the design matrix.

• Characterizing the asymptotic distribution of the Lasso for dependent non-Gaussian de-
signs is an open challenge (see comments in Montanari and Saeed (2022) and (Celentano
et al., 2023, Remark 4.2)). Proof of universality based on the Lindeberg-type argument
typically assumes independent entries (Han and Shen, 2023) (Aubin et al., 2020).

• Approximate message passing (AMP) is not only an algorithm but also a method of char-
acterizing asymptotic distributions. The most common approach for analyzing the state
evolution of AMP is through a conditioning technique, which shows that vector approx-
imate message passing works for design matrices with a general spectrum but satisfying
right-rotational invariance (Schniter et al., 2016)(Fan, 2022)(Li et al., 2023)(Zhong et al.,
2021). In particular, rotation invariance implies that the feature distribution is permutation
invariant, which does not subsume our setting. Other representative approaches for AMP
analysis (Bao et al., 2023)(Li and Wei, 2024) assume independent matrix entries.

• Traditionally, the most well-known variable selection method with guaranteed false
discovery rate (FDR) control is the Benjamini-Hochberg procedure (Benjamini and
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Hochberg, 1995), which typically assumes that the p-values are independent or positively
correlated. The knockoff filter (Barber and Candés, 2015)(Candes et al., 2018) is a recently
popular approach that controls the FDR without such restrictive dependency assumptions.
Intuitively, the knockoff filter creates knockoff features which have the same distribution
as the true features, but are conditionally independent of the response, so that the knockoff
statistics can be used as a benchmark/control for understanding the p-values. Remark-
ably, the knockoff filter extends such an intuition by offering provable finite sample FDR
control via an elegant martingale analysis (Barber and Candés, 2015). The knockoff filter
regresses on 2p features, and is often observed to have a lower power than methods such as
conditional randomization tests (also known as holdout randomization test (Tansey et al.,
2022) or the digital twin test (Bates et al., 2020)) or the Gaussian mirror method, which
regresses on only p+1 features each time; see experiments in Xing et al. (2023) Li (2022)
Candes et al. (2018). We also provide an analysis in Theorem 10 showing an unavoid-
able sub-optimality of power when the knockoff filter solves a regression with 2p features.
Although CRT and Gaussian mirror offer only asymptotic rather than finite sample FDR
guarantees, experimentally they offer decent controls. It has been noted that the feature
distribution, which is required in the model-X knockoff filter construction, is often not
exactly known in practice (Fan et al., 2023)(Barber et al., 2020), so that the finite sample
FDR may not be exactly controlled due to the estimation error of the feature distribution.

Organization. In Section 2, we present our main results on general nonasymptotic er-
ror bounds and asymptotic analysis for the sub-Gaussian case. Section 3 gives a simple and
clean proof of the nonasymptotic error bound in the approximation formula. In Section 4,
we will show that using the approximate formula allows us to implement a “local knock-
off filter” and conditional randomization tests (CRT) within O(p3) time in the proportional
growth parameter regime. Section 5 provides synthetic and real data experiment results on
the approximation errors, FDR, and power. Section 6 concludes with an outlook for future
directions. Omitted proofs are found in Section A-F.

Notations. We use the standard Landau notations such as O(n), Ω(n), and ω(1). The no-
tation Õ(f(n)) =O(f(n)(logn)C) indicates an upper bound up to a factor of a polynomial
of logn. To emphasize the dependence on a set of parameters P in the implicit prefactor, we
may write ÕP(). The L2 norm and the operator norm are denoted by ∥·∥2 and ∥·∥op, whereas
∥·∥0 denotes the number of nonzero coefficients. λmax and λmin denote the largest and small-
est eigenvalues. For a, b ∈Rp, write the empirical distribution P̂ab := 1

p

∑p
j=1 δ(aj ,bj). We use

A:\j to denote the submatrix of A formed by all except the j-th column. The standard normal
distribution in Rd is written as N (0, In). diag(·) can denote either a diagonal matrix with
diagonals specified by a vector, or the vector formed by the diagonal values of a matrix.

2. Main Results.

2.1. An approximate update formula. Suppose that A,B ∈ Rn×p are matrices differing
only in the j-th column. Recall that we define α̂ and β̂ as the solutions to (1)-(2) (any choice
of the minimizer when the minimizer is not unique), and α̂Uj and β̂Uj in (8) and (10). Let
µ:j ∈Rn be an arbitrary vector, and define

B̌:j :=B:j − µ:j .(17)

Our main nonasymptotic result is the following:
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THEOREM 1. Let Y ∈ Rn be arbitrary, and let α̂ and β̂ be as defined in (1)-(2). Set
J := {l : χαl ̸= χβl }, and suppose that

|J | ≤ εn;(18)

∥B:j∥2,∥A:j∥2 ≤D
√
n;(19)

max
∆
∥(PA∪∆ − PA\∆)B̌:j∥2 ≤ Γ

√
nε,(20)

where A := {l ̸= j : χαl ̸= 0}, and the max is over ∆ ⊆ {1, . . . , p} \ {j} of size at most nε,
and Γ,D > 0. Then∣∣∣∣t(j,B,Y )− 1

n
B̌⊤

:jR−
1

n
B̌⊤

:j (I − PA)A:jα̂j

∣∣∣∣≤ ΓD
√
ε(|α̂j |+ |β̂j |).(21)

Moreover, if t(j,B,Y ) above is replaced by 1
nB̌

⊤
:j (I −PA)B:j β̂

U
j , we can still bound the left

side by ΓD
√
ε(|α̂j |+ |β̂j |+ |β̂Uj |).

The proof the theorem is given in Section 3. Theorem 1 suggests the formula (14) for fast
calculation of the debiased estimator when the design matrix is updated by one-column, since
the right side only depends on the result of solving (1). Note that Theorem 1 applies to any
given B as long as conditions (18)-(20) are satisfied. For deterministic designs, µ:j can be
taken as any vector that ensures (20).

A basic example of Theorem 1 is simply A = B, in which case ε = 0 and Γ = 0. Then
(21) simply recovers our definition of the debiased estimator. A more useful example is the
case of random designs where A and B are conditionally independent given A:\j . Then, we
can take D as a constant independent of n, Γ as a slowly growing function (e.g. polylog of
n), and ε vanishing in n. Moreover, let

µ:j := E[B:j |B:\j ] = E[B:j |A:\j ],(22)

so that (20) is satisfied with high probability when ε is small, because A is a function of
(A,Y ) whereas B̌:j is a zero mean vector conditioned on (A,Y ). More precise results will
be discussed in Section 2.2.

In constrast to β̂Uj , the Lasso estimator (without debiasing) has an update formula in a
more restricted setting:

THEOREM 2. Suppose that for some τ ∈ (0,1), Γ, Ď > 0, we have (18), (20), and

1

n
∥µ:j∥22 ≤ τ2;(23)

∥B̌:j∥2,∥Ǎ:j∥2 ≤ Ď
√
n.(24)

Then ∣∣∣∣ 1nB⊤
:j (I − PA)B:j β̂j − Sλ

(
1

n
B⊤

:jR+
1

n
B⊤

:j (I − PA)A:jα̂j

)∣∣∣∣
≤ (τ2 + 2τΓ

√
ε+ εΓ2)|β̂j |+ (τ2 + τ(Γ

√
ε+ Ď) + Γ

√
εĎ)|α̂j |,(25)

where Sλ(x) := (x− λ)1x>λ − (x+ λ)1x<−λ is the soft-thresholding function.

The proof the theorem is given in Section 3. Theorem 2 suggests the approximate formula

β̂j ≈
(
1

n
B⊤

:j (I − PA)B:j

)−1

Sλ

(
1

n
B⊤

:jR+
1

n
B⊤

:j (I − PA)A:jα̂j

)
.(26)
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The approximation is good if τ, ε→ 0. Note that τ → 0 implies that the features are ap-
proximately independent. In the proof of Theorem 1, error terms of the form 1

nB̌
⊤
:j (PA∪∆ −

PA\∆)A:j asymptotically vanishes since B̌:j and (PA∪∆ − PA\∆)A:j are uncorrelated. On
the other hand, in the proof of Theorem 2, error terms of the form 1

nB
⊤
:j (PA∪∆ − PA\∆)A:j

arise, and it is not necessarily vanishing unless the features are independent.

2.2. Asymptotic error control. Using Theorem 1, we can show that asymptotically and
for most j, the approximation error is negligible, under the following condition:

DEFINITION 1. We say condition P = (δ,κ1,M2, σ
2,Csg) is satisfied (for some n) if:

• p(n) = ⌊n/δ⌋, where δ ∈ (0,1);
• A(n) ∈ Rn×p(n), where the rows are i.i.d. following a distribution Q(n) with zero mean

and covariance Σ(n). We have max{λmax(Σ(n)), λ
−1
min(Σ(n))} ≤ κ1 ∈ (1,∞), and Q(n)

is Csg-sub-Gaussian, i.e., for v ∼Q(n) and any t ∈Rp, we have

E[exp(⟨t, v⟩)]≤ exp(Csg∥t∥22);(27)

• The noise w(n)∼N (0, nσ2In);
• Y (n) =A(n)α(n) +w(n) and 1

p∥α(n)∥
2
2 ≤M2.

We will drop the (n) in these notations when there is no confusion. Recall that OP(n) indi-
cates that the hidden constant depends only onP (otherwise, it may depend on other constants
such as λ or κ2 introduced later).

REMARK 1. The key properties of A needed are (for some κ > 0 and with high proba-
bility), 1) ∥A∥op ≤ κ

√
n; 2) Ǎ:j is κ-sub-Gaussian conditioned on A:\j ; 3) λmin(A:S) for all

|S| ≤ κ−1n. The proof only uses concentration inequalities to control the order of the error
terms, and small ball probability to lower bound the singular value of a random matrix fol-
lowing Koltchinskii and Mendelson (2015). Moreover, it is expected that the Gaussian noise
assumption can be relaxed to more a general small ball probability condition to ensure that
not too many subgradients are near the boundary in the proof step (123).

For each j, we generate B(j)
:j by setting B(j)

:\j = A:\j , and independently sampling B(j)
:j

according to PA:j |A:\j . For each j, recall PA and PB defined around (8) and (10), and set

Pj := PA; P (j) := PB.(28)

Our main asymptotic result is as follows:

THEOREM 3. Suppose thatP is satisfied, and λ is larger than a threshold depending only
on P but not n (see (157)). Then, except for a set of j of expected cardinality Õ(pn−1/18),
we have |t(j,B(j), Y )− tj |= ÕP(n

−1/18), where t(j,B(j), Y ) is as in (13),

tj :=
1

n
B̌

(j)⊤
:j R+

1

n
B̌

(j)⊤
:j (I − Pj)A:jα̂j .(29)

In fact, the same asymptotic bound also holds if B̌(j)⊤
:j (I − Pj)A:jα̂j is dropped.

The proof is given in Section C. In Theorem 3 we bound the approximation error in com-
puting t(j,B(j), Y ) = B̌

(j)⊤
:j (I−P (j))B

(j)
:j β̂

(j)U
j from the update formula. A natural question

is, what about the approximation error for β̂(j)Uj itself? Note that Theorem 3 suggested that

β̂
(j)U
j ≈

1
nB̌

⊤
:jR+ 1

nB̌
⊤
:j (I − Pj)A:jα̂j

1
nB̌

⊤
:j (I − Pj)B:j

.(30)
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As we will see in Theorem 4, for (30) to hold it suffices make an additional assumption of

E[|B̌(j)
1j |

2]≥ κ−1
2 , ∀j = 1, . . . , p,(31)

for some κ2 > 0 independent of n. (31) is true, for example, if µ:j = A:\jΣ
−1
\j Σ\jj (i.e., the

linear predictor is optimal), under the assumption of P . In the meantime, this is essentially
also necessary: if E[|B̌(j)

:j |2] = 0, the right side of (30) is undefined.

THEOREM 4. Suppose that P and (31) are satisfied, and λ is larger than a threshold
depending only on P but not n (see (157)). Then, except for a set of j of expected cardinality
Õ(p · n−1/18), the difference between the left and right sides of (30) is at most ÕP(n

−1/18).

