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We present a theoretical investigation of optical cavity QED systems, as described by the driven,
open Jaynes-Cummings model and some of its variants, as potential sources of steady-state Wigner-
negative light. We consider temporal modes in the continuous output field from the cavity and
demonstrate pronounced negativity in their Wigner distributions for experimentally-relevant pa-
rameter regimes. We consider models of both single and collective atomic spin systems, and find a
rich structure of Wigner-distribution negativity as the spin size is varied. We also demonstrate an
effective realization of all of the models considered using just a single 87Rb atom and based upon
combinations of laser- and laser-plus-cavity-driven Raman transitions between magnetic sublevels
in a single ground hyperfine state.

I. INTRODUCTION

Experiments in optical cavity quantum electrodynam-
ics (cavity QED), underpinned on the theoretical side
by the celebrated Jaynes-Cummings model, have been
a leading foundation for the generation of nonclassical
states of light [1]. This a tribute to the efforts of experi-
mentalists to achieve the most optimal operating condi-
tions possible, by (amongst other things) controlling the
motion and number of atoms, minimizing cavity losses,
and maximizing atom-cavity coupling strengths. In fact,
modern optical cavity QED experiments are capable of
remarkable coupling strengths between single atoms and
single photons (see, for example, [2–6]), which offer excit-
ing possibilities for the manipulation of quantum states
of both atoms and light.

With regards to the continuous, or steady-state gen-
eration of nonclassical light in optical cavity QED, the
greatest focus has arguably been on antibunched light
[7–11], associated with two-level-type behavior in atoms,
and squeezing [12], associated with correlated photon-
pair emission. Another, more general class of nonclas-
sical light is yet to be explored in this context though
– so-called “Wigner-negative” states of light. These are
states of a mode of the electromagnetic field for which the
associated Wigner distribution takes on negative values.
In the steady-state emission from a cavity QED system,
they will correspond to specified, temporal modes of the
cavity output field.

Production of Wigner-negative states of light is of con-
siderable current interest in quantum optics, particularly
as these states constitute a key resource in the pursuit
of optical quantum information technologies [13–15]. A
substantial research effort has, in particular, targeted the
generation of Schrödinger-cat-like states and Fock states.
However, despite significant advances in the precise con-
trol of quantum systems, consistent and deterministic,
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steady-state production of Wigner-negative light remains
challenging.

A variety of mechanisms have been proposed and im-
plemented for the generation of Wigner-negative states.
Conditional schemes can probabilistically prepare a vari-
ety of such states, heralded by the detection of a photon,
or photons, separated from the original field by a beam-
splitter [16–21]. Alternatively, pulses of Wigner-negative
light can be generated on-demand from the transient evo-
lution of a quantum system initially prepared in a specific
state [22–26]. Finally, homodyne phase-controlled feed-
back has also been suggested as a means for the steady-
state generation of Wigner negativity from highly non-
linear optical media [27, 28].

Recently, though, it has been suggested, and demon-
strated, that Wigner-negative states can be produced
from the nonlinearity of a driven, one-dimensional two-
level quantum emitter in temporal modes of the contin-
uous outgoing field [29–31]. Further work has suggested
that this may be a promising and robust mechanism to
generate steady-state Wigner-negative light from a vari-
ety of other quantum systems [32, 33].

Spurred on by these findings, in this work we expand
the investigation of Wigner-negative states to temporal
modes in the steady-state output field from optical cav-
ity QED systems; in particular, to the Jaynes-Cummings
model and its variants, such as the multi-atom Tavis-
Cummings model. We demonstrate that, in appropriate
(and experimentally relevant) regimes, the open Jaynes-
Cummings model can reproduce the kind of Wigner-
negative distributions found in [29–31], but also that its
multi-atom variants open up a family of new possibili-
ties related to the multiple-excitation opportunities they
afford.

Further to this, and encouraged by the aforementioned
experimental realizations of exceptional atom-field cou-
pling strengths in the optical regime of cavity QED, we
then present results for a full-atomic-structure model of a
single 87Rb atom coupled to a quantized cavity mode and
driven by auxiliary laser fields in such a way as to realize,
effectively, the dynamics described by both the Jaynes-
Cummings model and its higher-spin variants (e.g., the
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Tavis-Cummings and Dicke models). We do this by mak-
ing use of the multilevel structure of the atom and laser-
plus-cavity driven Raman transitions between ground-
state magnetic sublevels. This comprehensive model of a
real atom coupled to a cavity mode is shown to be capable
of successfully reproducing the multitude of new Wigner-
negative distributions presented earlier for the idealized
models.

To summarize the contents of this work, in Section
II an overview of the physical setup that we consider,
and the theoretical modeling that we use, is presented.
This includes a specification of the temporal modes that
we choose to study, which are based upon matching the
mode profile to the emission spectrum of the cavity mode,
and the definition of, and means by which we calculate,
the Wigner distributions for temporal mode states of the
cavity output field.

In Section III these choices and methods are applied
to the case of one or a few two-level atoms, as described
by the driven and open Jaynes-Cummings and Tavis-
Cummings models. These investigations help us to un-
derstand the influence of cavity loss and atomic spon-
taneous emission on the generation of Wigner-negative
states. In particular, they reveal strong sensitivity to
spontaneous emission as the number of two-level atoms
increases, which prompts us to consider an alternative,
effective realization of the collective multi-atom mod-
els based upon Raman transitions between ground-state
magnetic sublevels in a single alkali atom. This approach
avoids spontaneous emission, which justifies the idealized
models that are subsequently shown to exhibit a rich va-
riety of Wigner-negative states, resulting from more in-
tricate photon superposition states, as the total effective
spin is increased.

Finally, in Section V we present results for a full-
atomic-structure model of a single 87Rb atom coupled
to a cavity mode and to combinations of laser fields in
configurations that are carefully tailored to produce ef-
fective dynamics matching those of the idealized models
considered earlier. These results demonstrate the feasi-
bility of producing Wigner-negative states in temporal
modes of the cavity output field for parameters in the
strong-coupling regime of optical cavity QED.

II. CAVITY QED SYSTEM

A. Physical set up

The models explored in this work are based on a cavity
QED set-up as depicted in Fig. 1. An atom is coupled
to a single mode of a high-quality optical resonator, with
a (maximum) resonant coupling strength g. The system
can be driven by directly illuminating the atom, or by co-
herently pumping the cavity mode. The atom has a spon-
taneous emission linewidth γ, and the cavity field decays
due to photon losses through the transmitting mirror at
a rate κ.

κ

γ

g

âout

Elo(t)

Ω

FIG. 1. Schematic of a cavity QED system, with a resonant
atom-cavity coupling strength g, atomic spontaneous emission
linewidth γ, and cavity field decay rate κ. The system can be
pumped by a coherent laser field driving the cavity mode with
a strength E , or by auxiliary lasers directly driving the atom,
with Rabi frequencies Ω. Temporal modes of the output field
can be measured through balanced homodyne detection with
a time-dependent local oscillator.

The driving fields are all strictly classical; quantum fea-
tures in the output field are necessarily due to the atom-
field interactions within the cavity. However, the cavity
mode itself does not demonstrate Wigner-negativity in
the regimes we explore. Instead, operating regimes are
chosen to enhance quantum features of the cavity output
field. One approach is for the systems to operate in a
quasi-bad-cavity limit, where the cavity field decay rate
is larger than the effective rate of coupling light from
the atom. Any light transferred to the cavity mode will
then rapidly escape into the output field, preserving fea-
tures of the interaction. A second avenue makes use of
the anharmonic Jaynes-Cummings ladder in a strongly-
coupled regime. The dressed atom-cavity states give a
photon blockade effect, such that the overall system be-
haves effectively as a one-dimensional, two-level emitter
[34].

