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The equilibrium state of a quantum system can deviate from the Gibbs state if the system-
environment coupling is not weak. An analytical expression for this mean force Gibbs state (MFGS)
is known in the ultrastrong coupling (USC) regime for the Caldeira-Leggett (CL) model that assumes
a harmonic environment. Here, we derive analytical expressions for the MFGS in the USC regime
for more general system-environment models. For all the generalized models considered here, we
find the USC state to be diagonal in the basis set by the system-environment interaction, just like
in the CL case. While for the generic model considered, the corresponding USC-MFGS state is
found to alter from the CL-result, we do identify a class of models more general than the CL-model
for which the CL-USC result remains unchanged. We also provide numerical verification for our
results. These results provide key tools for the study of strong coupling thermodynamics under
more realistic system-environment models, going beyond the CL-model.

I. INTRODUCTION

Non-negligible system-environment coupling can cause
the equilibrium state of a system to deviate from the
textbook Gibbs state [1, 2]. The concept of Mean Force
Gibbs State (MFGS) has been developed to capture the
idea of this generalized equilibrium state, and has histor-
ically seen a lot of application in the field of chemistry
[3–6] and, more recently, to the theory of strong cou-
pling quantum thermodynamics [1, 7–10]. Many of these
approaches to calculate the quantum MFGS assume the
Caldeira-Leggett (CL) model for the system and the en-
vironment, in which the environment is modelled as a set
of harmonic oscillators coupled to the system.

The harmonic environment approximation has been
widely successful in capturing the behaviour of a variety
of physical systems [11–27]. Yet, advancement in exper-
imental techniques and more detailed theoretical consid-
erations have shown the inadequacy of the harmonic en-
vironment approximation, sparking numerous studies on
open quantum system with anharmonic environment [28–
38]. For example, for an environment consisting of non-
polar liquids or for low-frequency intramolecular modes
of polar liquids, the harmonic approximation is known to
fail [28–33, 37, 38]. It is hence worth investigating the
MFGS result for system-environment models beyond the
CL-model.

If ĤSE denotes the full Hamiltonian of a system and
environment, then the MFGS is formally defined as [39,
40]

ρ̂ = Z−1TrE

[
e−βĤSE

]
, (1)

where Z is an appropriate normalization constant.
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For the CL-model, analytical expression for the MFGS
in ultrastrong coupling (USC) regime has been deter-
mined for continuous variable (CV) systems [41] and,
more recently, for a more general CL-model (consisting of
an arbitrary system Hamiltonian and coupling-operator)
[39]. The USC-MFGS acts as a good indicator for the
deviation of the MFGS state from the textbook Gibbs
state at large coupling. However, since this result is only
valid for the CL-model, its applicability is significantly
limited. It also remains uncertain as to which aspects of
the USC result are artefacts of the specific structures of
the CL-model, and which aspects might persist when the
model is generalized. Here, we attempt to address this
issue by studying the USC-MFGS for models beyond the
CL-model.
We find that for all the system-environment models

considered by us, one of the core features of the CL-
USC result, that the MFGS is diagonal in the basis set
by the system-environment interaction, remains intact,
although the functional form of the MFGS does get af-
fected. For example, the most general extension of the
CL-model considered by us, which we call the GCL-
model, shows such deviations from the CL-USC result.
Within the GCL-model, we identify a subclass of models,
which we call the GCL2-model, for which the CL-USC
result remains exactly valid. Finally, we derive an an-
alytical expression for the USC-MFGS for another class
of model (distinct from the GCL-model), the so-called
Zwanzig-model [42–45], and find that the corresponding
USC state, although still diagonal in the basis set by the
system-environment interaction, has qualitative distinc-
tions from the GCL2-USC result.
In Sec. II, we rederive the known USC-MFGS result for

the CL-model [39] using the path integral approach, to
illustrate the method that we will be using to generalize
the same result. Sec. III contains the derivation of the
USC result for the GCL-model, while Sec. III A acts as a
special case of the same derivation for the more restricted
GCL2-model. Finally, in Sec. IV, we provide the USC-
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MFGS derivation for the Zwanzig-model. Sec. V provides
some numerical verifications of the analytical results de-
rived here, and Sec. VI provides conclusions and future
directions.