The proof is given in Section D. Theorem 3 and Theorem 4 are useful for variable selection
under the false discovery rate (FDR) control, because they bound the approximation error for
all but a small fraction of j, and a vanishing fraction of coordinates does not change the
asymptotic FDR and power of the selection algorithm. To formalize the notion of “approx-
imation in most coordinates”, recall the notion of Levy-Prokhorov metric which metricizes
weak convergence of probability measures (see for example Bobkov (2016)):

DEFINITION 2. Levy-Prokhorov metric, denoted as π, between two probability measures
µ and ν on a metric space (X,d) is defined as:

π(µ,ν) = inf{ϵ > 0 : µ(A)≤ ν(Aϵ) + ϵ and ν(A)≤ µ(Aϵ) + ϵ for all Borel sets A⊆X}

where Aϵ = {x ∈X : d(x,A)< ϵ} denotes the ϵ-neighborhood of the set A.

COROLLARY 5. In the setting of Theorem 3, let t̂ := (t(j,B(j), Y ))pj=1 and t̃ := (tj)
p
j=1.

Then E[π(P̂t̂α, P̂t̃α)] = ÕP(n
−1/18). Similarly, in the setting of Theorem 4, E[π(P̂γ̂α, P̂γ̃α)] =

ÕP(n
−1/18), where γ̂j and γ̃j denote the left and the right sides of (30).

An analysis of the asymptotic impact of the approximation error on variable selection
algorithms is given in Section 4.

3. Proof of the Approximate Formula. The goal of this section is to prove Therem 1,
Therem 2, and some extensions. Recall the optimization problems given in (1)(2). Intuitively
an update formula is possible because the Taylor expansion is asymptotically correct; the
challenge though lies in the non-differentiability of the objective function and in showing that
error is indeed negligible in the high-dimensional setting. Before the proof let us first give a
heuristic derivation of the approximate update formula. Let R := Y −Aα̂ and S := Y −Bβ̂
denote the residuals. From the normal equations we have

− 1

n
A⊤

:\jR+ λψα\j = 0p−1,(32)

− 1

n
A⊤

:\jS + λψβ\j = 0p−1,(33)

− 1

n
B⊤

:jS + λψβj = 0,(34)

where the subdifferential ψα ∈ [−1,1]p is intuitively the derivative of (the non-differentiable
function) ∥ · ∥1 at α̂. Because of the non-differentiability, ψα is not a function α̂. But as a
heuristic argument, we pretend that ψα = ψ(α̂), where ψ : Rp → Rp applies element-wise
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the function of the derivative of the absolute value function. We also pretend that ψ(·) is a
smooth function so that we can Taylor expand ψ(·) around α̂. Now using

S −R=A:\j(α̂\j − β̂\j) +A:jα̂j −B:j β̂j ,(35)

and ignoring higher order terms in the Taylor expansion, we obtain

Ḡ(α̂\j − β̂\j) + uα̂j − vβ̂j = 0p−1,(36)

− 1

n
B⊤

:jR− v⊤(α̂\j − β̂\j)−
1

n
B⊤

:jA:jα̂j +
1

n
B⊤

:jB:j β̂j + λψ(β̂j) = 0,(37)

where we defined

Ḡ :=
1

n
A⊤

:\jA:\j + λdiag(ψ′(α̂\j));(38)

u :=
1

n
A⊤

:\jA:j ; v :=
1

n
A⊤

:\jB:j .(39)

Cancelling α̂\ − β̂\j , we can solve for β̂j to obtain

(
1

n
∥B:j∥2 − v⊤Ḡ−1v)β̂j + λψ(β̂j) = (

1

n
B⊤

:jA:j − v⊤Ḡ−1u)α̂j +
1

n
B⊤

:jR.(40)

Using the matrix inversion formula, we see that Ḡ−1 is nonzero only in the principal subma-
trix corresponding to the nonzeros of α̂\j . In the high dimension setting, supposing that the
entries of A are i.i.d. with unit variance, we have (1− k

n)β̂j + λψ(β̂j) ≈ 1
nB

⊤
:jR, therefore

(1 − k
n)β̂

u
j ≈ 1

nB
⊤
:jR, which recovers the known formula of the debiased estimator (6) for

i.i.d. features.

REMARK 2. In the case of correlated features, it is tempting to compute β̂j from (40)
using soft thresholding, which is the idea in proving Theorem 2. But as we will see the
approximation error will not vanish unless the feature correlations are sufficiently small. On
the other hand, with some additional algebra, we can show that the approximation error for
the debiased estimator vanishes even when features have non-vanishing correlations.

PROOF OF THEREM 1. To deal with the non-differentiability of ψ in (38), define

Λ= diag

{ψαl −ψβl
α̂l − β̂l

}
l ̸=j

(41)

where the 0
0 case in (41) is resolved by setting ψα

l −ψ
β
l

α̂l−β̂l

= 0 if ψαl = ψβl /∈ (−1,1), and
ψα

l −ψ
β
l

α̂l−β̂l

=+∞ if ψαl = ψβl ∈ (−1,1). Then set

G :=
1

n
A⊤

:\jA:\j + λΛ.(42)

From (40) we have

(
1

n
∥B:j∥2 − v⊤G−1v)β̂j + λψβj =

1

n
B⊤

:jR+ (
1

n
B⊤

:jA:j − v⊤G−1u)α̂j .(43)

Note that
1

n
B⊤

:jR=
1

n
B̌⊤

:jR+
1

n
µ⊤:jS +

1

n
µ⊤:j (R− S),(44)
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and next we will simplify the last term in (44) using (35) and Proposition 13:

1

n
µ⊤:j (R− S) =−

1

n
µ⊤:j [A:\j(α̂\j − β̂\j) +A:jα̂j −B:j β̂j ]

(45)

=− 1

n
µ⊤:jA:\jG

−1vβ̂j +
1

n
µ⊤:jA:\jG

−1uα̂j −
1

n
µ⊤:jA:jα̂j +

1

n
µ⊤:jB:j β̂j .(46)

Collecting terms and using (7) and λψβj −
1
nµ

⊤
j:S = 1

nB̌
⊤
:jS, we see (43) becomes:

(
1

n
∥B:j∥2 −

1

n
µ⊤:jB:j −

1

n
B̌⊤

:jA:\jG
−1v)β̂j +

1

n
B̌⊤

:jS

=
1

n
B̌⊤

:jR+ (
1

n
B̌⊤

:jA:j −
1

n
B̌⊤

:jA:\jG
−1u)α̂j .(47)

Next we estimate the coefficients on the two sides of (47). Define

ḠA :=
1

n
A⊤

:\jA:\j + λdiag(Λ̄),(48)

where Λ̄ll := 0 if l ∈A and Λ̄ll := +∞ otherwise. Define ḠB analogously but with A above
replaced by B := {l ̸= j : χβl ̸= 0}. Then the third term in the coefficient of β̂j is

1

n
B̌⊤

:jA:\jG
−1v =

1

n2
B̌⊤

:jA:\jḠ
−1
B A⊤

:\jB:j +
1

n2
B̌⊤

:jA:\j(G
−1 − Ḡ−1

B )A⊤
:\jB:j(49)

=
1

n
B̌⊤

:jPBB:j +
1

n2
B̌⊤

:jA:\j(G
−1 − Ḡ−1

B )A⊤
:\jB:j(50)

where PB := 1
nA:\jḠ

−1
B A⊤

:\j denotes the projection onto the span of the columns correspond-

ing to the indices B. Therefore the coefficient of β̂j on the left side of (47) differs from
1
nB̌

⊤
:j (I − PB)B:j by at most

1

n2
|B̌⊤

:jA:\j(G
−1 − Ḡ−1

B )A⊤
:\jB:j | ≤

1

n2

∥∥∥B̌⊤
:jA:\j(G

−1 − Ḡ−1
B )A⊤

:\j

∥∥∥
2
∥B:j∥2(51)

≤ 1

n

∥∥∥B̌⊤
:j (PA∪J − PA\J )

∥∥∥
2
∥B:j∥2(52)

≤ 1

n
· Γ
√
|J | ·D

√
n,(53)

where (52) follows from Lemma 12. Similarly, for one term in the coefficient for α̂j in (47),∣∣∣∣ 1nB̌⊤
:jA:\jG

−1u− 1

n
B̌⊤

:jPAA:j

∣∣∣∣= 1

n2

∣∣∣B̌⊤
:jA:\j(G

−1 − Ḡ−1
A )A⊤

:\jA:j

∣∣∣(54)

≤ 1

n2

∥∥∥B̌⊤
:jA:\j(G

−1 − Ḡ−1
A )A⊤

:\j

∥∥∥
2
∥A:j∥2(55)

≤ ΓD
√
ε.(56)

Then (47) yields∣∣∣∣ 1nB̌⊤
:j (I − PB)B:j β̂

U
j −

1

n
B̌⊤

:jR−
1

n
B̌⊤

:j (I − PA)A:jα̂j

∣∣∣∣≤ ΓD
√
ε(|α̂j |+ |β̂j |).(57)

Finally the proof is completed by
1

n
|B̌⊤

:j (PA − PB)B:j | ≤
D√
n
∥B̌⊤

:j (PA − PB)∥2(58)

≤DΓ
√
ε.(59)
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The update formula is closely related to the leave-one-out analysis and the asymptotic nor-
mality of debiased Lasso (Javanmard and Montanari, 2018)(Bellec and Zhang, 2019)(Bellec
and Zhang, 2022). To see this, observe that by slightly changing the proof of Therem 1 to
allow different observation vector Y in the two Lasso problems, we obtain:

THEOREM 6. Let α ∈ Rp and w ∈ Rn. Suppose that A and B differ only in the j-th
column. Define

β̂ : = argminγ∈Rp

{
1

2n
∥A:\jα\j +w−Bγ∥22 + λ∥γ∥1

}
;(60)

α̂ : = argminγ∈Rp

{
1

2n
∥Aα+w−Aγ∥22 + λ∥γ∥1

}
.(61)

Let µ:j ∈Rn be arbitrary, define Ǎ:j :=A:j − µ:j , J := {l : χαl ̸= χβl }, and suppose that we
have (18), (19), and

max
∆
∥(PB∪∆ − PB\∆)Ǎ:j∥2 ≤ Γ

√
nε,(62)

where B := {l ̸= j : χαl ̸= 0}, and the max is over ∆ ⊆ {1, . . . , p} \ {j} of size at most nε,
for some Γ> 1 and D> 1. Then∣∣∣∣ 1nǍ⊤

:j (I − PB)A:j(α̂
U
j − αj)−

1

n
Ǎ⊤

:jS −
1

n
Ǎ⊤

:j (I − PB)B:j β̂j

∣∣∣∣
≤DΓ

√
ε(|β̂j |+ |α̂j − αj |+ |α̂Uj − αj |).(63)

PROOF. Similar to Therem 1, but make changes to (35), (36), (37), (40), (111), (112),
(113), by replacing β̂j with β̂j − αj , and switch the notations A↔B, α̂↔ β̂.

Observe that if A and B are independent conditioned on A:\j , (63) suggests that

α̂Uj − αj ≈
Ǎ⊤

:jS

Ǎ⊤
:j (I − PB)A:j

≈
Ǎ⊤

:jS

(n− k)Σj|\j
(64)

which approximately follows N (0, (n− k)−2Σ−1
j|\j∥S∥

2
2) under appropriate regularity con-

ditions. This recovers the asymptotic normality of the debiased Lasso previously proved by
other methods; see Section 1.

PROOF OF THEREM 2. Recall that we showed (43). Now

v⊤G−1v− 1

n
B⊤

:jPAB:j =
1

n
B⊤

:jEB:j(65)

=
1

n
µ⊤:jEµ:j +

2

n
µ⊤:jEB̌:j +

1

n
B̌⊤

:jEB̌:j ,(66)

where E := 1
nA:\jGA

⊤
:\j − PA, and recall that µ:j =B:j − B̌:j . As shown in Lemma 12,

−(PA∪J − PA\J )⪯E,E2 ⪯ PA∪J − PA\J(67)

where we note that PA∪J − PA\J is a projection matrix. Therefore,

∣∣∣∣v⊤G−1v− 1

n
B⊤

:jPAB:j

∣∣∣∣≤ 1

n
∥µ:j∥22 +

2

n
∥µ:j∥2∥EB̌:j∥2 +

1

n
B̌⊤

:j (PA∪J − PA\J )B̌:j ,

(68)

≤ τ2 + 2τΓ
√
ε+ εΓ2(69)
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Similarly, we have

∣∣∣∣v⊤G−1u− 1

n
B⊤

:jPAA:j

∣∣∣∣≤ 1

n
∥µ:j∥22 +

1

n
∥µ:j∥2(∥EB̌:j∥2 + ∥EǍ:j∥2) +

1

n
∥EB̌:j∥2∥Ǎ:j∥2

(70)

≤ τ2 + τ(Γ
√
ε+ Ď) + Γ

√
εĎ.(71)

Then the claim follows from (43).