In order that characteristics of the interaction can be
detected as Wigner-negativity in the output field, it is
important that the systems we consider possess a large
single-atom cooperativity, as specified by the parameter
C = 2g2/κγ. In particular, we require C ≫ 1, which en-
sures a strong atom-field interaction occurs before quanta
are lost, and hence that the cavity emission is strongly
influenced by the atom. The ratio of coupling and cav-
ity decay rates, g/κ, is fixed when choosing the operating
regime to optimize cavity emission properties. It is there-
fore incumbent on the ratio g/γ to be sufficiently large
that a suitable cooperativity is achieved.

The cavity needs also be manufactured in such a way
that there is a single dominant photonic decay channel, to
preserve features of the interaction. This can be achieved
by having one “bad” cavity mirror, which provides the
dominant decay channel for the cavity field.

B. Theoretical modeling

1. Master equation

The cavity QED system is described by a density op-
erator for the composite quantum state, ρ̂. Evolution of
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the density operator is governed by a Lindblad master
equation of the general form (ℏ=1)

˙̂ρ ≡ Lρ̂ = −i[Ĥ, ρ̂] +DC{ρ̂}+DA{ρ̂}, (1)

where DC and DA describe decay of the cavity mode field
and spontaneous emission of atomic excited states, re-
spectively. All the models to be considered can be written
in an interaction picture, eliminating any explicit time-
dependence of the Hamiltonian, Ĥ.

2. Temporal modes

The field propagating from a transmitting cavity mir-
ror depends on the cavity mode according to the input-
output relation [35]

âout(t) =
√
2κâ(t)− âin(t), (2)

where â is the annihilation operation for the cavity field
mode. In this work, the leaky-mirror input âin(t) is taken
to be a vacuum field. Temporal modes are defined in the
travelling-wave output field by an envelope function, f(t),
such that

âf =

∫ ∞

−∞
f(t)âout(t)dt, (3)

with normalisation∫ ∞

−∞
|f(t)|2dt = 1, (4)

which ensures the bosonic commutation relation
[âf , â

†
f ] = 1.

In steady state, light is continually emitted into the
output field with a coherence time limited by decay rates
in the system. If a temporal mode is to exhibit nega-
tivity in its Wigner distribution, the envelope function
should generally reflect the time-scale of correlations in
the atom-cavity system. The steady-state cavity field
amplitude correlation function is a logical candidate to
achieve this temporal mode-matching, with

f(t) ∝ ⟨â†(0)â(t)⟩ss − ⟨â†⟩ss ⟨â⟩ss . (5)

The correlation function can be calculated from the mas-
ter equation using the quantum regression theorem [36].
In practice, a cut-off point is chosen where the relative
magnitude of f(t) is sufficiently small. Other choices of
temporal mode function also work similarly well for the
purpose of generating Wigner-negativity, so long as they
have a similar temporal width to the correlation func-
tions. In this work, the function f(t) is chosen according
to the above equation.

3. Wigner function reconstruction

A Wigner distribution for the quantum state of a tem-
poral mode can be defined with respect to the quadrature

operators

X̂f = âf + â†f , Ŷf = i
(
â†f − âf

)
. (6)

The Wigner distribution is always non-negative for any
classical field, but it is possible to generate quantum
states which violate this condition. The magnitude of
Wigner-negative nonclassicality of a state can be quanti-
fied by the total negative volume [37],

N =
1

2

∫
(|W (x, y)| −W (x, y)) dxdy. (7)

Naturally, the Wigner distribution cannot be thought of
as a genuine probability distribution if it is to permit
negative values. However, the marginal distributions are
true probability distributions for eigenvalues of quadra-
ture amplitudes. This connection can be used to experi-
mentally determine the Wigner distribution using quan-
tum state tomography, through balanced homodyne de-
tection [38, 39].

The quantum state of a temporal mode can be de-
termined by integrating the homodyne difference-current
(Fig. 1), with a time-dependent local-oscillator ampli-
tude matched to the temporal profile (Elo ∝ f(t)). The
measured distributions are then related to the underlying
quantum state through maximum-likelihood estimation
[40].

While the tomography process can be simulated us-
ing quantum trajectory theory [41], in practice it is more
convenient to perform numerical calculations using the
input-output theory for quantum pulses [42], which intro-
duces a fictitious “capture cavity” in the output field from
the cavity QED system. The composite system steady-
state is found by solving the equation Lρ̂ = 0, either di-
rectly for reduced, effective models, or iteratively for the
full atomic models we also consider later in this work.
In this case, the temporal mode state is calculated by
numerically integrating the time-dependent master equa-
tion.

All numerical calculations in this work are performed
using QuTiP [43–45]. Cavity modes are simulated on
a truncated Fock basis, and we choose the truncation
at a sufficiently high level to ensure that our numerical
results are accurate. Details about the implementation
of the input-output method are given in Appendix A.

Before continuing, we note that any coherent ampli-
tude in the output field merely translates the Wigner
distribution in phase space, without affecting the shape
or negativity. In principle, this means that coherent driv-
ing of the cavity mode can be implemented through ei-
ther mirror, without affecting the desirable features in
the measured quantum state.

III. TWO-LEVEL ATOMS

Remarkable advances in circuit QED have enabled
strong coupling of effective two-level emitters to electro-
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magnetic fields propagating in waveguides, thus realiz-
ing effectively one-dimensional atom-light systems. Us-
ing just such a system, it was demonstrated, first theo-
retically [29, 30] and then experimentally [31], that suit-
ably chosen temporal modes in the steady-state emission
from a coherently-driven two-level atom can exhibit pro-
nounced negativity in their Wigner distributions. The-
oretical studies have also demonstrated similar behavior
for a chain of 1-D emitters [33].

The strong coupling of a two-level atom to an op-
tical cavity mode can also, under appropriate condi-
tions, lead to largely one-dimensional behavior, with the
dominant emission channel from the coupled system be-
ing through one of the cavity mirrors. Inspired by the
above-mentioned work in the microwave regime of cir-
cuit QED, in this section we start our investigation of
Wigner-negative temporal modes in optical cavity QED
by considering the (dissipative) Jaynes-Cummings model
for a single two-level atom. As we shall see, this classic
model and its variants are indeed still capable of turning
up novel and topical forms of nonclassical light.

A. A single two-level atom

A single two-level atom coupled to a cavity mode can
be described by a Jaynes-Cummings model. Assuming
the bare cavity mode and atomic resonance frequencies
are equal, the Jaynes-Cummings Hamiltonian, with driv-
ing of the cavity mode by an external laser, takes the form
(in a frame rotating at the laser frequency)

ĤJC = ∆
(
â†â + σ̂z

)
+ g(â†σ̂− + σ̂+â) + E(â+ â†), (8)

where ∆ and E are the detuning and strength of the driv-
ing field, respectively, and σ̂j (j = ±, z) are the usual
spin-1/2 atomic operators. Note that the driving of the
system can also be implemented by direct excitation of
the atom, where the third term in Hamiltonian (8) is re-
placed with (Ω/2)(σ̂++ σ̂−) and Ω is the Rabi frequency.
Results are essentially identical regardless of the driving
mechanism; we present results for both forms of driving
in this section. Finally, cavity field decay and atomic
spontaneous emission are included, respectively, via the
terms

DC{ρ̂} = κ
(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (9)

and

DA{ρ̂} =
γ

2
(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−) . (10)

The Wigner-negative states demonstrated in the emis-
sion from a driven two-level atom are described approxi-
mately by superpositions, or more generally mixtures of
the vacuum and single-photon states [29–31]. Achieving
this is evidently associated with successive photon emis-
sions being sufficiently well-separated in time. With this
in mind, we note that a cavity QED system such as we are

considering is well known to produce antibunched photon
counting statistics in two, distinct operating regimes.