II. USC-MFGS IN CL-MODEL

Consider a typical CL-model in which a generic quan-
tum system, with free Hamiltonian ĤS , has a one-to-one
interaction with a set of harmonic oscillators that are un-
coupled from each other. The full system-environment
Hamiltonian is hence given by

ĤSE = ĤS + ĤI , (2)

ĤI =
∑
k

[
p̂2k
2mk

+
1

2
mkω

2
k

(
q̂k − αkÂ

)2]
, (3)

where Â is a generic system operator through which the
system couples to the environment (which from now on-
wards we will refer to as ‘system coupling-operator’) and

αk ≡ ck
mkω2

k

, (4)

where mk and ωk are the mass and frequency of the kth
harmonic oscillator and ck is the corresponding system-
environment coupling strength. For a CV system, typi-
cally we have Â = q̂, where q̂ is the position operator of
the system; while for the spin-Boson model, Â is taken
to be a Pauli matrix [25–27].

The MFGS (Eq. 1) can be calculated using the Feyn-

man path integral in the basis of the operator Â [46] by
evolving the system and the environment in the ‘imag-
inary time’ by an amount β and then tracing over the
environment degrees of freedom [11, 25].

Note a subtlety that arises when the system coupling-
operator Â has degeneracy, and hence each of its eigen-
states is not uniquely labelled by an eigenvalue. To fix

this problem, let us introduce an operator ϕ̂ that lifts

the degeneracy in Â. That is, [ϕ̂, Â] = 0 and Â + ϕ̂ has
no degeneracy. The final result will not depend upon the

particular choice of ϕ̂. Without any loss of generality and

for convenience, we will also assume that ϕ̂ is itself non-
degenerate, so that its eigenvalues, (a, b), can be used as
a unique label to express the system’s reduced density
matrix elements as ρ̂(a, b).
Let a generic imaginary time path be denoted as

{A(t), ϕ(t), qk(t)}, where A(t) ∈ {Ai}, ϕ(t) ∈ {ϕi},
and qk(t) ∈ {qki} , where {Ai}, {ϕi} and {qki} are the

sets of eigenvalues of operators Â, ϕ̂ and q̂k, respectively.
We emphasise here that A(t) denotes a path that the
system can take in the path integral and should not be
confused to mean that the system coupling-operator, Â,
has a time dependence. In fact, Â has been assumed to
be time-independent throughout this paper.

Now, let SS [A(t), ϕ(t)] and SI [A(t), qk(t)] represent the

imaginary time action corresponding to ĤS and ĤI , re-
spectively. Note how SI is not a function of ϕ(t) while SS

is. This is because while ĤS is an arbitrary system oper-
ator, ĤI has system dependence only through the oper-
ator Â, and hence the corresponding action, SI , cannot
distinguish within the degenerate subspace of Â, which
removes the ϕ(t) dependence.
Also note that the paths A(t) and ϕ(t) are not in-

dependent of each other. That is, A(t) and ϕ(t) de-

note some eigenvalues of the operators Â and ϕ̂, re-
spectively, such that one can find a common eigenvec-
tor |v(t)⟩ ≡ |A(t), ϕ(t)⟩ such that Â |v(t)⟩ = A(t) |v(t)⟩
and ϕ̂ |v(t)⟩ = ϕ(t) |v(t)⟩. But we can always treat A(t)
and ϕ(t) as independent of each other if we assume that
the action SS [A(t), ϕ(t)] is constructed in such a manner
that, given some A(t), it rules out all unphysical possi-
bilities for the path ϕ(t) by assigning the corresponding
action an infinite weight. For all the arguments in this
paper, we don’t need to go into any further details on
how to construct such a functional SS [A(t), ϕ(t)].