4. Application in False Discovery Rate Control.

4.1. Review of the knockoff filter and its limitation. Suppose that Y ∈Rn and A ∈Rn×p
are the observation vector and the feature matrix respectively. In technologies such as ge-
nomics, p can be more than thousands, so it is often desirable to perform variable selection
by controlling the type I error rate, also known as the false discovery rate (FDR):

FDR := E

[
|H0 ∧ Ĥ1|
|Ĥ1|

]
(72)

where H0 ⊆ {1,2, . . . , p} is the set of true null variables, and Ĥ1 ⊆ {1,2, . . . , p} is the set of
selected variables. A good variable selection algorithm is expected to control the FDR below
a given budget, while ensuring a large statistical power:

POWER := E

[
|H1 ∧ Ĥ1|
|H1|

]
.(73)

The knockoff filter (Barber and Candés, 2015)(Candes et al., 2018) is a recent popular ap-
proach for variable selection in the setting of dependent p-values. The knockoff filter creates
a knockoff feature matrix Ã such that (A, Ã) satisfies an exchangeability condition, but Ã
is conditionally independent of Y . Then we regress Y on the matrix [A, Ã], so that the test
statistics for Ã can be used to estimate the number of false discoveries. For a full description
of the knockoff filter in the case of random designs, see (Candes et al., 2018).

The exchangeability condition may create challenges in the construction of the knockoff
distribution, and the increase in the number of features (from p to 2p) is believed to induce
some power loss (Weinstein et al., 2017)(Li, 2022). In this section, we provide a simple ex-
ample which always suffers from this suboptimality, regardless of the choice of the knockoff
distribution (Theorem 10). For simplicity, consider the p < n regime, and we simply use the
least squares estimator rather than the Lasso. We recall the following result from Liu and
Rigollet (2019) which gives a necessary and sufficient condition for asymptotic consistency
of the knockoff filter:

PROPOSITION 7. [Informal; see Theorem 5 and Proposition 6 in Liu and Rigollet (2019)
for precise statements] Let POWER(n) be the power of the knockoff filter with nominal FDR
budget q ∈ (0,1) for sample size n. Suppose the standard distributional limit assumption is
true. A necessary and sufficient condition for limn→∞POWER(n) to converge to 1 is that
the empirical distribution of (Θ(n)

jj )2pj=1 converges weakly to a point mass at 0, where Θ(n) is
the inverse covariance (precision) matrix of the true and the knockoff variables.

The setting of Liu and Rigollet (2019) is to use the debiased Lasso coefficients as test
statistics, but when the Lasso regularization λ= 0 we recover the case of least squares statis-
tics. Moreover, Liu and Rigollet (2019) assumes the existence of the standard distributional



14

limit defined in Javanmard and Montanari (2014b), so the empirical distribution of (Θ(n)
jj )2pj=1

has a weak limit, and by “limn→∞POWER(n) to converge to 1” in Proposition 7 we mean
limn→∞POWER(n) is viewed as a function of this limiting distribution.

The intuition for Proposition 7 is easy to explain: Let α ∈R2p be the true coefficients and
zero paddings for the knockoff coefficients. There exists τ > 0, bounded above and below,
such that

α̂≈ α+ τΘ1/2z(74)

where z ∼ N (0, I2p). Therefore if variables are selected based on a threshold test for the
coefficients of α̂, then asymptotic consistency is true only if most diagonal entries of Θ vanish
(equivalently, the empirical distribution of the diagonal entries must converge to zero).

For Gaussian knockoff filters, it is known (Candes et al., 2018) that selecting a knockoff
distribution satisfying exchangeability is equivalent to choosing s such that the joint covari-
ance matrix of the true and knockoff variables,

Σ :=

(
Σ Σ− diag(s)

Σ− diag(s) Σ

)
(75)

is positive semidefinite. Thus we see that the Schur complement 2S − SΣ−1S plays a key
role. We now establish an auxiliary result that will help building a suboptimality example.

LEMMA 8. Set Σ−1 :=E ∈Rp×p as the matrix whose entries are all 1 (note that Σ−1 is
not invertible, but we do not need its inverse here; alternatively, we may perturb it to make it
invertible, and then pass the final result to a limit). Suppose that s ∈ (0,∞)p, S := diag(s),
and we have S−1 ⪰ 1

2Σ
−1. Let d1, . . . , dp be the diagonals of the positive semidefinite matrix

(2S − SΣ−1S)−1. Then 1
p |{j : dj >

p
10}| ≥

3
5 .

PROOF. Set a = 1√
2
S1/2e where e = (1, . . . ,1)⊤. From ∥s∥1 = s⊤S−1s ≥ 1

2s
⊤Es =

1
2∥s∥

2
1 we obtain ∥a∥2 = 1

2∥s∥1 ≤ 1. Moreover,

(I − 1

2
S1/2ES1/2)−1 = (I − aa⊤)−1(76)

= I +
1

1− ∥a∥22
aa⊤.(77)

Therefore, the diagonal values of (2S − SΣ−1S)−1 are

1

2sj
(1 +

a2j
1− ∥a∥22

) =
1

2sj
(1 +

sj/2

1− ∥s∥1/2
)(78)

=
1

2sj
+

1

4− 2∥s∥1
(79)

>
1

2sj
.(80)

However, by the Markov inequality we have
1

p
|{j : 1

2sj
>

p

10
}|= 1− 1

p
|{j : sj ≥

5

p
}|(81)

≥ 1− 1

5
∥s∥1(82)

≥ 3

5
.(83)
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DEFINITION 3. Given any statistic α̂ (Lasso, debiased Lasso, or OLS), computed using
Y and the true feature matrixA ∈Rn×p, the oracle threshold algorithm selects {j : |α̂j |> t},
where t is a deterministic number for which the FDR is exactly the budget q.

The oracle threshold algorithm is not realistic since the threshold is not data-driven. Nev-
ertheless, it serves as a natural benchmark, and has been considered in, e.g. Ke et al. (2024),
under the name prototype method. We then have the following result, whose proof is omitted
since it is analogous to Proposition 7.

PROPOSITION 9. Assume the p < n regime and α̂ is the OLS solution. Under the stan-
dard distributional limit assumption, a necessary and sufficient condition for asymptotic con-
sistency of the oracle threshold algorithm is that the empirical distribution of (Θ(n)

jj )pj=1 con-
verges weakly to a point mass at 0, where Θ(n) is the precision matrix of the true variables.

By Schur’s complement theorem, it is easy to see that the diagonals of Θ dominate the
corresponding diagonals of Θ, so the knockoff algorithm is asymptotically consistent only if
the oracle threshold algorithm is. Using Lemma 8, we can give an example of strict separa-
tion: the knockoff filter is not asymptotically consistent no mater how to chose s in (75), even
though using the oracle threshold algorithm is asymptotically consistent.

THEOREM 10. Let Σ−1 = apE, where E is as in Lemma 8, and ap is an arbitrary se-
quence satisfying limsupp→∞ ap = 0 and pap ≥ 1. Then 1

2p |{j : (Σ
−1)jj >

1
10}| ≥

3
5 . In

particular, while the diagonals of Σ−1 converges to 0, the diagonals of the knockoff precision
matrix Σ−1 does not (in the sense of weak convergence of empirical distributions).

PROOF. From the definition of Σ−1 it is easy to see that the empirical distribution of its
diagonals converges to 0. From the Schur complement theorem we know that the diagonals
of Σ−1 is two copies of the diagonals of (2S − SΣ−1S)−1, which we denote by d1, . . . , dp.
From Lemma 8 we see that 1

p |{j : dj >
pap

10 }| ≥
3
5 , hence 1

2p |{j : (Σ
−1)jj >

1
10}| ≥

3
5 .

4.2. A “local” knockoff filter. In this section we explore an application of the approxi-
mation formula in Section 2.1 in designing a variable selection algorithm whose asymptotic
power is approximately that of the oracle threshold algorithm in Definition 3.

In Theorem 10 we saw that the suboptimality of the knockoff filter arises from augment-
ing the number of variables from p to 2p, so that the diagonals in the augmented precision
matrix Θ is unavoidably larger than that of the original precision matrix Θ. A natural idea
to remedy this is to weaken the exchangeability of (A, Ã) in the knockoff filter to the con-
ditional exchangeability of columns (A:j , Ã:j)|A:\j , for each j = 1, . . . , p. Then for each j,
one regression Y on (A:j ,A:,\j) and on (Ã:j ,A:,\j), thus generating a pair of test statistics
which have the same distribution if j ∈ H0. We call the resulting algorithm local knock-
off filter; see Algorithm 1 for the description in the case of the debiased Lasso test statistic
(but other test statistics such as the Lasso coefficients may also be used). To see why the
algorithm controls the FDR, note that |{j : |α̂Uj | > t}| is the number of selected variables,
whereas |{j : |γ̂j | > t}| ≥ |{j ∈H0 : |γ̂j | > t}| approximately controls the number of false
discoveries.

While such a local knockoff filter is a simple modification of the original knockoff fil-
ter (Candes et al., 2018), and probably has crossed the minds of many other researchers, a
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key limitation is computational complexity. Indeed, exactly implementing the local knockoff
filter requires solving 2p linear regression problems of scale n× p, which has computation
complexity O(p4) in the proportional regime (assuming the LAR algorithm; see e.g. Hastie
et al. (2009)). In contrast, the knockoff filter solves one linear regression problem of scale
n × 2p, having computation complexity O(p3). Our key observation here is that by using
the approximate update formula (30), we can still implement the local knockoff filter with
computation complexity O(p3), with an asymptotically vanishing error.

The two definitions of the debiased estimator α̂u and α̂U ((6) and (8)) should behave
similarly in the asymptotic theoretical analysis. We shall use α̂U since it arises more naturally
in the derivations of the update formula and also appears to induce smaller error in numerical
experiments. To analyze the computation complexity, note that

• Although the definition of α̂U may appear to require O(p4) computation time since each
Pj requires O(p3) computation time directly from the formula of the projection matrix, we
can actually compute each Pj in O(p2) time by the rank one update formula and hence α̂U

in O(p3) time (see Algorithm 2 and the note in Appendix F). Thus, the computation time
for α̂U is the same order as obtaining γ̂ using the approximate update formula.

• In the preprocessing step, the conditional means [µ:1, . . . , µ:p] can be calculated in
O(p3) time, if it can be approximated using the linear estimator −A[Θ − diagdiagΘ] ·
(diagdiagΘ)−2, where Θ denotes the precision matrix. Otherwise, they can be estimated
by regressing each A:j on A:\j .

In summary, the complexity of Algorithm 1 is O(p3), the same as the knockoff filter.

Algorithm 1 Local Knockoff Filter (Debiased statistics; see footnote for other statistics)
Input: A ∈Rn×p, Y ∈Rn, λ > 0, FDR threshold q. Assume known µ:1, . . . , µ:p.

Compute the debiased Lasso solution α̂U for (A,Y ) (using Algorithm 2 for fast computation).
Initialize γ̂ ∈Rp.
for 1≤ j ≤ p do

Sample X from the distribution of A:j |A:\j , independently of A:j and Y .

Construct B ∈Rn×p where B:\j =A:\j and B:j =X .

Compute the debiased Lasso solution β̂U for (B,Y ) (possibly approximately using (14)).
γ̂j ← β̂Uj .

end for
Choose T as the smallest t such that

|{j : |γ̂j |> t}|
|{j : |α̂Uj |> t}|

≤ q.(84)

Output: Selected set of variables is {j : |α̂Uj |> T}.
* It is possible to use to other statistics. For the Lasso coefficients, we replace α̂Uj and β̂Uj by α̂j and β̂j . We can

also replace α̂Uj and β̂Uj by t(j,A,Y ) in (12) and tj in (29) if the condition (31) is not satisfied.
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Algorithm 2 Computation of α̂U

Input: Data A ∈Rn×p and Y ∈Rn, λ > 0. Assume known µ:1, . . . , µ:p.

Compute the Lasso solution α̂ and the subgradient ψ for (A,Y ). Set S := {j : ψj =±1} and R := Y −Aα̂.

Compute Ω :=A⊤
:SA:S , Π := Ω−1, and P =A:SΠA

⊤
:S .

for 1≤ j ≤ p do
if j ∈ S then

Set Sj ←S \ {j}
Compute Pj ← P − (A:SΠSj)A

⊤
:j −A:j(ΠjSj

A⊤
:Sj

)−A:Sj
ΠSjjΠ

−1
j ΠjSj

A⊤
:Sj

else
Pj ← P

end if
Compute Ǎ:j =A:j − µ:j .