Firstly, in a quasi-bad-cavity limit, where κ > g ≫
γ, the cavity mode primarily directs the atomic emis-
sion into the cavity output field, which adiabatically
follows the atomic state. This regime of effectively
one-dimensional atomic spontaneous emission is actually
quite analogous to the semi-infinite-waveguide, circuit
QED system, and so, perhaps unsurprisingly, exhibits a
very similar Wigner-negative state for a suitably chosen
temporal mode of the cavity output field, as shown in
Fig. 2(a). However, it is notable that we consider realis-
tic parameters for the regime of optical cavity QED, and
we include free space atomic spontaneous emission in the
model.

Alternatively, in a strong-coupling limit where g ≫
κ, γ, antibunching emerges from single-photon blockade
within the nonlinear Jaynes-Cummings ladder of energy
eigenstates [34]. If the driving field is tuned such that
∆ ≃ ±g, and κ ≫ γ, then the composite atom-cavity
system behaves effectively as a one-dimensional two-level
emitter. As illustrated in Fig. 2(b), this does indeed
also facilitate the generation of similar Wigner-negative
states, once again for parameters that should be accessi-
ble to experiment.

-4 0 4
x

-4

0

4

y

-4 0 4
x

0.0

0.1
(a) (b)

FIG. 2. Temporal-mode Wigner distributions in the output
field of optical cavity QED systems in two distinct operating
regimes: (a) in a quasi-bad-cavity regime, with parameters
{g, κ, γ} = {100, 200, 6} 2πMHz (C = 16.7), and Ω =
0.75g, and (b) in a strong-coupling regime, with {g, κ, γ} =
{100, 40, 6} 2πMHz (C = 83.3), and Ω = 0.4g.

Light emitted from the cavity comprises a coherent
and an incoherent component. The coherent component
gives a finite coherent amplitude to the output field, and
hence shifts the temporal-mode Wigner distribution in
phase space. Displacing the state to remove this coher-
ent amplitude reveals the incoherent component of the
emission that arises from the presence of the atom and
underlies the structure of the Wigner distribution. Do-
ing so, we find, for Fig. 2(a), that the incoherent por-
tion of the temporal mode state has zero, one, and two
photon populations of 0.73, 0.17, and 0.09, respectively.
The atomic excited state probability is found to be 0.28,
which clearly limits the level of incoherent excitation in
the temporal mode. Similar levels of excitation are ob-
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served in the photon-blockade temporal mode state.
Although the temporal mode states exhibit negativ-

ity in their Wigner distributions, this does not mean
the states are pure. In fact, Tr{ρ̂2} = {0.76, 0.87}
for Figs. 2{(a), (b)}, respectively, and the purities re-
main similar even in the absence of spontaneous emis-
sion. That the states are Wigner-negative but not pure
is general to all the results presented in this work.

The total negative volume shown in Fig. 3 quantifies
the magnitude of Wigner-negativity for the generated
states over a range of strengths and detunings of the driv-
ing laser. This demonstrates the viability of generating
Wigner-negative light for a range of parameters in the
two operating regimes. The quasi-bad-cavity system per-
forms optimally on resonance, where the cavity-directed
emission is strongest, while the photon-blockade regime
requires ∆ ∼ ±g to isolate the single-photon resonance
in the Jaynes-Cummings ladder.

0.5

1.0

1.5

E/
g

0 1
∆/g

0.1

0.2

E/
g

0 1
∆/g

0.00

0.02

0.04(a1) (a2)

(b1) (b2)

FIG. 3. Negative volume of the Wigner distributions in (a)
the quasi-bad-cavity limit with κ = 2g, and (b) the single-
photon blockade regime with κ = 0.2g, as a function of the
strength and detuning of the laser driving the cavity, for
atomic linewidths (1) γ = 0 and (2) γ = 0.05g (corresponding
to C = {20, 200} for {(a2), (b2)}).

While we already take into account free space atomic
spontaneous emission, another practical aspect to con-
sider is extraneous cavity loss. That is, in practice a
cavity cannot be manufactured to be perfectly one-sided.
Total cavity loss (κT ) is a combination of emission into
the (desirable) measured output channel (κ) and para-
sitic losses into other, non-monitored modes (κl). Fig. 4
shows the effect that parasitic losses have on the “quan-
tumness” of states in the measured output field, where
the total cavity decay rate κT = κ+ κl is held constant,
while the ratio κl/κT is increased. This emphasizes the
importance of engineering the emission to be dominated
by a single output channel from the cavity.

B. A collection of two-level atoms

The statistics of emission from a two-level system in-
herently limits the number of photons in the Wigner-
negative superposition states. To explore the possibility

0.00 0.15 0.30

κl/κT

0.00

0.02

0.04

N

0.00 0.15 0.30

κl/κT

(a) (b)

FIG. 4. Negative volume of the Wigner distribution as the
relative contribution from parasitic cavity loss at rate κl is in-
creased while the total cavity decay rate remains constant in
(a) the quasi-bad-cavity regime with {κT , E}/g = {2, 0.75},
and (b) the photon-blockade regime with {κT , E}/g =
{0.2, 0.1}. The total negativity also decreases for increas-
ing spontaneous emission rates; from the uppermost curve
to the lowest curve, the spontaneous emission rate is given
by γ/g = {0, 0.02, 0.05, 0.1, 0.2}, corresponding to (a)
C = {∞, 50, 25, 10, 5} and (b) C = {∞, 500, 250, 100, 50}.

of more exotic quantum-optical states, it is necessary to
consider systems with multiphoton emission properties.
A collection of N two-level atoms coupled to a single
cavity mode is therefore a logical place to start. Such
a system is described by the multiatom version of the
Jaynes-Cummings model, that is, the Tavis-Cummings
model, with Hamiltonian

ĤTC =
g√
N

N∑
n=1

(âσ̂
(n)
+ + σ̂

(n)
− â†) + E(â+ â†), (11)

which assumes identical coupling strengths for the atoms.
Once again, we add a term to model coherent driving of
the cavity field, and a spontaneous emission term of the
form (10) is added to the master equation for each atom
(i.e., we assume independent-atom spontaneous emis-
sion).

Fig. 5 presents Wigner distributions of the output field
temporal modes for different numbers of two-level atoms
coupled to the cavity, where the system is driven through
the cavity mode. Coupling additional atoms to the cavity
mode enables an increased number of correlated photon
emissions into the output field. This manifests itself in
the generation of Wigner-negative states exhibiting addi-
tional negative lobes in the Wigner distribution in direct
proportion to the number of atoms.

So, clearly, these multi-atom systems allow for the re-
alization of Wigner-negative states possessing more (neg-
ative) structure in their Wigner distributions. However,
their steady state becomes progressively more sensitive
to spontaneous emission with increasing N . This can
be seen clearly in Fig. 5, where extremely strong cou-
pling is required to retain appreciable negativity with an
increasing number of atoms and an increasing level of
spontaneous emission.

The undesirable effect of independent-atom atomic
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

3

0

−3

3

0

−3

3

y

−3

−3 0 3 −3 0 3 −3 0 3 −3 0 3

0.00

0.05

0.10

y

0

y

x x x x

FIG. 5. Negative-valued Wigner distributions for tempo-
ral modes of (a) one, (b) two, and (c) four two-level atoms
coupled to a cavity mode, with cavity decay rate κ/g = 2

and cavity driving strengths E/g = 0.75N1/4. The spon-
taneous emission is increased from (1) to (4), with γ/g =
{2500−1, 1000−1, 250−1, 10−1} (with single-atom coopera-
tivities C = {2500, 1000, 250, 10}), respectively.

spontaneous emission is related to its ability to trans-
fer the atomic ensemble into states of non-maximal total
spin. For example, with two atoms, spontaneous emis-
sion causes transitions from the maximally-coupled S = 1
spin subspace to the S = 0 singlet state, which is decou-
pled from the cavity mode and thus inhibits collective
spin behavior. Additionally, the many-body control re-
quired to ensure identical atom-cavity coupling strengths
is experimentally challenging.