The full system-environment path integral is given as

ρ̂(a, b, ak, bk) = Z̃−1

(∏
k

∫ bk

ak

Dqk(t)

)∫ b̃

ã

DA(t)

×
∫ b

a

Dϕ(t)e−SS [A(t),ϕ(t)]−SI [A(t),qk(t)].

(5)

Here Z̃ is the overall normalization factor and a, b, ak,
bk, ã, and b̃ correspond to ϕ(0), ϕ(β), qk(0), qk(β), A(0),
and A(β), respectively. Tracing over the environment
will now give us the MFGS as

ρ̂USC(a,b) =

(∏
k

∫ ∞

−∞
dak

)
ρ̂(a, b, ak, ak) (6)

= Z̃−1

∫ b̃

ã

DA(t)

∫ b

a

Dϕ(t)e−SS [A(t),ϕ(t)]I[A(t)].

(7)

Here I[A(t)] ≡
∏

k Ik[A(t)] is called the influence func-
tional [11, 25], where Ik[A(t)] encapsulates the effect of
the kth environment particle only and is defined as

Ik[A(t)] =

∫ ∞

−∞
dx

∫ x

x

Dqk(t)e
−Sk[qk(t),A(t)]. (8)

Here the action, Sk, is defined as

Sk [qk(t), A(t)] ≡
∫ β

0

dt

{
mk

2
q̇k(t)

2

+
mkω

2
k

2
(qk(t)− αkA(t))

2

}
. (9)

The explicit expression for I[A(t)] for CL-model [11, 25]
can be used to derive the CL-USC result [41, 47]. But
here, since we need to eventually generalize this result
beyond the CL-model, we will derive the expression for
the USC-MFGS without explicitly evaluating I[A(t)] for
any specific model.
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Let us choose an arbitrarily large but finite length scale
∆ such that whenever |qk(t)−αkA(t)| > ∆ for any t, the
potential energy (PE) cost of the corresponding path,
qk(t), will be very high, and hence its contribution to the
path integral will be negligible. We can hence write, for
all paths q∗k(t) that do have significant contribution to
the path integral,

|q∗k(t)− αkA(t)| < ∆. (10)

Let us define

⟨A⟩ ≡
∫ β

0

dtA(t), (11)

⟨A2⟩ ≡
∫ β

0

dtA(t)2, (12)

σ2
A ≡ ⟨A2⟩ − ⟨A⟩2 . (13)

Then, in Appendix. A, we have proven that if σ2
A ≫

∆2/α2
k, then ∫ β

0

dtq̇∗k(t)
2 ≥ α2

kµ
σ2
A

β2
. (14)

Here µ > 0 is some constant. Now, note that in the USC
limit, defined as

lim ck → ∞, (15)

we have αk → ∞ (Eq. 4). Hence, in this limit, unless
σA ≲ O(∆/αk), the RHS in Eq. 14 diverges, causing the
kinetic term q̇∗k(t)

2 in the action Sk [qk(t), A(t)] (Eq. 9)
to diverge. Hence, in the USC limit (Eq. 15), paths q∗k(t)
(which have been defined to have convergent PE cost) will
have divergent kinetic energy cost unless σA vanishes, or
in other words, unless we have

A(t) = A(0) = ã, for some constant ã. (16)

As we will see, Eq. 16 will greatly simplify the evalua-
tion of the MFGS path integral (Eq. 7). But before get-
ting into that, we need to address a subtlety. If the sys-
tem lives in a discrete Hilbert space, then A(t) may not
be continuous and differentiable everywhere, leading to
potential mathematical irregularities. Although the re-
sults and proofs in this paper only require the paths A(t)
to be square integrable (and not continuous and differ-
entiable), we note that these mathematical irregularities
can be addressed by substituting A(t) with a continu-
ous and differentiable function X(t) that closely approx-
imates it, such that the induced error, |I[A(t)]−I[X(t)]|,
is arbitrarily small. For instance, Figure 1 illustrates how
X(t), using a cubic polynomial near t = 1, smoothly ap-
proximates A(t)’s discrete jump.