α̂Uj ← α̂j +
(
1
n Ǎ

⊤
:j (I − Pj)A:j

)−1 Ǎ⊤
:jR
n .

end for

Output: α̂U .

We now show that the local knockoff filter guarantees FDR control under certain asymp-
totic assumptions. In order for the proof to proceed smoothly, we introduce

T (ϵ) := inf

{
t :
|{j : |γ̂j |> t− ϵ}|
|{j : |α̂Uj |> t}|

≤ q

}
.(85)

for any given ϵ ∈ (0,1). Note that T (0) = T in Algorithm 1, and the numerator in (85) is an
overestimate of the number of false discoveries when ϵ > 0. In practical applications though,
it may not be necessary to use ϵ > 0, if the empirical measure of (γ̂j) is not concentrated
around one point (consider for example, the setting where the Gaussian limit property (Ja-
vanmard and Montanari, 2014b) is true, so that the empirical measure is a Gaussian-smoothed
density).

ASSUMPTION 1. Consider a sequence of inputs to Algorithm 1 indexed by n, where
Y =Aα+w, α is deterministic, and A and w are independent. Moreover assume that

1. lim infn→∞
1
pE[|{j : |α̂

U
j |> T (ϵ)}|]> 0.

2. The Levy-Prokhorov distance between the empirical measure of (α̂Uj , αj)
p
j=1, denoted

P̂α̂Uα, and its mean, Pα̂Uα, converges to 0 in probability.
3. Let γ̂j and γ̃j be the debiased estimator and its approximation for the j-th knockoff, i.e.

the left and right sides of (30). The Levy-Prokhorov distance between the empirical distri-
butions P̂γ̂α and P̂γ̃α converges to 0 in probability. This implies that the Levy-Prokhorov
distance between their expectations, Pγ̂α and Pγ̃α, converges to 0.

4. P̂γ̃α converges to Pγ̃α in probability.

REMARK 3. It is possible to prove the convergence of the empirical measures (Assump-
tion 1 part 2 and 4) under more explicit conditions. For example, if the distributions of the
row of the design matrix and the noise satisfy the Poincare inequality, we can control the vari-
ance of

∫
fdP̂γ̃α for any Lipschitz f by a gradient calculation (see BOBKOV and GÖTZE

(2010)). We omit the details here since concentration is expected to hold in broader set-
tings (for example, when the distribution of the row vectors have disconnected support, the
Poincare inequality fails, but the concentration of the empirical distribution may still be true).
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REMARK 4. It is possible to justify Assumption 1 part 3 by applying Theorem 2,
Theorem 3, or Theorem 4, depending on the distributional assumptions or the choice of
the test statistics. For example, Theorem 3 implies Corollary 5, which in turn implies
E[π(P̂γ̂α, P̂γ̃α)] =O(n−1/18).

The following consequence of Algorithm 1 is rather direct:

THEOREM 11. Fix any ϵ > 0, and consider Algorithm 1 with nominal FDR q and with
T replaced by T (ϵ). Under Assumption 1, we have

lim
n→∞

FDR≤ q.(86)

PROOF. Under Assumption 1, with high probability and for large n we have

FDR= E

[
|{j ∈H0 : |α̂Uj |> T (ϵ)}|
|{j : |α̂Uj |> T (ϵ)}|

]
(87)

≤
|{j ∈H0 : |α̂Uj |> T (ϵ)− 0.1ϵ}|

|{j : |α̂Uj |> T (ϵ)}|
(88)

=
P̂α̂Uα[(T (ϵ)− 0.1ϵ,∞)× {0}]

P̂α̂U [(T (ϵ),∞)]
(89)

≤ Pα̂Uα[(T (ϵ)− 0.2ϵ,∞)× {0}]
P̂α̂U [(T (ϵ),∞)]

(90)

=
Pγ̂α[(T (ϵ)− 0.2ϵ,∞)× {0}]

P̂α̂U [(T (ϵ),∞)]
(91)

=
Pγ̃α[(T (ϵ)− 0.3ϵ,∞)× {0}]

P̂α̂U [(T (ϵ),∞)]
(92)

=
P̂γ̃α[(T (ϵ)− ϵ,∞)× {0}]

P̂α̂U [(T (ϵ),∞)]
(93)

≤ q.(94)

REMARK 5. If ϵ is small and if P̂γ̃α[(T (ϵ)− ϵ,∞)× {0}] is close to P̂γ̃ [(T (ϵ)− ϵ,∞)]
(which is the case if most hypotheses are null), then the bounds in the proof are also essen-
tially tight, which indicates that T (ϵ) is not selected too conservatively and so the algorithm
does not lose too much power compared to the oracle threshold algorithm.

4.3. Fast conditional randomization test. Conditional randomization test (Candes et al.,
2018) is another resampling-based method for variable selection, which weakens the ex-
changeability of (A, Ã) in the knockoff filter to the conditional exchangeability of columns
(A:j , Ã:j)|A:\j , j = 1, . . . , p. See Algorithm 3 for a description in the case of debiased Lasso
coefficients (other test statistics may also be used, similar to the footnote of Algorithm 1). To
quote Candes et al. (2018),

there are power gains, along with huge computational costs, to be had by using conditional random-
ization in place of knockoffs
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Indeed, the complexity of exactly solving CRT is O(Kp4), assuming that computing each
γ̂bj uses LAR which takes O(p3) time. Thus it is pK times the complexity of the knockoff
filter. To probe the tail probability well, it may be necessary to take K up to the order of p
(see discussion in Candes et al. (2018)). Previously, proposals for accelerating CRT include
applying dimension reduction on A:\j , which is referred to as “distillation” in Liu et al.
(2022). It is not clear how to control the asymptotic power loss due to the distillation process.

In this work, we adopt an alternative approach for reducing the computation complexity of
CRT, by adopting the approximate update formula (14) in computing γ̂bj . Note that computing
Y − Aα̂ has complexity O(p3), and then computing the product B̌⊤

:j (Y − Aα̂) takes time
O(n) = O(p) in the proportion regime. This implies that running CRT approximately takes
only O(p3 + p2K) time.

Algorithm 3 Conditional Randomization Test (CRT)
Input: A ∈Rn×p, Y ∈Rn, λ > 0, FDR threshold q, number of repetitions K ∈ {1,2, . . .}. Assume known
µ:1, . . . , µ:p, and a conditional sampling oracle.

Compute the debiased Lasso solution α̂U for (A,Y ).
for 1≤ j ≤ p do

for 1≤ b≤K do
Sample X from the distribution of A:j |A:\j , independently of A:j and Y .

Construct B ∈Rn×p where B:\j =A:\j and B:j =X .

Compute the debiased Lasso solution β̂Uj for (B,Y ), and set γ̂bj ← β̂Uj .
end for
Set

pj :=
1

K + 1

1 +

K∑
b=1

1{|α̂Uj | ≤ |γ̂
b
j |}

 .(95)

end for

Output: Select a set of variables by feeding (pj)
p
j=1 to the Benjamini-Hochberg procedure at level q.

5. Experiments. Codes can be found in https://github.com/jingboliu1/
local_change.git Experimental results are generated by running the following files:

• Figure 1 and Figure 2: localk1_fig1and2.R.
• Table 1: FDR_demo_eq_table1.R
• Table 2: FDR_demo_eq_table2.R
• Table 3: FDR_demo_riboflavin_table3.R

5.1. Approximation errors in the update formula. Consider the setting where the rows of
the design matrix A ∈R1000×1200 are i.i.d. N (0,Σ), where

Σij = ρ|i−j|.(96)

Let α ∈R1200 be such that the first 500 entries are generated i.i.d. according to N (0,1), and
the remaining entries are 0. Take

Y =Aα+w(97)

where w ∼N (0,10I1000×1000) is an independent Gaussian noise.
In Fig. 1, we plot the values of β̂(j)Uj and β̂(j)Uj − γ̃j for ρ= 0,0.5,0.95, where β̂(j)Uj is the

debiased Lasso coefficient computed exactly as in (10), and γ̃j denotes the value computed

https://github.com/jingboliu1/local_change.git
https://github.com/jingboliu1/local_change.git
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using the approximate formula (30). Fig. 2 compares β̂(j)j and its approximation error for
ρ= 0,0.5,0.95. In these plots, we only uniformly select 1/12 of all the coordinates, to avoid
cluttering of the picture. It can be seen that the approximation error for the debiased estimator
is better than the plain Lasso for large ρ (in turns of size of the error relative to the magnitude
of the debiased coefficients), which is consistent with the theoretical analysis in Section 2.
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FIG 1. Comparison of β̂(j)Uj (cross) and its approximation error β̂(j)Uj − γ̃j (circle) for ρ= 0,0.5,0.95.
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FIG 2. Comparison of β̂(j)j (cross) and its approximation error (circle) for ρ= 0,0.5,0.95.

5.2. FDR control with synthetic data. Consider the setting in Section 4, where p= 300,
n = 200, and the target FDR q = 0.1. We take Σ−1 = ap(E + ϵI), where E denotes the
matrix whose entries are all 1, and ap, ϵ > 0 are parameters to be specified later. Then we

have Σ= 1
apϵ

(
I − ϵ−1

1+ϵ−1pE
)

. We then generate α with a random set of s coordinates equal

to Aval/
√
n (Aval > 0 being a parameter to be specified), and the rest coordinates equal to 0.

The observation is Y =Aα+w, where w ∼N (0, σI).
We compare the performance of 6 variable selection methods in Table 1 and Table 2.

For the knockoff method, we will use the eq-knockoff construction of Candes et al. (2018),
which is natural in this setting since Σ has equal values for the off-diagonals and for the
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diagonals. The max eigenvalue of Σ−1 is ap(p + ϵ), so the condition 2S−1 ⪰ Σ−1 in eq-
knockoff becomes S11 = · · ·= Spp ≤ 2

λmax(Σ−1) =
2

ap(p+ϵ)
. To design the knockoff filter, one

tries to minimize |Σ11 − S11| =
∣∣∣1+ϵ−1(p−1)

ap(ϵ+p)
− S11

∣∣∣ and so for 0 < ϵ < p − 1 the optimal

S11 =
2

ap(p+ϵ)
. For ϵ > p− 1, the optimal S11 =

1+ϵ−1(p−1)
ap(ϵ+p)

.
In Table 1, We use ϵ = 50, ap = 1/p, number of nonzero coefficients s = 20, and noise

standard deviation σ = 1/
√
p, and vary the signal strength Aval. We see that FDR is con-

trolled at approximately q = 0.1 in most cases. As s = 20 is relatively small in this setting,
there are a few instances of FDR overflow for Knockoff-db, due to fluctuations. Meanwhile,
the power achieved by the local knockoff filter and CRT are better than the knockoff filter,
with or without debiasing.

In Table 2, we change the sparsity level to s= 60. Again the FDR is controlled at approxi-
mately q = 0.1 in most cases, while local knockoff filter and CRT achieve higher power than
the knockoff filter. Note that in contrast to Table 1, the power for the debiased versions are
noticeably better than without debiasing in Table 2, which is expected since s increased. For
correlated designs, the debiased coefficients are generally better statistics than coefficients
without debiasing in the s > p/2 regime.