So, while it is clear from the presented results that
collective-spin models are of interest for the generation of
Wigner-negative light, steady-state implementation with
an ensemble of atoms is problematic for practical cavity
QED parameters. This prompts us to consider alterna-
tive implementations of collective-spin systems that are
in some way more robust to, or minimize the effects of
spontaneous emission.

IV. COLLECTIVE SPIN SYSTEMS: IDEALIZED
MODELS

Effective realizations of collective-spin models can, in
principle, be implemented through Raman transitions
within the hyperfine structure of a single atom, as pro-
posed in [26, 46]. For example, as we shall describe below,
suitably tailored, cavity-plus-laser assisted Raman tran-
sitions between magnetic sublevels of the F = 2 hyper-
fine ground state of a 87Rb atom can achieve dynamics
described by the Tavis-Cummings model for a collective
spin-2 system coupled to the cavity mode. Importantly,
with the fields far-detuned from the atomic excited states,
the effects of atomic spontaneous emission are avoided,
or at least made negligible in comparison to the desired
dynamics.

To be specific, here we consider a model of a single
alkali atom coupled on the D1 line to a π-polarized cav-
ity mode. The atom is also driven, in general on both
the D1 and D2 lines, by suitably polarized laser fields.
If the cavity and laser fields are all sufficiently far off-
resonance from the transitions they couple to, then the
atomic excited states are only weakly populated and can
be adiabatically eliminated. Following the effective op-
erator formalism of [47], we are able to systematically
derive a model for the resulting atomic ground-state dy-
namics. Details of the derivation are given in Appendix
B.

Of particular interest is the case where the atomic state
is confined to a single hyperfine ground state of total an-
gular momentum F , in which case the unitary evolution
is governed by a Hamiltonian for a single spin-F system.
For the D1 line, coupled to a π-polarized cavity mode
and a pair of oppositely circularly-polarized lasers, the
Hamiltonian takes the general form

ĤD1 = ωâ†â+ ω0Ŝz

+ λ−

(
Ŝ+â+ â†Ŝ−

)
+ λ+

(
Ŝ−â+ â†Ŝ+

)
+ ζ−Q̂xz

(
â† + â

)
+ iζ+Q̂yz

(
â− â†

)
+ τ

(
Ŝ2
+ + Ŝ2

−

)
+

(
ωq − δqâ

†â
)
Ŝ2
z ,

(12)

where Ŝi and Q̂ij are spin-F angular momentum and
quadrupole operators, respectively, with F determined
by the particular hyperfine state that is populated.

Meanwhile, simultaneously illuminating the D2 line
with lasers of all three polarizations gives a unitary evo-
lution of ground states according to the general Hamil-
tonian

ĤD2 = ω′
0Ŝz + ω′

qŜ
2
z + ζ ′−Q̂xz + iζ ′+Q̂yz

+ λ′
(
Ŝ+ + Ŝ−

)
+ τ ′

(
Ŝ2
+ + Ŝ2

−

)
.

(13)

All of the parameters appearing in these effective
Hamiltonians can, in principle, be tuned by adjusting
the frequencies and/or strengths of the laser and cav-
ity fields. Explicit formulae for the parameters are given
in Appendix B. Additionally, due to the large frequency
separation between the D1 and D2 lines, the two Hamil-
tonians above can be implemented independently. This
gives a versatile model for exploring a variety of effec-
tive, collective-spin dynamics within the internal states
of a single atom.

The primary mechanism by which the cavity mode is
populated with photons in our scheme involves a σ−-
polarized laser field exciting the D1 line and combining
with the π-polarized cavity mode to drive Raman transi-
tions towards lower mF states, as depicted in Fig. 6(a).
Engineering the Raman transition rate to be slower than
cavity field decay ensures an essentially one-directional,
cavity-mediated optical pumping process along the mF

states. This also ensures the cavity output field will
be representative of the specific mF -increasing driving
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∆11′
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FIG. 6. Schematic for implementations of Raman transitions
within the hyperfine structure of a 87Rb atom. Vertical arrows
indicate π transitions, and diagonal arrows represent σ+ (dot-
ted line) and σ− (solid line) transitions. (a) Cavity-assisted
Raman transitions implemented on the D1 line, with a π-
polarized cavity mode and σ±-polarized auxiliary lasers. (b)
One-step coherent Raman transitions driven on the D2 line,
with a combination of π- and σ+-polarized secondary lasers.
(c) Two-step coherent Raman transitions driven on the D2
line through a pair of σ±-polarized secondary lasers.

mechanism that we additionally implement via the other
laser fields, in order to achieve a non-trivial steady state
with a continuous cavity output field. In particular, we
will consider three different driving mechanisms, each re-
alising distinct effective models.

Firstly, we consider driving the cavity mode with a
laser field. This obviously increases the mean cavity pho-
ton number and therefore promotes cavity-assisted Ra-
man transitions in both directions. This simply amounts
to an effective Tavis-Cummings model with coherent cav-
ity driving, as considered earlier, but now without spon-
taneous emission. We note at this point, however, that
a nice feature of our effective-spin system is the alter-
native possibility of implementing direct driving of the
collective-spin using standard, coherent Raman transi-
tions, as illustrated in Fig. 6(b). The states generated
with such driving are essentially the same as for cavity
driving though, so in this section we just consider cavity
driving.

Secondly, adding a σ+-polarized auxiliary laser on
the D1 line, shown also in Fig. 6(a), gives a pathway
for “counter-rotating”, cavity-assisted Raman transitions,
i.e., transitions that drive the atom towards higher mF

states. This combination of driving lasers and cavity
mode on the D1 line allows the realization of an effec-
tive Hamiltonian corresponding to the celebrated Dicke
model.

Finally, a pair of oppositely circularly-polarized lasers
on the D2 line facilitate coherent Raman transitions that
raise and lower the atomic state by ∆mF = ±2. This
yields a “two-step” atomic driving model, which is, no-
tably, not readily attainable with ensembles of spin-1/2
atoms.

In the following three subsections, we consider these
three different forms of driving in our single-atom scheme
in the limit of very large detunings of the fields acting on
the D1 line; in particular, detunings that far exceed the
excited-state hyperfine splitting on the D1 line. In this
regime, the terms in the last two lines of the Hamiltonian
(12) become negligible, and the remaining atom-cavity

interaction terms in the second line are simply of the
form of the Tavis-Cummings and anti-Tavis-Cummings
models, respectively. Hence, we are able to realize simple,
idealized models of collective spin systems coupled to a
cavity field mode.

In practice, this regime of very large detunings also de-
mands the limit of extremely large, resonant interaction
strengths between the atom and cavity mode [26]. The
viability of these models under the constraints of mod-
ern, optical cavity QED experimental parameters will be
explored in Section V of this paper, where a full, single-
alkali-atom cavity QED model of the scheme is investi-
gated.

A. Tavis-Cummings Model with Cavity Driving

An effective Tavis-Cummings model with coherent cav-
ity driving takes the form

ĤTC = λ−

(
Ŝ+â+ â†Ŝ−

)
+ E

(
â+ â†

)
. (14)

As with the atomic ensemble realisation, the superpo-
sition states generated from this system depend on the
total effective spin length. This is shown in Fig. 7, where,
as the effective spin-length increases, additional negative
lobes appear in the Wigner distribution. Without spon-
taneous emission present, this growing structure remains
clearly evident.

Furthermore, the increasing number of lobes compen-
sates for their diminishing depth. The total negative vol-
ume for the ideal two-level atom in Fig. 4(a) is 0.041.
The Wigner distributions in Fig. 7 have similar negative
volumes; in fact, all are N = 0.04 to one significant fig-
ure. More precisely, the negative volumes in Figs. 7(a, c
, g) are N = {0.040, 0.043, 0.040}, respectively.