Now, given Eq. 16, the expression for the influence

0.0 0.5 1.0 1.5 2.0
t (Imaginary time)

0.0

0.2

0.4

0.6

0.8

1.0

Ei
ge

nv
alu

e

A(t)
X(t)

FIG. 1. Approximating a piecewise constant function, A(t),
with a continuous and differentiable function X(t). The func-
tion X(t) is equal to A(t) everywhere except near the dis-
continuous jump in A(t) (when 1 − δ < t < 1 + δ, for
δ = 0.2). Near t = 1, X(t) takes the form of a cubic function,
f(t′) = a0 + a1t

′ + a3t
′3, with t′ = t− 1, a0 = 1

2
, a1 = 3

4δ
and

a3 = − 1
4δ3

. This means that we have limδ→0 X(t) = A(t).

functional (Eq. 8) simplifies as

Ik[ã] =

∫ ∞

−∞
dx

∫ x

x

Dqk(t)e
−Sk[qk(t),ã] (17)

=

∫ ∞

−∞
dx

∫ x−αkã

x−αkã

Dxk(t)e
−Sk[xk(t),0] (18)

=

∫ ∞

−∞
dx

∫ x

x

Dxk(t)e
−Sk[xk(t),0] (19)

= Ik, which is independent of ã. (20)

Here in Eq. 18, we defined xk(t) ≡ qk(t) − αkã and we
have used the relation Sk [qk(t), ã] = Sk [xk(t), 0] (Eq. 9).
We hence have that I[ã] ≡ I is independent of ã. Hence,
the only contribution of the environment side path inte-
gral is to eliminate all the system side paths that do not
satisfy Eq. 16. This means that jumps within a degen-
erate subspace are still allowed and with equal weight as
far as the environment side path integral is concerned.
Therefore, the full MFGS path integral (Eq. 7) simplifies
as

ρ̂USC(a, b) = Z̃−1I

∫ b

a

Dϕ(t) exp {−SS [ã, ϕ(t)]} . (21)

Here a and b are the eigenvalues of the operator ϕ̂ and
ã is the eigenvalue of Â [48]. Then, the USC-MFGS is
given as

ρ̂USC = Z−1 exp
{
−βH̃

}
, (22)

H̃ ≡
∑
i

P̂iĤSP̂i. (23)
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Here P̂i is the projection operator on the ith degenerate
subspaces of the system coupling-operator, Â, and Z is
the normalization constant. Eq. 22 is equivalent to the
USC-MFGS derived by Cresser et al. [39] using pertur-
bation theory, and reduces to the USC-MFGS derived
earlier for a CV system [41]. Note that the derivation
provided in this section is applicable for a generic CL-
model, discrete or continuous.

III. USC-MFGS FOR GENERALIZED
CALDEIRA-LEGGETT MODEL

The generalization of the CL-model has been consid-
ered by several authors [28, 30, 32, 34–36] and can be

characterized by an interaction Hamiltonian, ĤI (Eq. 3),
of the form

ĤI =
∑
k

[
p̂2k
2mk

+ Vk(q̂k, ckÂ)

]
. (24)

Here Vk(x, y) is a potential function bounded from below
with a constraint that it should not renormalize the free
effective system Hamiltonian ĤS [25, 28, 32, 49]. This
is usually ensured by adding a so-called counter term in
the potential, Vk(x, y), which compensates for the shift

in ĤS because of the environment. Here, we assume that
such a counter term has already been incorporated into
Vk(x, y), which translates into demanding that for a fixed
value of y, if x = x̃k(y) is the point at which Vk(x, y) has
a global minimum, then [25, 28]

Vk(x̃k(y), y) = 0. (25)

These generalized CL-models have been studied in var-
ious contexts. For instance, they have been used to ex-
plore the influence of an anharmonic environment on the
non-Markovian dynamics of open systems [28], to investi-
gate certain condensed phase processes such as electron-
transfer reactions [30, 34–36], and to examine the elec-
tronic absorption spectra of chromophores embedded in
condensed phase environments [32].