TABLE 1
Experimental Results for CRT and Knockoffs

Method Aval FDR Average Power Average

Knockoff
0.1 0.09266273 0.476
0.2 0.1309883 0.974
0.5 0.1303479 1

Knockoff-db
0.1 0.4191 0.158
0.2 0.300968 0.434
0.5 0.1283717 0.96

approx-local-knockoff
0.1 0.1222533 0.673
0.2 0.1259715 0.998
0.5 0.1241513 1

approx-local-knockoff-db
0.1 0.1822 0.687
0.2 0.1111665 0.998
0.5 0.1059581 1

approx-CRT
0.1 0.08235843 0.529
0.2 0.09038103 1
0.5 0.08639233 1

approx-CRT-db
0.1 0.07372347 0.455
0.2 0.09356313 1
0.5 0.09016392 1

5.3. FDR control with Riboflavin data. We use the riboflavin dataset, available in the
supplemental materials of Bühlmann et al. (2014), which was widely used in FDR control
experiments (Javanmard and Montanari, 2014a)(Bühlmann et al., 2014)(Huang, 2017) . It
contains a p0 = 4088 by n = 71 matrix of the logarithm of the expression levels, and a
response vector Y of the logarithm of the riboflavin production rate. The original measure-
ment matrix contains measurements of many similar (highly correlated) genes, so we use
the findCorrelation function in R to remove the highly correlated columns with cut-
off ρ= 0.5. We normalize the means and variance of the columns, and use graphical Lasso
function glasso to estimate the covariance matrix Σ of the features. Then we use the best
linear estimator A:\jΣ

−1
\j Σ\jj for the µ:j in the definition of the debiased estimator. The FDR

and power cannot be precisely evaluated since we do not know the ground truth. To tackle
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TABLE 2
Experimental Results for CRT and Knockoffs

Method Aval FDR Average Power Average

Knockoff
0.2 0.1885708 0.06233333
0.4 0.1053955 0.4033333
0.6 0.09942364 0.8623333

Knockoff-db
0.2 0.1161885 0.218
0.4 0.1535242 0.4206667
0.6 0.1279221 0.5473333

approx-local-knockoff
0.2 0.09007134 0.223
0.4 0.04435575 0.9666667
0.6 0.04446117 1

approx-local-knockoff-db
0.2 0.04598692 0.4506667
0.4 0.0454128 0.984
0.6 0.04566024 1.000

approx-CRT
0.2 0.03237107 0.1313333
0.4 0.04356834 0.966
0.6 0.04103702 1

approx-CRT-db
0.2 0.0404832 0.379
0.4 0.04051158 0.9823333
0.6 0.03975411 1

TABLE 3
Riboflavin

Method FDR Average Power Average
Knockoff 0.07862957 0.3866667

Knockoff-db 0.03701082 0.1774359
approx-local-knockoff 0.04449921 0.5117949

approx-local-knockoff-db 0.1293922 0.5835897
approx-CRT 0.03975572 0.4820513

approx-CRT-db 0.1938958 0.6492308

this issue, we first use cross-validated Lasso to obtain α for the observed Y , and then gen-
erate new Y =Aα+w, where the noise level is estimated using the norm of the residual in
the previous Lasso regression, so that we can calculate the FDR and power using the new
Y and α. Previously, a similar approach for testing FDR control methods on real datasets
was adopted in the literature; see for example Javanmard and Lee (2020). The results of the
FDR and power values are shown in Table 3. We see an increase in the power by using local
knockoffs or CRT, while roughly controlling the FDR in most cases.

6. Conclusion and Future Work. Through a simple nonasymptotic calculation for a
given design matrix, we showed that a certain debiased Lasso coefficient is stable with re-
spect to perturbation in one column (Theorem 1). Then by general concentration and anti-
concentration machineries, vanishing approximation error in most coordinates was estab-
lished under mild assumptions (Theorem 3). As a consequence, several FDR control algo-
rithms based on feature resampling can be implemented quickly with asymptotically zero
impact.

We expect that the asymptotic error control in Theorem 3 can be extended to even more
general matrix classes. In the variable selection literature, a common assumption for the de-
sign matrix is the factor model (Fan et al., 2020). We expect that Theorem 3 can be extended
to the setting of A=QU , where Q ∈ Rn×r is a deterministic matrix with bounded singular
values, and U is a random matrix from the class of Definition 1.

More broadly, we expect that some of our stability type analysis can be adapted to other
related problems. For example, algorithmic stability (Bousquet and Elisseeff, 2000) is de-



DEBIASED LASSO 23

fined as the stability of a function of the training data when one data point is removed, which
implies desirable generalization properties and predictive inference guarantees (Zrnic and
Jordan, 2023) (Kim and Barber, 2023). Our approximation error bounds for debiased Lasso
based on the number of sign changes may be adapted to establish algorithmic stability or
differential privacy guarantees. Furthermore, while the original definition of the debiased co-
efficients may be non-differentiable in (A,Y ), its approximation formula is piecewise differ-
entiable. This suggests the possibility of establishing concentration or Gaussian limit results
for the empirical distribution of the debiased Lasso through the leave-one-out type analysis
leveraging the Poincare inequality or Stein’s method, under conditions more general than (or
at least not covered by) existing approaches based on vector approximate message passing
(Li and Sur, 2023)(Venkataramanan et al., 2022) or Lindeberg’s universality argument (Han
and Shen, 2023).

Finally, the recent work of Bao et al. (2023) also showcased the power and generality of the
leave-one-out approach, by applying it in deriving nonasymptotic error bounds for the AMP
state evolution, which differs from the previous proofs using the conditioning technique that
require rotational invariance. While Bao et al. (2023) focused on the case of independent
matrix entries, it may be that an extension to the vector sub-Gaussian case is possible by
combining techniques in our paper.
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APPENDIX A: ERRORS IN THE PROJECTION MATRICES

RecallG, ḠA and ḠB defined around (42) and (48). Their inverses may not be well defined
as matrices since the diagonal values may be +∞. However, the inverses can be defined as
linear operators on the column space of A:\j . That is, we observe that the following map

a 7→A:\j(A
⊤
:\jA:\j +diag(a))−1A⊤

:\j(98)

is well-defined from [0,+∞]p−1 to the set of positive semidefinite matrices, since the min-
imum eigenvalue of A⊤

:\jA:\j + diag(a) as an operator on the column space of A:\j is pos-
itive and hence admits an inverse. Since our final bounds will only depend on G−1 through
A:\jG

−1A⊤
:\j (and similarly for ḠA and ḠB), we can write G−1 with the understanding that

it is well-defined restricted to subspace. We now show that 1
nA:\jG

−1A⊤
:\j is close to the

projection matrices PA := 1
nA:\jḠ

−1
A A⊤

:\j and PB := 1
nA:\jḠ

−1
B A⊤

:\j .

LEMMA 12. Let A := {l ̸= j : ψαl = ±1}, B := {l ̸= j : ψβl = ±1}, and J := {l ̸=
j : χαl ̸= χβl }. We have

−(PA∪J − PJ )⪯
1

n
A:\j(Ḡ

−1
A −G

−1)A⊤
:\j ⪯ PA − PA\J(99)

Consequently, [
1

n
A:\j(Ḡ

−1
A −G

−1)A⊤
:\j

]2
⪯ PA∪J − PA\J .(100)
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We also have [
1

n
A:\j(Ḡ

−1
B −G

−1)A⊤
:\j

]2
⪯ PA∪J − PA\J .(101)

PROOF. Recall that Λ̄ ∈ R(p−1)×(p−1) is the diagonal matrix where Λ̄ll = 0 if l ∈ A and
Λ̄ll = +∞ if otherwise. Note that Λ is a diagonal matrix with nonnegative entries where
Λll = Λ̄ll unless j ∈ J . Define Λ+ as the diagonal matrix with Λ+

ll = 0 iff j ∈ A \ J and
+∞ otherwise. Then from the rule of resolving the 0

0 case around (41), we see that Λ+

dominates Λ, so

Ḡ−1
A −G

−1 =

(
1

n
A⊤

:\jA:\j + λΛ̄

)−1

−
(
1

n
A⊤

:\jA:\j + λΛ

)−1

⪯
(
1

n
A⊤

:\jA:\j + λΛ̄

)−1

−
(
1

n
A⊤

:\jA:\j + λΛ+

)−1

.(102)

Define Λ− as the diagonal matrix with Λ−
ll = 0 iff l ∈ A ∪ J and +∞ otherwise. Then we

see that Λ− dominated by Λ, so

Ḡ−1
A −G

−1 ⪰
(
1

n
A⊤

:\jA:\j + λΛ̄

)−1

−
(
1

n
A⊤

:\jA:\j + λΛ−
)−1

.(103)

Then (100) follows from Lemma 14. By the same argument we also have[
1

n
A:\j(Ḡ

−1
B −G

−1)A⊤
:\j

]2
⪯ PB∪J − PB\J = PA∪J − PA\J ,(104)

where the last equality can be verified using the definition of J .

PROPOSITION 13. For Λ defined in (41), we have

A:\j(α̂\j − β̂\j) =A:\j

(
1

n
A⊤

:\jA:\j + λΛ

)−1
(
vβ̂j − uα̂j√

n

)
(105)

where inverse is taken in the subspace of A:\j (see comment around (98) ).

PROOF. Note that from (32), (33), and (35),

1

n
A⊤

:\jA:\j(α̂\j − β̂\j) + λ(ψα\j −ψ
β
\j) =

vβ̂j − uα̂j√
n

.(106)

Therefore for any δ,∆ ∈Rp−1,

1

n
A⊤

:\jA:\j(α̂\j − β̂\j + δ) + λ(ψα\j −ψ
β
\j +∆) =

vβ̂j − uα̂j√
n

+
1

n
A⊤

:\jA:\jδ+ λ∆.(107)

Then defining Λδ,∆ as the diagonal matrix whose diagonal values are ψα
l −ψ

β
l +∆l

α̂l−β̂l+δl
, l ̸= j, we

have

α̂\j − β̂\j + δ =

(
1

n
A⊤

:\jA:\j + λΛδ,∆

)−1
(
vβ̂j − uα̂j√

n
+

1

n
A⊤

:\jA:\jδ+ λ∆

)
(108)

whenever δ,∆ are such that the above matrix inverse is defined. Now we can take a particular
sequence of (δ,∆) such that the coordinates of Λδ,∆ converges to coordinates of Λ on the
extended real line. It is easy to see that the map (98) is continuous, so (105) follows.
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LEMMA 14. Suppose that P is the projection matrix onto a subspace in Rn. If A ∈ R2

is a symmetric matrix satisfying −P ⪯A⪯ P , then A2 ⪯ P .

PROOF. Without loss of generality, assume that P =

(
Ir×r 0
0 0

)
, for some r ≤ n. If A =(

A11 A12

A21 A22

)
, where A11 ∈ Rr×r , we claim that A12, A21, A22 are zero. Indeed, let u ∈ Rr

and v ∈Rn−r be arbitrary row vectors. We have

(u, v)A(u, v)⊤ = uA11u
⊤ + 2uA12v

⊤ + vA22v
⊤(109)

which, by our assumption, is bounded between ∥u∥22 and −∥u∥22 for all u and v, so it follows
that A12, A21, A22 are zero. Moreover A11 must have all eigenvalues between −1 and 1, so
A2 ⪯ P follows.

APPENDIX B: SIGN STABILITY

B.1. Control of change of residual. The residual change R−S is easier to control than
α̂− β̂. From (32)-(33) we have

1

n
A⊤

:\j(S −R) + λΛ(α̂\j − β̂\j) = 0.(110)

If 0 · ∞ is encountered in (110), we can add perturbations as in (13), and pass to a limit in
the end. Solving α̂\j − β̂\j and plugging it in (35), we have

S −R=− 1

λn
A:\jΛ

−1A⊤
:\j(S −R) +A:jα̂j −B:j β̂j .(111)

Therefore

S −R=

[
I +

1

λn
A:\jΛ

−1A⊤
:\j

]−1

(A:jα̂j −B:j β̂j).(112)

Since the eigenvalues of
[
I + 1

λnA:\jΛ
−1A⊤

:\j

]−1
are upper bounded by 1, we have

∥S −R∥2 ≤
∥∥∥A:jα̂j −B:j β̂j

∥∥∥
2
.(113)

B.2. Control ofψα near the edge. For a givenA, define ψ() and χ() as the subgradient
and the signs as functions of Y , similar to (4) and (5). In this section we prove sufficient
conditions under which ψm(Y ) ∈ (−1,−1 + ϵ] ∪ [1− ϵ,1) with small probability whenever
ϵ > 0 is small.

LEMMA 15. Let ϵ, δ0 ∈ (0,1), k,m ∈ {1,2, . . . , p}, and κ,Γ ∈ (0,∞). Let A be de-
terministic, and Y ∼ N (µ,nσ2In) for some µ ∈ Rn. Let Ω1 be the set of y such that
|{l : χl(y) ̸= 0}| ≤ k. Let Ω2 be the set of y satisfying 1

n ⟨y− µ,A:m⟩ ≥ −σ2Γ. Now sup-
pose that

1

n
inf
P
A⊤

:m(I − P )A:m ≥ κ(114)

where the infimum is over projection P onto the span of k columns of A excluding the m-th
column; and that

P
[
Y ±U 2ϵλ

κ
A:m /∈Ω1

]
≤ δ0(115)
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where U is a uniform random variable on [0,1] independent of Y ; and that
1

n
∥A:m∥2 ≤ 2(ln3− 1)Γ2σ2;(116)

PY [Ω
c
2]≤ δ0.(117)

Then

P[1− |ψm(Y )| ∈ (0, ϵ]]≤ 12ϵλ

κ
Γ+ 6δ0.(118)

REMARK 6. To fix ideas, we can think of the proportional growth regime and let k also
be linear in n (but with a possibly small slope). Then we can bound κ on the order of a
constant using the restricted singular value of A. We can take Γ to be slowly growing with n,
say polylog(n). Also suppose that ∥µ∥2 =O(n) and then take λ sufficiently large. Then δ0
vanishes in n quickly.