The volumes are not directly comparable as the cav-
ity driving strength is increased in conjunction with the
spin-length, to ensure the systems are sufficiently well ex-
cited. Nonetheless, the sustained negativity shows that
the Tavis-Cummings model could be suitable as a bright
source of Wigner-negative light.
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FIG. 7. Wigner distributions for the coherently-driven Tavis-
Cummings model with different collective-spin lengths. The
effective spin increases (a to h) in steps of 1/2, from F = 1 to
F = 9/2, with κ = 2(2F )1/2λ−, and E = 0.75(2F )3/4λ−.
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FIG. 8. Wigner distributions of temporal modes from an
imbalanced Dicke model with λ+ = 0.5λ−. The effective
spin length is increased (a to d) in steps of 1, from F = 1

to F = 4, and with parameters of κ = 2(2F )1/2λ−, and
ω0 = 0.4(2F )−1/2λ−.

B. Dicke Model

The Dicke model is another example of a well-studied
collective-spin system. For the generation of Wigner-
negative light, it is desirable to realize an “unbalanced”
Dicke model, such that λ+ ̸= λ−. The Dicke Hamiltonian
we consider is of the form

ĤD = ω0Ŝz + λ−

(
Ŝ+â+ â†Ŝ−

)
+ λ+

(
âŜ− + Ŝ+â

†
)
.

(15)
In the particular regime where κ > λ− > λ+, the sys-
tem tends to emit photons in pairs. The atomic state is
raised by a λ+ transition, then lowered by a λ− transi-
tion. Each of these transitions generates a cavity photon,
which decays into the output field before re-absorption by
the atom is possible, so a pair of photons is emitted each
time a cycle is completed. This leads to temporal mode
states that favor superpositions of even-numbered pho-
ton states, resulting in Wigner distributions as shown in
Fig. 8. As the effective spin length is increased, there are
further, simultaneous iterations of the cycle, which adds
larger, even numbers of photons to the field.

C. Two-Step Collective Atomic Driving

As mentioned earlier, a nice feature of the single-atom
implementation of effective-spin systems is the availabil-
ity of coherent two-step Raman transitions, which change
the atomic state by ∆mF = ±2. Driving these coher-
ent Raman transitions on the D2 line, to accompany the
cavity-assisted Raman transitions on the D1 line, gener-
ates a Hamiltonian with quadratic driving of the collec-

tive atomic spin,

ĤTS = λ−

(
Ŝ+â+ â†Ŝ−

)
+ τ

(
Ŝ2
+ + Ŝ2

−

)
. (16)

In a limit where λ ≫ Ω, the atom moves through a cy-
cle of transitions, excited first by the two-step driving,
before decay through consecutive cavity-assisted Raman
transitions. Each iteration of this cycle deposits two pho-
tons in the cavity field, which ultimately escape into the
cavity output field.

In the same parameter regime, larger superpositions
of even-numbered photon states can be achieved by in-
creasing the atomic spin length. Each additional atomic
state that is added opens the possibility for further it-
erations of the cycle of transitions, leading to a state of
the output temporal mode that is loosely approximated
by a superposition of even-numbered photon states up to
2(2F − 1). Fig. 9 shows Wigner distributions that are
generated as the spin length is increased from F = 1 to
F = 4.
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FIG. 9. Wigner distributions for the Tavis-Cummings model
with two-step collective atomic driving, with the effective
spin length increased (a to d) in steps of 1, from F = 1

to F = 4, and with parameters of κ = 2(2F )1/2λ−, and
τ = 0.15(2F )−1/2λ−.

While it is clear that the extent of Wigner negativ-
ity decreases quickly with increasing F , it is also evident
that, in this same limit, the system produces significant
quadrature squeezing of the temporal output field mode.
In fact, the uncertainty ∆X̂f is reduced below the vac-
uum state level of 1 to the value 0.46 for F = 3 and 0.30
for F = 4.

V. COLLECTIVE SPIN SYSTEMS: A SINGLE
ALKALI ATOM

The idealized models show promise for the generation
of Wigner-negative states in the steady-state output from
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driven cavity QED systems. In practice, however, some
level of imperfection is expected in any cavity QED ex-
periments based on actual atoms. The ramifications can
be especially important to steady-state behavior; even
very weak processes can strongly impact the state after
a sufficiently long time. In this section, the viability of
implementing the models is explored with realistic cav-
ity QED parameters, employing a single 87Rb atom. A
model for the D1 and D2 lines of the 87Rb atom is written
in a basis of the hyperfine Zeeman sublevels. By carefully
selecting the operating regime, this is used to replicate
the dynamics produced in the idealized models, both for
the case of a single two-level (spin-1/2) atom and for a
larger-spin, collective atomic system (F = 1 or F = 2
for 87Rb). The same effects can of course be explored in
other alkali atoms; for example 133Cs, which offers F = 3
and F = 4 dynamics in appropriate operating regimes.

For the purpose of consistency, we will explore
the implementation of the effective models based
on Raman transitions in a strong coupling regime,
with cavity QED parameters {g, κ, γD1, γD2} =
{500, 50, 5.750, 6.066} 2πMHz, unless specified other-
wise. Our choice of parameters is encouraged by recent
experiments with micro- and nano-scale optical cavities
[4, 5], and corresponds to a large single-atom coopera-
tivity of C = 1739. As we shall demonstrate, tuning
the driving configurations provides sufficient flexibility to
achieve desirable operating regimes for each of the models
we consider.

A. Atomic Model

A 87Rb atom has two hyperfine ground electronic
states (F = 1, 2), each with 2F + 1 Zeeman sublevels,
which we label by mF . The D1 line involves transitions
to two hyperfine excited states (F = 1′, 2′), while the D2
line has four (F = 0′, 1′, 2′, 3′). Modeling of transitions
driven by an external field can be written in a complete
basis of the Zeeman sublevels. A compact notation is
provided by the dipole transition operators,

D̂J′

q (F, F ′) =

F∑
mF=−F

CJ′,F,F ′

mF ,q |F,mF ⟩ ⟨J ′, F ′,mF + q|

(17)
where q ∈ {0, ± 1} reflects the transfer of z-projected
angular momentum, and CJ′,F,F ′

mF ,q are Clebsch-Gordan co-
efficients, normalised to 1 for the D2 cycling transiton.

The fine-structure splitting is sufficiently large that
the two D lines can be treated independently. The D1
line is driven with circularly-polarized lasers and coupled
to a linearly-polarized cavity mode, as described by the
Hamiltonian

ĤD1 =
∑
F,F ′

(
Ω+

2
D̂

1/2
+ + gâ†D̂

1/2
0 +

Ω−

2
D̂

1/2
− +H.c.

)
.

(18)

Additionally, D2-line transitions are driven with a com-
bination of polarized lasers to facilitate coherent Ra-
man transitions between ground-state Zeeman sublevels
within a single hyperfine state. A general Hamiltonian
describing this driving can be written as

ĤD2 =
∑
F,F ′

(
ΩD2

+

2
D̂

3/2
+ +

ΩD2
0

2
D̂

3/2
0 +

ΩD2
−
2

D̂
3/2
− +H.c.

)
.

(19)
A Hamiltonian for the total atom-cavity system can then
be written as

Ĥ = Ĥ0 + ĤD1 + ĤD2, (20)

where Ĥ0 contains the bare atomic and cavity energies,
which can also include Zeeman shifts resulting from an
external magnetic field. Atomic spontaneous emission is
considered to be independent for each D line and each po-
larization, with collapse (emission) operators of the form

L̂J′

q =
√
γJ′

∑
F,F ′

D̂J′

q (F, F ′). (21)

Finally, we point out explicitly that, while each laser or
cavity field couples to only one of the D lines, within that
line they are assumed to couple to all allowed transitions
(i.e., to all allowed F ↔ F ′ transitions within the D
line). In the schematics of the various configurations that
follow, we draw only the dominant atom-field couplings.