Here, we will generalize the derivation for the USC-
MFGS provided in Sec. II to such a larger class of model
that we call the Generalized Caldeira-Leggett (GCL)
model. In order to proceed with the derivation of the
USC-MFGS for such systems, we make two more physi-
cally motivated assumptions on the form of the potential
Vk(x, y) for our GCL-model, i.e.,

lim
x→±∞

Vk(x̃k(y) + x, y) ≥ |O(x)| ∀y, (26)

d

dy
x̃k(y) ≳ O(1). (27)

Here x̃k(y) is assumed to be continuous and differentiable
everywhere. We remark that the continuity of the func-
tion x̃(y) is not affected by whether the system in ques-
tion lives in a discrete dimensional Hilbert space or not

because here we are treating Vk(x, y) and x̃(y) as generic
functions that can act on continuous variables as well as
discrete operators.
Justification for Eq. 26 is that keeping the system vari-

able, y, fixed, if we move the environment variable x far
away from its global minima point x̃k(y), then the value
of the potential rises at least linearly with |x − x̃k(y)|.
That is, we assume that the system and environment
variables are attractively coupled to each other.
Note that we can relax the assumption Eq. 27 to

d
dy x̃k(y) ≥ λ for an arbitrarily small but finite λ > 0,

but we stick to the present form for simplicity. We can
motivate this assumption as following: if we instead as-

sume that
∣∣∣ d
dy x̃k(y)

∣∣∣ ≈ 0, then this would mean that for

a large variation in y, x̃k(y) would be almost constant
(i.e., x̃k(y) ≈ x0) and for the corresponding value of the
potential, we will have Vk(x0, y) ≈ 0 (Eq. 25). Hence, the
assumption Eq. 27 is applicable whenever the interaction
potential is sensitive to a large change in the variable y
while x is held constant.
The expression for the action, Sk [qk(t), A(t)] (Eq. 8)

for the GCL-model now becomes,

Sk [qk(t), A(t)] =

∫ β

0

dt

{
mk

2
q̇k(t)

2 + Vk(qk(t), ckA(t))

}
.

(28)

Eq. 26 implies that, for a fixed value of y, there is a
(perhaps) large but essentially finite basin with length
scale ∆ about the position x = x̃k(y), such that all paths
qk(t) that explore the region |x− x̃k(y)| > ∆ will have a
PE cost so high that the contribution of these paths to
the path integral will be negligible. Hence, for all paths
q∗k(t) that do have a significant contribution to the path
integral, we again have that

|q∗k(t)− x̃k(ckA(t))| < ∆. (29)

Since x̃(ckA(t)) is ultimately a function of t, we can
define ⟨x̃A⟩, ⟨x̃2

A⟩ and σ2
x̃A

analogous to Eq. 11, Eq. 12
and Eq. 13. Next, given Eq. 27, we prove in Appendix. B
that

σ2
x̃A

≳ c2kσ
2
A. (30)

Next, we note that if σx̃A
≈ ∆, then σA ≲ O(∆/ck),

which vanishes in the USC limit (Eq. 15). Alternatively,
if we instead assume that

σ2
x̃A

≫ ∆2, (31)

then, using Eq. 29, in Appendix. A we prove that∫ β

0

dtq̇∗k(t)
2 ≥ µ

σ2
x̃A

β2
(32)

≳ c2kµ
σ2
A

β2
, using Eq. 30. (33)

Here µ > 0. We have already encountered an inequality
similar to Eq. 33 in the context of the CL-model (Eq. 14).
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Again, we are led to a similar conclusion that in the USC
limit (Eq. 15), paths q∗k(t) (which have been defined to
have convergent PE cost) will have divergent kinetic en-
ergy cost unless σA vanishes. Therefore, again we have
that A(t) = A(0) = ã, for some constant ã (Eq. 16).
The expression for the influence functional (Eq. 8) hence
simplifies as