PROOF. In this proof we assume without loss of generality that m = 1. For any y, set
Z(y) := {l = 1 . . . , p : ψl(y) ∈ (−1,1)}. We may omit the argument y when there is no am-
biguity. The normal equation can be written as

− 1

n
A⊤

:Zc(y−Aα̂) + λψZc = 0;(119)

− 1

n
A⊤

:Z(y−Aα̂) + λψZ = 0,(120)

from which we obtain

α̂Zc = (A⊤
:ZcA:Zc)−1(A⊤

:Zcy− nλψZc);(121)

λψZ =
1

n
A⊤

:Z(I −A:Zc(A⊤
:ZcA:Zc)−1A⊤

:Zc)y+ λA⊤
:ZA:Zc(A⊤

:ZcA:Zc)−1ψZc .(122)

In the proof we only need to study ψ, which is uniquely determined by y (even though α̂
may not). We observe that Rn is partitioned into polyhedra (intersection of open or closed
half spaces) according to the value of χ(·), and within each such polyhedron, ψ is a linear
function, hence differentiable.

B0 := {y : ψ1(y) ∈ [1− ϵ,1)},(123)

and let y0 ∈ B0 be arbitrary, and let yt := y0 − tA:1. If for a neighborhood of t, the vector
χ(yt) does not change, then note that ψZc(yt) is a vector consisting of ±1 which does not
change in such a neighborhood. As long as 1 ∈Z(yt), we have

d

dt
(λψ1) =−

1

n
A⊤

:1(I −A:Zc(A⊤
:ZcA:Zc)−1A⊤

:Zc)A:1 ≤ 0,(124)

so that ψ1(yt) monotonically decreases along t. Next we want to show that ψ1 decreases
sufficiently fast along (yt). Set T := 2ϵλ

κ and define

G :=
{
y : P[y− TUA:1 ∈Ω1]>

1

2

}
.(125)

Then we have

δ0 ≥ P[Y − TUA:1 /∈Ω1](126)

=

∫
P[y− TUA:1 /∈Ω1]dPY (y)(127)

≥ 1

2
PY [Gc](128)
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Now if y0 ∈ G ∧ B0, we see that ψ1(yT ) ≤ 1 − ϵ; for if otherwise, for at least half of the
time while t ∈ [0, T ], we have d

dtψ1 ≤−κ
λ (by the definitions of G and Ω1), so that ψ1(yT )≤

ψ1(y0)− Tκ
2λ ≤ 1− ϵ, a contradiction. Since ψ1(y0)≥ 1− ϵ and since ψ1(yt) is continuous

in t, there is some t ∈ [0, T ] such that yt = 1− ϵ. This shows that B0 ∧ G is contained in

B′0 := {y : ψ1(y) = 1− ϵ}+ TA:1.(129)

To conclude the proof it suffices to upper bound the probability of B′0. Define the sets

B′l := B′0 ∧Ω2 − T lA:1(130)

l= 1, . . . , Then B′0 ∧ G, B′1,. . . are non-overlapping. Let

D := 2(ln3− 1)Γ2.(131)

Then for y ∈Ω2 and l≤ 1
TΓ , we have

f(y− lTA:1)

f(y)
= exp

(
−∥y− µ− lTA:1∥2

2nσ2
+
∥y− µ∥2

2nσ2

)
(132)

= exp

(
− l

2T 2∥A:1∥2

2nσ2
+
⟨y− µ, lTA:1⟩

nσ2

)
(133)

≥ exp(− D

2Γ2
− 1)(134)

so that PY [B′l]≥ exp(− D
2Γ2 − 1)PY [B′0 ∧Ω2], and

1≥ 1

TΓ
exp(− D

2Γ2
− 1)PY [B′0 ∧Ω2](135)

Then it follows that

PY [B0]≤ PY [B0 ∧ G] + PY [Gc](136)

≤ PY [B′0] + PY [Gc](137)

≤ PY [B′0 ∧Ω2] + PY [Ω
c
2] + PY [Gc],(138)

or equivalently,

P[1−ψ1(Y )≤ ϵ]≤ TΓexp

(
1 +

D

2Γ2

)
+ 2δ0.(139)

Finally, applying a similar argument after the substitution A:1←−A:1, we obtain (118) via
the union bound.

B.3. Control of change of signs.

COROLLARY 16. Suppose that deterministic A and B differ only in j-column. For a
given j ∈ {1, . . . , p}, let α̂ and β̂ be computed from (1)-(2). Suppose that the assumption in
Lemma 15 holds for all m= 1, . . . , p and for both A and B and some ϵ ∈ (0,1/2). Then

E|{m : χαm ̸= χβm}| ≤ 4 + 2p

(
12ϵλ

κ
Γ+ 6δ0

)
+

4

n2λ2ϵ2
∥A∥22E

∥∥∥A:jα̂j −B:j β̂j

∥∥∥2
2
.(140)
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PROOF. The cardinality in question is decomposed into |{m : χαm = 0, χβm ̸= 0}| +
|{m : χαm ̸= 0, χβm = 0}|+ |{m : χαm > 0, χβm < 0}|+ |{m : χαm < 0, χβm > 0}| and we pro-
ceed by bounding the 4 terms separately. First, we have

|{m : χαm = 0, χβm ̸= 0}|

≤ |{m : χαm = 0,1− |ψαm| ≤ ϵ}|+ |{m : 1− |ψαm|> ϵ,χβm ̸= 0}|(141)

where m ∈ {1, . . . , p}. The expectation of the first term on the right side of (141) is bounded
by p

(
12ϵλ
κ Γ+ 6δ0

)
according to Lemma 15; to bound the second term, note that 1− |ψαm|>

ϵ,χβm ̸= 0 implies |ψαm −ψ
β
m| ≥ ϵ, so

|{m : 1− |ψαm|> ϵ,χβm ̸= 0}| ≤ 1

ϵ2
∥ψα\j −ψ

β
\j∥

2
2 + 1.(142)

But from (32)-(33) and (113), we have

∥λ(ψα\j −ψ
β
\j)∥2 =

1

n
∥A⊤

:\j(R− S)∥2(143)

≤ 1

n
∥A∥2

∥∥∥A:jα̂j −B:j β̂j

∥∥∥
2
.(144)

Therefore,

E|{m : χαm = 0, χβm ̸= 0}| ≤ 1 + p

(
12ϵλ

κ
Γ+ 6δ0

)
+

1

n2λ2ϵ2
∥A∥22E

∥∥∥A:jα̂j −B:j β̂j

∥∥∥2
2

(145)

We bound |{m : χαm ̸= 0, χβm = 0}| by the same argument. Moreover, since χαm > 0 and
χβm < 0 imply |ψαm −ψ

β
m| ≥ 2, we have

|{m : χαm > 0, χβm < 0}| ≤ 1

4
∥ψα\j −ψ

β
\j∥

2
2 + 1.(146)

The same bound holds for |{m : χαm < 0, χβm > 0}|, and the proof is finished by using (144).

APPENDIX C: THE CASE OF SUB-GAUSSIAN DESIGNS

In this section we prove Theorem 3.

C.1. Anticoncentration. In this section we prove auxiliary results that will be used
in justifying the conditions in Corollary 16. The following Lemma is a consequence of
(Koltchinskii and Mendelson, 2015, Theorem 3.1), which lower bounds the minimum sin-
gular values of a random matrix with i.i.d. rows, under the assumption that the projection of
a row in each direction has bounded (both from the above and below) L1 and L2 norms.

LEMMA 17. Assuming that condition P is satisfied. There exist c > 0 (depending only
on P) such that the following holds: For all n≥ 1/c, with probability at least 1− exp(−cn)
we have

min
S⊆{1,...,p} : |S|≤cn

λmin(AS)> c.(147)

In particular, (147) implies that for each j,
1

n
inf
P
A⊤

:j (I − P )A:j ≥ c2,(148)
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where the infimum is over projection P onto the span of no more than cn− 1 columns of A
excluding the j-th column.

PROOF. Consider arbitrary S ⊆ {1, . . . , p} of cardinality no more than cn. For any unit
vector t, let vt := ⟨t,A1S⟩, and we have

• κ−1/2
1 ≤

√
E[v2t ]≤ κ

1/2
1 ;

• Using the Taylor expansion it is easy to see that e−x+ex ≥ |x|3/4 for all x ∈R, therefore
E[|vt|3]≤ 8exp(Csg) and hence√

E[v2t ]≤ κ
3/2
1 E2[v2t ](149)

≤ κ3/21 E[|vt|]E[|vt|3](150)

≤ 8κ
3/2
1 exp(Csg)E[|vt|].(151)

Now define b := 8κ
3/2
1 exp(Csg). The above two itemized verify the condition of (Koltchin-

skii and Mendelson, 2015, Theorem 3.1), therefore, there exist universal constants c0, c1, c2
such that when n≥ c0b4κ21(cn+ 1) we have the following bound on the singular value

λmin(
1√
n
A:S)≥ c2κ−1/2

1 b−2(152)

with probability at least 1 − exp(−c1b4n). Now (147) follows by taking the union bound,
noting that the number of subsets of no more than cn columns is bounded by exp(2nc log 1

c +
o(n)) for small enough c > 0.

Now consider any j, and let P be the projection onto the column space of A:S\{j}, where
S is an arbitrary subset containing j and of size at most cn. Let θ ∈ R|S|−1 be a vector such
that (I − P )A:j =A:j −A:S\{j}θ. Then (147) implies that

∥(I − P )A:j∥2 ≥ ∥(1, θ)∥2λmin(A:S)(153)

≥ c(154)

which establishes the second claim.

PROPOSITION 18. For the Lasso problem with data (A,Y ), we have

K ≤
∥A∥2op
n2λ2

∥Y ∥22,(155)

where K denotes the number of nonzero coefficients in χ (see definition in (3)).

PROOF. From the normal equation λψ = 1
nA

⊤R, we have

1

n2
∥A∥2op∥R∥2 ≥ λ2∥ψ∥22 ≥ λ2K(156)

The claim follows since by the optimality condition we have ∥R∥22 ≤ ∥Y ∥22.

C.2. Expected sign changes. Recall the sign vector χα defined in (3), and define χβ
(j)

analogously. We show that when the Lasso regularization parameter λ is sufficiently large
(but independent of n), the expected number of sign changes is o(n).
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COROLLARY 19. Consider any set of parameters P . There exist c = cP > 0, such that
for all

λ2 ≥ 2

0.9c3
(
4M2

c2δ
+ σ2(1 + 2

√
c+ 2c)),(157)

there exists a set E of A,B(1), . . . ,B(p) satisfying

1

p

p∑
j=1

E[|{m : χαm ̸= χβ
(j)

m }|1Ec ] = ÕP( inf
ϵ∈(0,1/2)

{λnϵ+ 1

λ2ϵ2
}) = ÕP(n

2/3)(158)

and P[E ]≤ (1 + p) exp(−cn) for all n > nP,λ.

PROOF. The proof follows from Corollary 16 and Lemma 15. We choose c (depending on
P) small enough, such that for all sufficiently (depending on P) large n, there exists a set E0
of A with probability at most 1− e−cn, and the following hold for all A ∈ Ec0 :

• (147) holds.
• ∥A∥op ≤

√
n/c, which is a standard matrix concentration result (see Lipschitz maximal

inequality in (Van Handel, 2014, Example 5.10); the argument extends to sub-Gaussian
row vectors).

• For each m ∈ {1, . . . , p}, P[ 1n ⟨w,A:m⟩ ≥ − log(n)|A] ≥ 1 − e−cn. This is indeed pos-
sible, because w ∼N (0, nσ2I), and P[ 1n ⟨w,A:m⟩ ≥ − logn|∥A∥op ≤

√
n/c]≥ 1− e−cn

for small c and large n.