B. Two-Level Atom Regime

Two-level behavior can be realized within the D2 line
of 87Rb by confining the population to the cycling tran-
sition. For the cavity this ideally requires a circularly-
polarized mode and zero birefringence, however this is
particularly difficult to achieve in the micro- or nano-
cavity systems that we have in mind and that realize the
requisite large coupling strengths. The natural eigen-
modes that characterize such cavities are linearly polar-
ized, which can still couple to the cycling transition, but
also allow transitions out of the closed cycle, thus in-
hibiting idealized two-level behavior. To this end, in this
section we consider a more moderate coupling strength of
g = 150 2πMHz, to allow for more efficient confinement
to the chosen levels. Since we assume the cavity mode to
be horizontally-polarized, coupling to the cycling transi-
tion is actually reduced to g/

√
2.

A magnetic field that induces suitably large Zeeman
shifts is also used to further suppress transitions outside
of the desired states, while a repumping laser acting on
the D1 line is required to maintain the system in a two-
level regime in steady state. The schematic in Fig. 10(a)
illustrates the repumping and Zeeman shifts which con-
spire to keep the atom confined to the cycling transi-
tion. Output temporal mode Wigner distributions are
shown in Figs. 10(b, c) for representative sets of param-
eters that enable good confinement of the atomic state
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to the cycling transition and yield Wigner-negativity in
both the quasi-bad-cavity and photon-blockade regimes,
respectively, as predicted earlier for the idealized Jaynes-
Cummings model. A confinement of 95.7% is achieved
in Fig. 10(b), while 90.0% of the population occupies the
cycling transition in Fig. 10(c).

Ω− ΩD2

-4 0 4
x

-4

0

4

y

-4 0 4
x

0.00

0.05

0.10

(a)

(b) (c)

FIG. 10. (a) Schematic and (b, c) Wigner distributions, for
realising a two-level atom in the hyperfine structure of the
87Rb D2 line, with {g, γD2} = {150, 6.066}. (b) In the
quasi-bad-cavity regime, with {κ, ΩD2} = {200, 60} 2πMHz
(C = 37), and the driving laser resonant with the cycling tran-
sition. (c) In the photon-blockade regime, with {κ, ΩD2} =
{40, 40} 2πMHz (C = 185), and the laser tuned above the
cycling transition resonance by −g/

√
2. Isolation of the two

levels is achieved by applying a −150 G magnetic field to gen-
erate Zeeman shifts in the energy levels, and a σ− repumping
beam with Ω− = g/2.

We note that these specific results employ a reason-
ably strong magnetic field of B = −150 G. Due to the
large magnetic field strengths being employed, it is neces-
sary to include the full Zeeman effect, beyond the linear
approximation, by expanding

ĤZ = −µ ·B ≈ µB(J + S) ·B. (22)

While the full Hamiltonian is used for simulations, the
probe and repumping laser frequencies are chosen by us-
ing the linear Zeeman approximation ∆ω = gFmFBµB .

Fig. 11 shows how well the atom is confined to the cy-
cling transition, for different cavity field decay rates and
magnetic field strengths. Confining the atom to the most
negative mF ground state works best with a negative-
valued magnetic field, such that the transition shifts away
from other resonances. For the same reason, the blockade
effect is best isolated by tuning to the higher-frequency
single-photon resonance.

For larger field decay rates, the system can give high-
quality two-level behavior with much weaker Zeeman
shifts. Isolating the photon blockade regime requires a

narrower cavity linewidth, and so a strong magnetic field
is needed to confine the population. In principle, 133Cs
is also a nice candidate for realizing the two-level behav-
ior with a linearly-polarized cavity mode, due to a more
favorable ratio of Clebsch-Gordan coefficients into, com-
pared to out of, the cycling transition.
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FIG. 11. Total steady-state population confinement to the
cycling transition in a 87Rb atom coupled (g = 150 2πMHz)
to a horizontally-polarized cavity mode and driven by a
σ− laser, tuned with the linear Zeeman shift to the upper
photon-blockade resonance. The dashed white line shows
90% confinement to the cycling transition. The red star and
cross show parameters chosen for the Wigner distributions in
Figs. 10(b) and (c), respectively.

C. Effective-Spin Models

In an appropriate driving regime, where the excited
states are only weakly populated, an effective evolution
of the ground state populations is derived through adi-
abatic elimination of the excited states. The resulting
Hamiltonian takes the form of effective spin interactions
within each hyperfine ground level given by Hamiltonians
(12) and (13) for D1 and D2 line transitions, along with
terms that couple (off-resonantly, and thereby weakly)
the two ground state manifolds.

In general, the steady-state atomic population can be
arbitrarily distributed amongst both ground state mani-
folds. In order to realize effective-spin dynamics, it is nec-
essary to identify operating regimes where the population
is confined to a single hyperfine level. The implementa-
tion of cavity coupling in the models considered here will
cause the atom to favor the (upper) F = 2 state, due
to accumulation of population in the maximal-projection
state (mF = ±2). If the driving mechanism increasing
mF is sufficiently strong, then the (lower) F = 1 state
can be populated by tuning the lasers to act as selective
repumping beams. The far-off resonant nature of the
driving is particularly convenient in this context, as the
detunings can be chosen such that the lasers can both
implement effective dynamics in the target state, while
providing a repumping mechanism out of the undesired
state. Fig. 12 shows the steady-state atomic populations,
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calculated from the full atomic model including the ex-
cited states, for the driving setups to be considered.

In all cases, the steady-state population can be very
well confined (>99%) to the chosen hyperfine level. As
shown in Fig. 12, confining the atom to the F = 2 level
means tuning the lasers such that {∆11′ , δ10′} ≈ 0,
so that transitions out of the F = 1 state are close
to resonant. Conversely, tuning the lasers such that
{∆11′ , δ10′} ≈ ωg, where ωg ≈ 6.8 2πMHz is the ground
state hyperfine splitting of 87Rb, will cause transitions
out of the F = 2 state to be near-resonant, confining the
population to F = 1.
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FIG. 12. Steady-state distribution of atomic population
amongst the two ground-state hyperfine manifolds. White
dashed (dotted) contours indicate 99% confinement to the
F = 2 (F = 1) state. In all cases, the D1 line is driven with
Ω− = 1 2πGHz, along with coupling to the π-polarized cavity
({g, κ} = {500, 50} 2πMHz). This is augmented with (a)
driving the D1 line with an Ω+ laser, or (b, c) driving the D2
line with a pair of lasers with Rabi frequency ΩD2 = 1 2πGHz,
where the two beams are (b) σ±-polarized, or (c) σ+- and π-
polarized. Black lines indicate changing the magnetic field
depending on the target state, according to the linear Stark
shifts in Appendix B. In all cases, only moderate magnetic
fields are required, such that |B| ≲ 20 G.

The presence of light fields shifts the energies of the
atomic states, the dominant effect being a linear Stark
shift. The shifts can be cancelled by applying a suitable
external magnetic field, which induces a linear Zeeman
shift. The shifts are different for the two ground-state

hyperfine levels, so when confining the atom to a single
hyperfine manifold, we choose the magnetic field such
that the linear shifts in the target level will approximately
cancel. The magnetic field strength is chosen according
to the linear shift term in the effective Hamiltonians (12)
and (13).

For consistency between effective models, a common
set of parameters is picked for implementation of the
cavity coupling in a given F level. Fields on the D1
line are always tuned such that ∆11′ = 6200 2πMHz and
∆11′ = −750 2πMHz for the F = 1 and F = 2 mod-
els respectively, and the σ−-polarized laser is set to a
strength of Ω− = 1000 2πMHz. The models which in-
clude a pair of lasers on the D2 line are tuned such that
δ10′ = 6600 2πMHz and δ10′ = −150 2πMHz for the
F = 1 and F = 2 models respectively. Additionally, the
D2 laser pair are also chosen to have the same Rabi fre-
quency, ΩD2. This means that different models can be
implemented by interchanging only the targeted D line or
the polarisation and Rabi frequency of the mF -increasing
driving lasers.