Ik[ã] =

∫ ∞

−∞
dx

∫ x

x

Dqk(t)e
−Sk[qk(t),ã] (34)

=⇒ I[ã] = Tr
[
e−βĤI(ã)

]
. (35)

Here ĤI(ã) ≡
∑

k

[
p̂2
k

2mk
+ Vk(q̂k, ckã)

]
(Eq. 24), with ã

being a number. The expression for the full MFGS path
integral (Eq. 7) then becomes

ρ̂USC(a, b) = Z̃−1I[ã]

∫ b

a

Dϕ(t) exp {−SS [ã, ϕ(t)]} .

(36)

Here a and b are eigenvalues of the operator ϕ̂ and ã is
eigenvalue of Â [48]. The USC-MFGS for GCL-model is
then given as

ρ̂USC = Z−1 exp
{
−βH̃

}
(37)

H̃ ≡
∑
i

P̂i

(
ĤS + V̂0

)
P̂i. (38)

Here Z is the normalization constant and P̂i is the pro-
jection operator on the ith degenerate subspace of the
operator Â with eigenvalue Ai. Here, V̂0 is defined as

V̂0 =
∑
i

log
(
Tr
(
e−βĤI(Ai)

))
P̂i. (39)

The key takeaway here is that although the USC-
MFGS for the GCL-model is still diagonal in the basis
of the system coupling-operator Â, the actual expression
does deviate from the CL-USC result. Determining the
actual expression for the GCL-USC result would involve
calculating the Gibbs partition function corresponding to
the free environment Hamiltonian, ĤI(Ai), as a function
of different values of Ai, and hence a closed form expres-
sion is not possible without further information on the
form of ĤI(Ai).

A. Special Case

Since the CL-USC result gets modified for the GCL
case, we will now identify a subclass within the GCL-
model, which we will call the GCL2-model, for which the
USC-MFGS result remains the same as that for the CL
case, and hence can also be determined in closed form.
To this end, let us assume a special form of the GCL-
model potential Vk(x, y) (Eq. 24) as

Vk(x, y) = Uk(x− y). (40)

Generalization of the CL-model of this form has been
considered before in literature [34] and physically reflects
a symmetry in the potential such that we have Vk(x +
w, y+w) = Vk(x, y). The function x̃k(y), defined earlier,
can now be expressed as

x̃k(y) = y + xk, (41)

where xk is some constant. Note how d
dy x̃k(y) = 1 and

hence the corresponding GCL-model assumption (Eq. 27)
is automatically satisfied here. The requirement that
Uk(x) does not renormalize the free system Hamiltonian
(Eq. 25), on the other hand, translates into

Uk(xk) = 0. (42)

Similarly, the final GCL-model assumption (Eq. 26)
translates here as

lim
x→±∞

Uk(xk + x) ≥ |O(x)|. (43)

The remaining argument goes through just as before.
The modified environment side action (Eq. 28),

Sk[qk(t), A(t)] ≡
∫ β

0

dt

{
mk

2
q̇k(t)

2

+Uk(qk(t)− ckA(t))

}
, (44)

gives the following expression for the influence functional,
analogous to Eq. 34,

Ik[ã] =

∫ ∞

−∞
dx

∫ x

x

Dqk(t)e
−Sk[qk(t),ã] (45)

=

∫ ∞

−∞
dx

∫ x−ckã

x−ckã

Dxk(t)e
−Sk[xk(t),0] (46)

=

∫ ∞

−∞
dx

∫ x

x

Dxk(t)e
−Sk[xk(t),0] (47)

≡ Ik, which is independent of ã. (48)

Here, in Eq. 46, we defined xk(t) ≡ qk(t) − ckã and
we have used the relation Sk [qk(t), ã] = Sk [xk(t), 0]
(Eq. 44).
Hence, just like in the case of the CL-model, we again

have that I[ã] ≡ I is independent of ã. This again leads
to the familiar CL-USC result (Eq. 22). This means that
CL-USC result is valid for a larger class of open system
model, namely for GCL2-model, as defined here.