Since each B(j) has the same distribution as A, the above items remain true if A is replaced
by B(j) in the statements, and we define Ej as the corresponding set of B(j). We see that for
A ∈ Ec0 , the conditions (114)-(117) of Lemma 15 hold for regressing Y =Aα+w on A with

Γ← logn

c
;(159)

δ0← 2e−cn;(160)

κ← c2;(161)

k← cn− 1.(162)

Indeed, (114),(116) and (117) follow directly from the itemized above. To verify (115), note
that from Proposition 18, if K is the number of nonzero coefficients when solving the Lasso
for the data (A,Aα+w±U 2ϵλ

c2 A:j), we have

K ≤
∥A∥2op
n2λ2

∥Aα+w±U 2ϵλ

c2
A:j∥22(163)

≤ 2

nλ2c2
(
n2

c2δ
M2 + ∥w∥22 + λOP(n)).(164)

Using the concentration of the chi-squared distribution (see for example (Boucheron et al.,
2013, p43) or (Liu et al., 2020, p57)), we have

P[K > cn− 1|A ∈ Ec0]≤ 2e−cn(165)

for large (depending on P and λ) n if λ satisfies (157). Similarly, we can verify that for
B(j) ∈ Bcj , the conditions (114)-(117) of Lemma 15 hold for regressing Y = Aα + w on
B(j). Now set E :=

⋃p
j=0 E0. By the union bound,

P[E ]≤ (1 + p) exp(−cn).(166)
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By Corollary 16, we obtain that for each j,

E[|{m : χαm ̸= χβ
(j)

m }|1Ec ]≤ 4 + 2p(
12ϵλ logn

c2σ2
+ 12e−cn)

+
8

λ2ϵ2c4
(E[|α̂2

j |1Ec ] +E[|β̂(j)2j |1Ec ]).(167)

We have

E[∥α̂∥221Ec ]≤ c2

n
E[∥Aα̂∥221Ec ](168)

≤ 2c2

n
E[(∥Y ∥22 + ∥R∥22)1Ec ](169)

=OP(n).(170)

Next we will show that
∑p

j=1E[|β̂
(j)2
j |1Ec ] =O(n). Fix j ∈ {1, . . . , p}, and define A(t) ∈

Rn×p such that A:\j(t) =A:\j and A:j(t) = (1− t)A:j + tB
(j)
:j . Thus A(0) =A and A(1) =

B(j). Let Y (t) :=A(t)α+w, and let α̂ be the Lasso solution for the data (B(j), Y (t)). Thus
α̂(0) = β̂(j), and α̂(1) has the same distribution as α̂ under the event Ec0 ∩Ecj (since B(j) and
A are identically distributed). Using (157) and Proposition 18, we see that under the event
Ec0 ∩ Ecj , we have ∥α̂(t)∥0 ≤ cn− 1 for all t ∈ [0,1]. Let S(t) be the set of nonzero entries of
α̂(t). From (121), we see that under the event Ec0 ∩ Ecj , we have∣∣∣∣ ddtα̂j(t)

∣∣∣∣≤ e⊤j (A⊤
:S(t)A:S(t))

−1A⊤
:S(t)(A:j −B(j)

:j )(171)

≤ λ−2
min(A:S(t))∥A:S(t)∥op∥A:j −B(j)

:j ∥2(172)

=OP(1)(173)

for any t ∈ [0,1] and in particular |α̂j(0)− α̂j(1)|=OP(1). Thus

E[|β̂(j)j |
21Ec

0∩Ec
j
] = E[|α̂j(0)|21Ec

0∩Ec
j
](174)

≤ 2E[|α̂j(1)|21Ec
0∩Ec

j
] + 2E[|α̂j(0)− α̂j(1)|21Ec

0∩Ec
j
](175)

≤ 2E[|α̂j |21Ec
0∩Ec

j
] +OP(1).(176)

Thus using (170) we establish that
∑p

j=1E[|β̂
(j)2
j |1Ec ] = OP(n). The claim then follows

from (167).

REMARK 7. From (176), we can see that E[|β̂(j)j |2] =O(E[|α̂j |2]∨1). However, we can-

not obtain that |β̂(j)j |2 =O(|α̂j |2 ∨ 1); this is because α̂(1) and α̂ have the same distribution
under the event Ec0 ∩ Ecj , but they are not equal pointwise.

C.3. Conditioning sub-Gaussians. We establish auxiliary results for controlling B̌(j)
:j

conditioned on (A,Y ).

LEMMA 20. Suppose that (X,U) is a pair of random variables, where X ∈R satisfies

E[exp(
X2

K
)]≤ e,(177)



34

e being the natural base of the logarithm,K > 0, andU takes values in an arbitrary alphabet.
Then for any ϵ ∈ (0,1), there is a set E of U with probability at most ϵ such that for each
u ∈ Ec,

E[exp(
X2

4K ln e
ϵ

)]≤ e.(178)

PROOF. Let λ=
√
K ln e

ϵ and L=
K ln e

ϵ

ln e

2

. Define E as the set of u satisfying

E[exp(
X2

K
)|U = u]>

e

ϵ
(179)

and hence P[U ∈ E ]≤ ϵ by the Markov inequality. For any u ∈ Ec,

E[exp(
X2

L
)1|X|≤λ|U = u]≤ exp(

λ2

L
)≤ e

2
,(180)

and

E[exp(
X2

L
)1|X|>λ|U = u]≤ exp(−λ

2

K
+
λ2

L
)E[exp(

X2

K
)1|X|>λ|U = u](181)

≤ exp(−λ
2

K
+
λ2

L
)
e

ϵ
(182)

≤ e

2
.(183)

Thus E[exp(X2

L )|U = u]≤ e, and the claim follows.

LEMMA 21. Given P , there exist c > 0 such that for any j ∈ {1, . . . , p}, there exist a
set E of A:\j such that P[E ]≤ n−10 and conditioned on any A:\j ∈ E , B̌(j)

:j = B
(j)
:j − µ:j is

OP(logn)-sub-Gaussian.

PROOF. By Jensen’s inequality and using (27),

E[exp(λµ1j)] = E[exp(λE[A1j |A1\j ])](184)

≤ exp(λE[A1j ])(185)

≤ exp(Csgλ
2), ∀λ ∈R.(186)

Therefore both B(j)
1j and µ1j are sub-Gaussian, and so is B̌(j)

1j . By the equivalence of defini-
tions of sub-Gaussian (Vershynin, 2018), there exist K =KP satisfying

E[exp(
B̌

(j)2
1j

K
)]≤ e.(187)

Applying Lemma 20 with ϵ= n−11 and the union bound, we see that there exists E of A:\j
such that P[E ]≤ n−10 and conditioned on any A:\j ∈ Ec,

E[exp(
B̌

(j)2
ij

4K ln(en11)
)|A:\j ]≤ e(188)

and the claim follows since B̌(j)2
1j , . . . , B̌

(j)2
nj are independent conditioned on A:\j .
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C.4. Concentration bounds. We need the following auxiliary result to control the pro-
jection of B̌(j)

j onto small subspaces.

PROPOSITION 22. [Bound on the maximum norm of sub-Gaussian vectors] Suppose that
X ∈Rn is a zero mean random vector satisfying

E[e⟨u,
X

σ ⟩]≤ e∥u∥2

, ∀u ∈Rn(189)

for some σ > 0. Let L be a finite collection of subspaces in Rn of dimension d. Then for any
r > 0,

P[max
L∈L
∥PLX∥2 ≥ rσ]≤ exp

(
−
√
dr

2
+ 2d+ ad + ln |L|

)
,(190)

where PL denotes the projection onto L and (ad)
∞
d=1 is a sequence that converges to 0.

PROOF. To control the norm of PLX , we approximate a ball by a polytope which has
not too many facets, and bound the probability that PLX lies outside the polytope using the
Markov inequality and union bound. For any subspace L of dimension d and θ ∈ (0, π/2),
it is well-known that we can find a convex polytope C contained in {x : ∥x∥2 ≤ r} and
containing {x : ∥x∥2 ≤ r cosθ}, such that the number of facets is 1

sind+o(d) θ
(see for example

Böröczky and Wintsche (2003) or (Liu, 2023, Section 4)). Then

P
[
∥PLX∥2

σ
≥ r
]
≤ P

[
PLX

σ
/∈ C
]

(191)

≤
∑
u

P[
〈√

du,X/σ
〉
≥
√
dr cosθ](192)

≤
∑
u

exp(−
√
dr cosθ)E

[
exp

(〈√
du,X/σ

〉)]
(193)

≤ 1

sind+o(d) θ
exp(−

√
dr cosθ+ d)(194)

where the sum is over outward normal unit vectors of C . With the specific choice of cosθ = 1
2

we have sinθ =
√
3
2 > e−1, so that P

[
∥PLX∥2

σ ≥ r
]
≤ exp(−

√
dr
2 +2d+ o(d)), and the claim

follows by taking the union bound.

REMARK 8. From the proof of Proposition 22, we can see that we do need the sub-
Gaussianity in Definition 1 to get vanishing errors in the approximation formula (sub-
exponential is not sufficient).

LEMMA 23. Given P and any ε ∈ (0, e−2), for all sufficiently large n, we have

max
∆
∥(PA∪∆ − PA\∆)B̌

(j)
:j ∥2 ≤ 10

√
cεn logn log

1

ε
(195)

for all j with probability at least 1− n−8, where A := {l ̸= j : χαl ̸= 0}, and the max is over
∆⊆ {1, . . . , p} \ {j} of size at most nε.

PROOF. For each j, let E be as in Lemma 21. Note that A is a function of (A,Y ), and
PA∪∆ − PA\∆ is a projection onto a subspace of dimension at most nε. For any A such that
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A:\j ∈ Ec we have that B̌(j)
:j is c logn-sub-Gaussian (for some c depending on P), and using

Proposition 22 we obtain, for any r > 0,

P[max
∆
∥(PA∪∆ − PA\∆)B̌

(j)
:j ∥2 ≥ r

√
c logn |A]≤ exp

(
−
√
nεr

2
+ 2nε+ ad + ln

(
n

nε

))
,

(196)

The number of subspaces in the maximum above is upper bounded by
(
n
nε

)
≤ exp(nh(ε))

where h(ε) := ε log 1
ε +(1−ε) log 1

1−ε < 2ε log 1
ε (for ε < e−2). With r← 10

√
nε ln 1

ε , (196)
is upper bounded by exp(−nε ln 1

ε ). The claim then follows by the union bound.

REMARK 9. In the proof Lemma 23, it appears that it is essential that we defined µ:j as
the conditional mean, rather than the best linear estimator A:\jΣ

−1
\j Σ\jj . Indeed, if we took

µ:j :=A:\jΣ
−1
\j Σ\jj , then the residual B̌(j)

:j :=B
(j)
:j −µ:j would have zero inner product with

any linear functions of A:\j , but not with general functions, so the left side of (195) might
not be small.

C.5. Convergence in most coordinates.

PROOF OF THEOREM 3. Define

I3(j, l) = 1{χαl ̸= χβ
(j)

l };(197)

I4(j) := 1

{
1

n

∑
l

I3(j, l)> ε

}
.(198)

It follows from Corollary 19 that

1

p

p∑
j=1,l

E[I3(j, l)] = ÕP(n
2/3).(199)

Then (writing Ī := 1−I),

P

1
p

∑
j

I4(j)> δ1

≤ 1

pδ1

∑
j

P

[
1

n

∑
l

I3(j, l)> ε

]
(200)

≤ 1

δ1εpn

∑
j,l

E[I3(j, l)](201)

≤ ÕP(p
−1/3δ−1

1 ε−1)(202)

where ε and δ1 will be optimized later (see (210)). Let c be as in Corollary 19, and let

I8 := 1{∥A∥op >
√
n/c or (195) fails for some j}.(203)

Applying Theorem 1 with D = 1
c and Γ = 10

√
c logn log 1

ε , we see that under the event
I4(j) = I8 = 0,

|t(j,B(j), Y )− tj | ≤ 10

√
logn

c
log

1

ε
·
√
ε(|α̂j |+ |β̂(j)j |).(204)

To finish the proof, we will control the right side of (204). Let

I6(j) := 1{max{|α̂j |, |β̂(j)j |}> δ
−1/2
3 },(205)
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and next we will show that I6(j) = 0 for most j. Using (176) and the Markov inequality, we
have that for any δ3 > 0,

max

1

p

p∑
j=1

P[|α̂j |> δ
−1/2
3 ],

1

p

p∑
j=1

P[|β̂(j)j |> δ
−1/2
3 ]

= Õ(δ3)(206)

and

P[
1

p

∑
j

I6(j)> δ1] = Õ(δ3/δ1).(207)

Returning to (204), we see that under the event I4(j) = I8 = I6(j) = 0 we have

|t(j,B(j), Y )− tj |= ÕP

(√
ε

δ3
log

1

ε

)
.(208)

From (202), (207) and Lemma 23, we have

P[
1

p

∑
j

I4(j)∨ I6(j)> 2δ1 or I8] = ÕP(p
−1/3δ−1

1 ε−1) + Õ(δ3/δ1) + n−8.(209)

The values of δ1, δ3, and ε can be optimized; here we specify them in way that the Levy-
Prokhorov error in Corollary 5 will be minimized. Thus we will set (208), 2δ1, and the right
side of (209) to be the same order (up to log factors), which gives√

ε

δ3
= δ1 = p−1/3δ−1

1 ε−1 =
δ3
δ1
,(210)

yielding δ1 = p−1/18, ε= p−2/9, and δ3 = p−1/9. which yields the claimed convergence rate.
It remains to show the claim about further simplification when B(j)

:j and A:j are indepen-
dent of A:\j . Since (I −Pj)A:j is a function of (A,Y ), and B̌(j) is Õ(1)-sub-Gaussian con-

ditioned on a set of A with probability 1−O(n−10), we see that | 1nB̌
(j)⊤
:j (I − Pj)A:jα̂j |=

Õ((nδ3)
−1/2) (which is smaller than (210)) with 1−O(n−10) probability for j : I6(j) = 0.