1. Driven Tavis-Cummings Model

The cavity driving employed in the idealized model of
(14) becomes challenging to simulate in the full-atomic-
structure model, owing to the large basis size required
to adequately model the cavity mode in numerical cal-
culations. So, instead, a one-step coherent Raman tran-
sition is used to implement collective driving, as shown
in Fig. 6(b). As with the previous models, results are
equivalent regardless of the chosen driving mechanism.
The full excitation scheme therefore takes the form de-
picted in Fig. 13(a), for realization of the effective spin-1
model.

As demonstrated in Figs. 13(b, c), the Wigner distri-
butions follow precisely (apart from a rotation in phase
space) the patterns predicted from the idealized model
for spin-1 and spin-2 collective systems, where the num-
ber of negative lobes corresponds directly to the effective
spin length.

2. Dicke Model

Augmenting the D1 line excitation with a σ+-polarized
laser provides a pathway for mF -increasing cavity-
assisted Raman transitions, as illustrated in Fig. 14 (a).
This gives a counter-rotating term in addition to the
co-rotating transition term, both mediated by the cav-
ity mode, producing unitary dynamics equivalent to the
Dicke model.

For the purposes of this work, as discussed earlier, the
model is chosen to be unbalanced, i.e., λ− > λ+. As with
all the models, if the driving is too asymmetric, the atom
is optically-pumped to the mF = ±2 state. This can be
seen from Fig. 12(a), where a sufficiently strong Ω+ is
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FIG. 13. (a) Schematic for implementation of a Tavis-
Cummings model, with cavity coupling ({g, κ} =
{500, 50} 2πMHz) on the D1 line, and collective driving on
the D2 line. Wigner distributions in the TCM regime are
shown for (b) the F = 1 model, with {ΩD2, ∆11′ , δ10′} =
{270, 6200, 6600} 2πMHz and B = 8.9 G, and (c) an F = 2
model, with {ΩD2, ∆11′ , δ10′} = {360, −750, −150} 2πMHz,
and B = −9.26 G.

required to confine the population to the F = 1 state.
For the parameters we explore, the imbalance is accept-
ably small that the population confinement can be read-
ily achieved. In principle, an explicit repumping laser
could be added to the model (for example on the D2 line
with δ10′ ≈ ωg) to allow a more imbalanced model in the
F = 1 state, if desired.

The term in Hamiltonian (15) proportional to ω0 can
be controlled by tuning the external magnetic field. With
all of the parameters specified appropriately, the pre-
dicted states, shown in Fig. 14(b, c), closely reproduce
those found with the relevant idealized model.

3. Two-Step Collective Atomic Driving

A pair of circularly-polarized lasers on the D2 line will
drive coherent Raman transitions between ground states
with ∆mF = ±2. Accompanied with the D1 cavity-
assisted Raman transitions, the two-step nature of driv-
ing manifests itself in the tendency for photons to be
emitted from the cavity in pairs.

The excited-state pathways for two-step transitions ac-
tually interfere destructively when the lasers are tuned
very far from resonance. This can be seen in the explicit
formulae for the effective parameters given in Appendix
B; when the detunings are much larger than the excited-
state hyperfine splittings, the T term of Eq. (B10) van-
ishes. This suggests that the two-step driving should
be implemented closer to resonance, however, this is not
suitable for the F = 1 model, due to the repumping
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FIG. 14. (a) Implementation of the Dicke model in a
({g, κ} = {500, 50} 2πMHz) single-atom cavity QED system,
with counter- and co-rotating terms realized on the D1 line.
Wigner distributions are shown in {(b), (c)} for Ω+ = 0.35Ω−
and ∆11′ = {6200, − 750} 2πMHz, B = {7.2, − 7.3} G, cor-
responding to the F = 1 and F = 2 models, respectively.

requirements. So, the two-step driving is still imple-
mented with far-off-resonant lasers, but we increase the
laser strengths to compensate and give an adequate rate
for this process.

Due to the tendency of the D1 optical pumping mech-
anism to favor the (upper) F = 2 state, the spin-2 results
can also be achieved when the D2 line lasers are much
closer to (F = 2) resonance, i.e., δ10′ ≈ ωg. This allows
for an equivalent model to be implemented in practice
with significantly weaker lasers on the D2 line.

The implementation of two-step driving also introduces
an appreciable quadratic Stark shift, which cannot gener-
ally be cancelled with an external magnetic field. Fortu-
nately, the magnitude of shift is relatively small, as long
as the two-step driving is weak. In principle, one can also
find operating regimes where the D1 quadratic Stark shift
is engineered to cancel the equivalent D2 shifts. For the
results presented here, this is not implemented, as clearly
the states in Fig. 15(b,c) are already very similar to those
predicted by the idealized model.

As in the simpler models, the Wigner distributions take
the form of even-numbered photon superpositions, and
demonstrate an increased squeezing of the central lobe
for longer spin-length. The squeezing axis is rotated,
but the reduced variance can be quantified through the
generalised quadrature operator,

X̂θ = âe−iθ + â†eiθ, (23)

for a suitable phase angle θ.
For the F = 1 model state, Fig. 15(b), a maximally-

squeezed variance of 0.9218 is attained, while the F = 2
state in Fig. 15(c) exhibits a minimal variance of 0.5128.
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FIG. 15. (a) Schematic for the implementation of two-state
driving on the D2 line, with ({g, κ} = {500, 50} 2πMHz)
cavity-assisted transitions on the D1 line. Wigner dis-
tributions from the two-Photon Driving model are shown
for (b) the F = 1 model, with {ΩD2, ∆11′ , δ10′} =
{1750, 6200, 6600} 2πMHz and B = 8.2 G, and (c) an
F = 2 model, with {ΩD2, ∆11′ , δ10′} = {1550, − 750, −
150} 2πMHz and B = −8.1 G.

Note that these values differ from the ideal model num-
bers given earlier, since the models are considered under
different operating parameters. The two-state driving
model is a promising avenue for a single-atom source of
strongly-squeezed light. This will be explored further for
87Rb, as well as other alkali atoms, in a future work.

VI. CONCLUSION

In this work we have examined the open, driven
Jaynes-Cummings model and some of its multi-atom vari-

ants from a new perspective, that of Wigner-distribution
negativity in states of temporal modes of the cavity out-
put field. Remarkably, these models once again open
new and intriguing results, which we hope may pique the
interest of theorists and experimentalists alike. Clearly,
there is scope for further, more detailed theoretical inves-
tigation of the origins of the negative structure seen in
the various Wigner distributions presented in this work.
Meanwhile, our use of experimentally relevant parame-
ters suggests that our schemes may be viable practical
sources of Wigner-negative light using single-atom, opti-
cal cavity QED setups. The models and results presented
are, of course, also of potential interest to the burgeoning
field of circuit QED, from which, indeed, we gained much
of our original motivation for pursuing this work.
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. (A2)
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†â−H.c.