IV. USC-MFGS FOR ZWANZIG-MODEL

We will now study the USC-MFGS for the so-called
Zwanzig-model [42–45], which has been previously stud-
ied in the context of Brownian motion and barrier cross-
ing problems. Let the full system-environment Hamilto-
nian for the Zwanzig-model be given as ĤSE = ĤS + ĤI ,
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where ĤS is the free system Hamiltonian and ĤI is given
as

ĤI =

N∑
k

[
p̂2k
2mk

+ U free
k (q̂k) +

ck
2
Uk(q̂k − Â)

]
. (49)

Here U free
k (qk) is an arbitrary free potential of the kth

environment particle and Uk(x) is as defined in Sec. III A,
but with just one extra condition that Uk(x) now has a
unique global minima point at x = xk and if there is any
other local minima at a point x = yk, then we have, for
some non-infinitesimal positive number λ,

Uk(yk)− Uk(xk) ≥ λ > 0. (50)

In other words, we now assume that not only does Uk(x)
have a unique global minimum, but also that if the po-
tential has any other local minima, then there is a non-
infinitesimal energy difference between the global mini-
mum and the local minima. The significance of this as-
sumption will become clear shortly.

Note that in Sec. III A, the interaction potential was
of the form Uk(q̂k − ckÂ) while here, it is of the form

ckUk(q̂k − Â). Hence, the Zwanzig-model is microscopi-
cally motivated to have a spring like interaction between
the system and the environment particles. In fact, if
Uk(x) is a harmonic potential, then ck can be interpreted
as the stiffness constant of the corresponding spring. Also
note that here, we have deliberately not added a counter
term in the interaction Hamiltonian because any renor-
malization of the system’s free Hamiltonian will be as-
sumed here to be of physical origin.

Now, the path integral expression for the MFGS will
be given exactly as in CL-model (Eq. 7 and Eq. 8), where
the action associated with Ik[A(t)] will now be given as

Sk[qk(t), A(t)] ≡
∫ β

0

dt

{
mk

2
q̇k(t)

2 + U free
k (qk(t))

+
ck
2
Uk(qk(t)−A(t))

}
. (51)

In the USC limit (Eq. 15), for paths that contribute sig-
nificantly to the path integral, the condition

qk(t) = A(t) + xk (52)

will get strictly imposed here. This is because as dis-
cussed in the context of the GCL2-model, Uk(xk) = 0
is defined as the global minima of the potential Uk(x)
(Eq. 42) and we have further assumed that for Zwanzig-
model, this global minimum is unique and has a non-
infinitesimal energy difference from any other local min-
ima that might be there (Eq. 50). Hence, in the USC
limit, we will have

lim
ck→∞

exp {−ckUk(x)} =

{
0 for x ̸= xk

1 for x = xk
. (53)

Replacing Eq. 52 in Eq. 51, the corresponding influence
functional (Eq. 8) becomes

Ik[A(t)] = e−
∫ β
0

dt{mk
2 Ȧ(t)2+U free

k (A(t)+xk)}. (54)

Since the influence functional Ik[A(t)] (Eq. 8) arises when
we take partial trace over the environment degrees of free-
dom, the environment side paths, qk(t), come with a con-
straint that qk(0) = qk(β). In the USC limit, since qk(t)
gets further constrained as qk(t) = A(t)+xk (Eq. 52), this
in turn puts a constraint that for paths that contribute
to the path integral, A(0) = A(β). This effectively di-
agonalizes the final USC-MFGS in the basis of system
coupling operator Â, but through a mathematical mech-
anism that is different from the one encountered in the
GCL-model.