Thus the Õ(n−1/18) rate bound also holds when the term B̌
(j)⊤
:j (I − Pj)A:jα̂j is dropped

from (29).

APPENDIX D: THE CASE OF NON-VANISHING E[|B̌(j)
1j |2]

In this section we prove Theorem 4, which is essentially based on showing that the de-
nominator in (30) is bounded below. We need a few lemmas:

LEMMA 24. Assuming P and (31), there exists c > 0 such that the following holds: For
all n≥ 1/c and j ∈ {1, . . . , n}, with probability at least 1− exp(−cn) we have

1

n
inf
P
B̌

(j)⊤
:j (I − P )B̌(j)

:j ≥ c
2,(211)

where the infimum is over projection P onto the span of no more than cn− 1 columns of A
excluding the j-th column.

PROOF. Let us assume without loss of generality that j = 1. The assumption of the opti-
mality of the linear prediction implies that the covariance matrix of

[B̌
(1)
11 ,A12, . . . ,A1p](212)
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is a block-diagonal matrix with diagonal blocks E[|B̌(1)
11 |2] ∈ (κ−1

2 , κ1), and Σ\1. In partic-
ular, the max and min eigenvalues of such a covariance matrix is bounded between κ1 and
(κ1 ∨ κ2)−1. Moreover, note that both A1: and µ11 are Csg-sub-Gaussian (the latter can be
seen by Jensen’s inequality). Therefore using Cauchy-Schwarz we see that (212) is 4Csg-
sub-Gaussian. Then we establish the claim by following the same proof as Lemma 17, but
replacing A with [B̌

(1)
:1 ,A:2, . . . ,A:p].

LEMMA 25. Assuming P and (31), and λ large enough (i.e. satisfying (157)), there exists
c1 > 0 (depending on P) such that with probability at least 1−O(n−10), we have

1

n
B̌

(j)⊤
:j (I − Pj)B(j)

:j > c1, ∀j = 1, . . . , p,(213)

for large enough (depending on P and λ) n.

PROOF. Let c > 0 be as in Corollary 19. As shown in (165), with probability at least
1− 3e−cn, Pj is a projection onto a subspace of dimension at most cn− 1, and hence

1

n
B̌

(j)⊤
:j (I − Pj)B̌(j)

:j > c2(214)

by Lemma 24 (note that B(j) and A have the same distribution). Moreover, let E be
as in Lemma 21. Conditioned on any A:\j ∈ Ec we have that 1

nB̌
(j)⊤
:j (I − Pj)µ:j is

OP(
1
n2 ∥µ:j∥22 logn)-sub-Gaussian and, since µ:j isCsg-sub-Gaussian (which follows by sub-

Gaussianity of B(j)
:j and Jensen’s inequality), we have ∥µ:j∥22 = OP(n) with probability

at least 1 − e−ω(n). It follows that 1
nB̌

(j)⊤
:j (I − Pj)µ:j is OP(

1
n logn)-sub-Gaussian con-

ditioned on A:\j in a set of probability at least 1 − P[E ] − e−ω(n) = 1 − n−10 − e−ω(n).

Then, without conditioning on A:\j , we have 1
nB̌

(j)⊤
:j (I − Pj)µ:j = OP(

√
1
n logn) with

probability at least 1 − O(n−10). Then the claim follows from (214), B(j)
:j = B̌

(j)
:j + µ:j ,

and c1 := c2/2< c2 −OP(
√

1
n logn) for large n.

PROOF OF THEOREM 4. Recall that in (208) and with the choice of parameters in (210),
we established that

| 1
n
B̌

(j)⊤
:j (I − P (j))B

(j)
:j β̂

(j)U
j − 1

n
B̌

(j)⊤
:j R− 1

n
B̌

(j)⊤
:j (I − Pj)A:jα̂j |= ÕP

(
n−1/18

)(215)

for a set of j of size at most 2n−1/18p, under the event

1

p

∑
j

I4(j)∨ I6(j)≤ 2δ1 and I8 = 0(216)

which has probability 1 − ÕP(n
−1/18). Now by Lemma 21, there exists a set E of A:\j ,

P[E ] ≤ n−10, such that conditioned on any (A,Y ) satisfying A:\j ∈ Ec, 1
nB̌

(j)⊤
:j R is sub-

Gaussian with variance proxy OP(
1
n2 ∥R∥22 logn) ≤ OP(

1
n2 ∥Y ∥22 logn). Thus conditioned

on any A:\j ∈ Ec, 1
nB̌

(j)⊤
:j R=OP(logn) with probability 1− e−ω(n). Thus unconditionally,

1

n
B̌

(j)⊤
:j R=OP(logn)(217)
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with probability 1−O(n−10). Under the event of (216), by a similar argument, we have

1

n
B̌

(j)⊤
:j (I − Pj)A:jα̂j = ÕP(

1√
n
δ
−1/2
3 )(218)

with probability 1−O(n−10). Moreover, from (216) and Lemma 23 we see that with proba-
bility 1− ÕP(n

−1/18),

1

n
B̌

(j)⊤
:j (P (j) − Pj)B(j)

:j = o(1)(219)

for all j except for a set of size Õ(pn−1/18). Then using (213) we have that with probability
1− ÕP(n

−1/18),

1

n
B̌

(j)⊤
:j (I − P (j))B

(j)
:j =

1

n
B̌

(j)⊤
:j (I − Pj)B(j)

:j − o(1) = Ω(1)(220)

for all j except for a set of size Õ(pn−1/18). Thus under (216), (217) and (218), from (215)
we see that

β̂
(j)U
j =OP(logn)(221)

and hence

| 1
n
B̌

(j)⊤
:j (I − Pj)B(j)

:j β̂
(j)U
j − 1

n
B̌

(j)⊤
:j R− 1

n
B̌

(j)⊤
:j (I − Pj)A:jα̂j |

≤ ÕP

(
n−1/18

)
+

∣∣∣∣ 1nB̌(j)⊤
:j (P (j) − Pj)B(j)

:j β̂
(j)U
j

∣∣∣∣(222)

≤ ÕP

(
n−1/18

)
.(223)

The claim then follows by dividing both sides by 1
nB̌

(j)⊤
:j (I−Pj)B(j)

:j , and noting that (216),
(217) and (218) hold simultaneously with probability at least 1− ÕP

(
n−1/18

)
.

APPENDIX E: THE CASE OF GAUSSIAN DESIGNS

In this section we show that our definition of the debiased estimator (8) asymptotically
matches the traditional definition (6) in the case of Gaussian designs.

THEOREM 26. Consider the setting of Definition 1, where the row distribution Q =
N (0,Σ). Then with probability at least 1 − ÕP(p

−1/18), there is a set of j of cardinality
at least p(1− p−1/18), such that

1

n
B̌⊤

:j (I − PB)B:j =Σj|\j(1− k/n) +OP(n
−1/9),(224)

(where PB = P (j)) and consequently,

|β̂U(j)
j − β̂u(j)j |=OP(n

−1/9)(225)

where k := ∥β̂(j)∥0.

PROOF. Recall (202) with parameters chosen in (210) states that

P

1
p

∑
j

I4(j)> p−1/18

≤ ÕP(p
−1/18).(226)
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Thus with probability at least 1− ÕP(p
−1/18), there is a set of j of cardinality at least p(1−

p−1/18), for which

1

n

∑
l

1{χαl ̸= χβ
(j)

l } ≤ p
−2/9,(227)

and hence by Lemma 23,

max
∆
∥(PA∪∆ − PA\∆)B̌

(j)
:j ∥2 ≤ ÕP(p

7

18 ),(228)

where A := {l ̸= j : χαl ̸= 0}, and the max is over ∆ ⊆ {1, . . . , p} \ {j} of size at most
np−2/9. Now in the Gaussian case, B̌:j is independent of the rest of the columns, and µ:j =
A:\jΣ

−1
\j Σ\jj . We have

1

n
B̌⊤

:j (I − PB)B:j =
1

n
B̌⊤

:j (I − PB)(B̌:j +A:\jΣ
−1
\j Σ\jj).(229)

Then we see that with probability 1− ÕP(p
−1/18),

1

n
B̌⊤

:j (I − PA)(B̌:j +A:\jΣ
−1
\j Σ\jj) =

1

n
B̌⊤

:j (I − PA)B̌:j +O(
1√
n
)(230)

=Σj|\j(1−
1

n
∥α̂∥0) +O(n−2/9)(231)

=Σj|\j(1−
1

n
∥β̂(j)∥0) +O(n−2/9)(232)

where (230) follows since with probability 1 − e−ω(n), (I − PA)A:\jΣ
−1
\j Σ\jj has norm

O(
√
n), and B̌:j is independent of it with norm O(

√
n). (232) follows from concentration

of the Chi-square distribution. (232) follows from (227). Moreover, with probability 1 −
ÕP(p

−1/18), we also have the error bound

1

n
|B̌⊤

:j (PA − PB)(B̌:j +A:\jΣ
−1
\j Σ\jj)|

≤ 1

n
|B̌⊤

:j (PA − PB)B̌:j |+
1

n
|B̌⊤

:j (PA − PB)A:\jΣ
−1
\j Σ\jj |(233)

= ÕP(n
−2/9) +

1

n
· ÕP(n

7/18) ·O(
√
n)(234)

= ÕP(n
−1/9)(235)

where we used (228). This establishes (224). Then (225) follows from Lemma 25.

REMARK 10. In proving Theorem 26, the key properties we used include (224), and the
fact that the linear estimator is optimal (i.e. µ:j :=A:\jΣ

−1
\j Σ\jj). Thus it is plausible that the

result may be extended to a more general class of (possibly non-Gaussian) distributions. We
conjecture that the result can be generalized to distributions for which property P holds and
the linear estimator is optimal (in which case (31) must be true).

APPENDIX F: A NOTE ON COMPUTATION OF α̂U

Recall that α̂U defined in (8):

α̂Uj = α̂j +

(
1

n
Ǎ⊤

:j (I − Pj)A:j

)−1 Ǎ⊤
:jR

n
(236)
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where Pj denotes the projection onto the column space of A:Sj
, Sj := {l ̸= j : α̂l ̸= 0},

and Θ := Σ−1 which can be computed in time O(n3). If we use the formula Pj =
A:Sj

(A⊤
:Sj
A:Sj

)−1A⊤
:Sj

, then computing Pj takes time O(n3), so that computing α̂U takes
time O(pn3) =O(n4). However, it is possible to efficiently compute the Pj’s using a “rank-
one-update” formula so that the time of computing α̂U is O(n3): First set

Ω :=A⊤
:SA:S(237)

and Π=Ω−1, which can be computed in time O(n3). Then for each j, note that by the Schur
complement theorem,

(A⊤
:Sj
A:Sj

)−1 =ΩSj

−1 =ΠSj
−ΠSjjΠ

−1
j ΠjSj

.(238)

We can compute Ǎ:j = A:j + A:\jΘ\jjΘ
−1
j in time O(n2). Since ΠSjj is a vector, we can

compute Ǎ⊤
:jΠSjjΠ

−1
j ΠjSj

A:j in time O(n2). We can also compute

A:Sj
ΠSj

A⊤
:Sj

=A:SΠA
⊤
:S − (A:SΠSj)A

⊤
:j −A:j(ΠjSj

A⊤
:Sj

)(239)

in time O(n2). Then Pj = A:Sj
(A⊤

:Sj
A:Sj

)−1A⊤
:Sj

can be computed in time O(n2) for each
j. Hence α̂U is computed in O(n3) time.
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