)
, (A3)
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2κ â+ κ∗

f (t)b̂(t). (A4)

The final temporal mode state is calculated numerically,
by integrating the time-dependent master equation over
the temporal mode envelope function. Partially tracing
over the source system gives a reduced density operator
for the capture cavity, equivalent to the desired temporal
mode state.
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Appendix B: Adiabatic Elimination

Applying the effective operator formalism to adiabatic
elimination of the excited states gives analytic expres-
sions for effective ground-state dynamics [47]. A brief
outline of the method applied to the 87Rb D lines is given
here. Treating the fine structure doublet independently
means the process can be applied separately to each of
the D lines. For each D line, the atomic Hamiltonian 20
is separated into terms which couple within the ground
states (Ĥg) and excited states (Ĥe), along with terms
which couple between them (V̂±),

Ĥ = Ĥe + Ĥg + V̂+ + V̂−. (B1)

For a 87Rb atom, the ground state Hamiltonian is

Ĥg = ĤZg +
∑
F,mF

ωF |mF , F ⟩ ⟨mF , F | , (B2)

where ĤZg describes Zeeman effect on the ground levels,
and ωF = 0 (ωg) for the F = 1 (F = 2) state. The
excited state Hamiltonian is

Ĥe = ĤZe +
∑

F ′,mF

ζ1F ′ |F ′,mF ⟩ ⟨F ′,mF | , (B3)

where ĤZe is the excited-state Zeeman effect, and ζ1F ′ =
{∆1F ′ , δ1F ′} represents the relevant detunings. The de-
tunings are labelled ∆FF ′ with F ′ = {1, 2}, and δ1F ′ ,
with F ′ = {0, 1, 2, 3}, for D1 and D2 states respectively,
defined as the coupling field detuning from the F → F ′

transition. The formalism gives an effective master equa-
tion for evolution of the ground states [47]

˙̂ρ = −i[Ĥeff, ρ̂] +D[
√
2κâ]ρ̂+

∑
q

D[L̂q
eff]ρ̂, (B4)

Contributions from independent fields (i.e each polariza-
tion) are delineated by q, and excitation from different
ground states labelled F . Each D line can couple to three
distinct polarizations (π and σ±), from each of two hy-
perfine ground levels. The effective operators are

Ĥeff = Ĥg −
1

2

V̂−
∑
F,q

(
Ĥ

(F,q)
NH

)−1

V̂
(F,q)
+ + H.c

 ,

L̂q
eff = L̂q

∑
F,q′

(
Ĥ

(F,q′)
NH

)−1

V̂
(F,q′)
+ ,

(B5)

with (
Ĥ

(F,q)
NH

)−1

≡
(
ĤNH − ωF − ωq

)−1

, (B6)

where ωq the frequency of the q-polarized field.

ĤNH = Ĥe −
i

2

∑
q

L̂†
qL̂q, (B7)

where the inverse is defined in the excited-state basis.
For each of the 87Rb D lines, transitions are modelled by
the dipole operator

D̂q(F, F
′) =

∑
mF

CF,F ′

mF ,q |F,mF ⟩ ⟨F ′,mF + q| , (B8)

and spontaneous emission is treated collectively within
each polarization

L̂q =
√
γ
∑
F,F ′

D̂q(F, F
′). (B9)

Applying the formulae, the resulting effective super-
operator couples states within the same hyperfine level,
as well as causing transitions between the two. By select-
ing an operating regime where the population is confined
to a single F level, the dynamics are dominated by the
elastic-scattering Hamiltonian

Ĥ =ωπΩ̂
†
πΩ̂π + ω+Ω̂

†
+Ω̂+ + ω−Ω̂

†
−Ω̂−

+ ωlS

(
Ω̂†

+Ω̂+ − Ω̂†
−Ω̂−

)
Ŝz

+ ωqS

(
Ω̂†

+Ω̂+ + Ω̂†
−Ω̂− − 2Ω̂†

πΩ̂π

)
Ŝ2
z

+ λ
[
Ŝ+

(
Ω̂†

−Ω̂π + Ω̂†
πΩ̂+

)
+

(
Ω̂†

πΩ̂− + Ω̂†
+Ω̂π

)
Ŝ−

]
+ ζ

[(
Ω̂†

+ − Ω̂†
−

)
Ω̂π + Ω̂†

π

(
Ω̂+ − Ω̂−

)]
Q̂xz

− iζ
[(

Ω̂†
+ + Ω̂†

−

)
Ω̂π − Ω̂†

π

(
Ω̂+ + Ω̂−

)]
Q̂yz

+ T (Ω̂†
−Ω̂+Ŝ

2
+ + Ŝ2

−Ω̂
†
+Ω̂−),

(B10)

where Ω̂q is a q-polarized field operator. The first line
indicates effective shifts in the fields of each polarization,
while the second and third line are linear and quadratic
AC Stark shifts, respectively. The remaining terms de-
scribe Raman transitions due to coupling between the
atom and light fields.

The Hamiltonian B10 is a general form for an alkali
atom coupled to polarized fields, and can now be tai-
lored to the specific applications considered in this work.
Assuming that any Zeeman shifts are small relative to
the detunings considered, formulae for the effective pa-
rameters are readily derived, dependent only on the bare
properties of the atom and the optical fields to which it
couples.

1. D1 Line

The D1 line is driven by two auxiliary lasers, each
of opposite circular-polarization, and coupled to a π-
polarized cavity mode. This is incorporated into Hamil-
tonian (B10), by explicitly writing the generic field oper-
ators as

Ω̂± → Ω±

2
, Ω̂π → gâ. (B11)
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Ignoring c-number terms, the remaining effective param-
eters are given below, for each ground-state hyperfine
level.

a. F = 1 terms

ωπ =
1

3∆12′
,

ωlS = − 1

24

(
1

∆11′
− 5

∆12′

)
,

ωqS = − 1

24

(
1

∆11′
− 1

∆12′

)
,

λ = − 1√
2
ωlS ,

T = ωqS ,

ζ =
1√
2
ωqS

(B12)

b. F = 2 terms

ωπ =
1

3∆21′
,

ωlS = − 1

24

(
3

∆21′
+

1

∆22′

)
,

ωqS =
1

24

(
1

∆21′
− 1

∆22′

)
,

λ = − 1√
2
ωlS ,

T = ωqS ,

ζ =
1√
2
ωqS .

(B13)

The Hamiltonian (12) is recovered from these general
terms, to give an effective evolution of the ground states
due to D1 coupling. Explicitly, the parameters are re-
lated by:

ω = g2ωπ,

ω0 =

(
Ω2

+

4
−

Ω2
−
4

)
ωlS ,

λ± = g
Ω±

2
λ,

ζ± = ∓g

(
Ω+

2
± Ω−

2

)
ζ,

τ =
Ω+Ω−

4
T ,

ωq =

(
Ω2

+

4
+

Ω2
−
4

)
ωqS ,

δq = 2g2ωqS .

(B14)

2. D2 Line

The D2 is allowed to be driven by coherent lasers with
any of the three polarization. This is described by re-
placing the general field operators in Hamiltonian (B10)
with

Ω̂q → Ωq

2
. (B15)

Excluding constant terms, and again assuming that any
Zeeman shifts are small relative to the transition detun-
ings, the the effective parameters are given below for dy-
namics within each of the ground levels.

a. F = 1 terms

ωlS =
1

48

(
5

δ12′
− 5

δ11′
− 4

δ10′

)
,

ωqS =
1

48

(
1

δ12′
− 5

δ11′
+

4

δ10′

)
,

λ = − 1√
2
ωlS ,

T = ωqS ,

ζ =
1√
2
ωqS .

(B16)

b. F = 2 Terms

ωlS =
1

240

(
28

δ23′
− 5

δ22′
− 3

δ21′

)
,

ωqS =
1

240

(
4

δ23′
− 5

δ22′
+

1

δ21′

)
,

λ = − 1√
2
ωlS ,

T = ωqS ,

ζ =
1√
2
ωqS .

(B17)

The Hamiltonian (13) is recovered from these general
terms, where the effective parameters for ground-state
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evolution due to D2 coupling are given by:

ω′
0 =

(
Ω2

+

4
−

Ω2
−
4

)
ωlS ,

λ′ =
Ωπ

2

(
Ω+

2
+

Ω+

2

)
λ,

ζ ′± = ∓Ωπ

2

(
Ω+

2
± Ω−

2

)
ζ,

τ ′ =
Ω+Ω−

4
T ,

ω′
q =

(
Ω2

+

4
+

Ω2
−
4

− 2
Ω2

π

4

)
ωqS .

(B18)
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