A. Special Case 1: Discrete system

If the system lives in a discrete Hilbert space, A(t) gen-
erally has instantaneous jumps, in which case the kinetic
term in the action in Ik[A(t)] will blow up (Eq. 54), pre-
venting the jump. Hence, for a discrete system, paths
with an instantaneous jump will be suppressed and we
will have Ȧ(t) = 0.
Next, for A(t) = ã, the influence functional (Eq. 54)

simplifies as

=⇒ Ik[ã] = exp

{
−
∫ β

0

dtU free
k (ã+ xk)

}
(55)

= exp
{
−βU free

k (ã+ xk)
}
. (56)

Replacing this in the full MFGS path integral expression
(Eq. 7) gives

ρ̂USC(a, b) = Z̃−1e−βUeff(ã)

∫ b

a

Dϕ(t) exp {−SS [ã, ϕ(t)]} .

(57)

Here a and b are the eigenvalues of the operator ϕ̂ and ã
is the eigenvalue of Â [48] and Ueff(x) is defined as

Ueff(x) ≡
N∑

k=1

U free
k (x+ xk). (58)

Finally, the USC-MFGS is given as,

=⇒ ρ̂USC = Z−1 exp
{
−βH̃

}
(59)

H̃ ≡
∑
i

P̂i(ĤS + V̂0)P̂i. (60)

Here P̂i is the projection operator on the ith degenerate
subspaces of the operator Â with eigenvalue Ai. Here V̂0

is defined as

V̂0 =
∑
i

Ueff(Ai)P̂i. (61)
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Hence, effectively, this is just the USC-MFGS result for
GCL-model, but with a renormalized free system Hamil-
tonian (Eq. 60).

1 10
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FIG. 2. The trace distance between the USC-MFGS for the
GCL2-model and numerically evaluated MFGS as a function
of the coupling strength c, for different choices of the interac-
tion potential (Eq. 70).

B. Special Case 2: Continuous Variable system

Now, assume that we are dealing with a CV system,
where we have a particle with massm in a potential V (q).

Then, the free Hamiltonian ĤS is given as

ĤS =
p̂2

2m
+ V (q̂). (62)

Also, for simplicity, assume that the system coupling-
operator is given as Â = q̂. Then, using the simplified
expression for the influence functional for Zwanzig-model
(Eq. 54) in the full MFGS path integral (Eq. 7) gives the
USC-MFGS as

ρ̂USC(x, y) = Z̃−1δ(x, y)

∫ x

x

Dq(t)

e−
∫ β
0

dt( 1
2Meffq̇(t)

2+Veff(q(t))) (63)

where,

Meff = m+
∑
k

mk (64)

Veff(x) = V (x) + Ueff(x) (65)

The USC-MFGS can now be determined as

⟨q|ρUSC|q⟩ = Z−1 ⟨q|e−βĤeff |q⟩ |q⟩ ⟨q| , (66)

Ĥeff =
p̂2

2Meff
+ Veff(q̂). (67)

Note one key distinction here from the GCL2-USC re-
sult, in that although both the states are diagonal in
the basis set by the system coupling-operator, the corre-
sponding GCL2-USC result for CV system would be of
the form, ρUSC-GCL2 = Z−1e−βVeff(q) [39, 41, 47]. The
Zwanzig-USC result (Eq. 66) will converge to the GCL2
result only when Meff → ∞, which will suppress paths of
the type q̇(t) ̸= 0 in the path integral. This will typically
not be the case for a system interacting with a few envi-
ronment particles or particles that are not very massive,
for example.
We note that there has been a disagreement in the lit-

erature regarding the form of the USC equilibrium state
under the CL-model [39]. For the CL-model, Kawai et al.
conjectured the system’s dynamical state at long times

to be ρconj =
∑

i P̂ie
−βĤ0 P̂i [50, 51] and we note that,

coincidentally, the Zwanzig-USC result for CV systems
(Eq. 66) is similar to this conjectured form.

V. NUMERICAL VERIFICATION
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FIG. 3. The trace distance between the USC-MFGS for
the Zwanzig-model and the numerically calculated MFGS as
a function of the coupling strength c.

In this section, we conduct numerical tests to validate
the analytical results presented in this paper. Specifi-
cally, we verify the USC-MFGS results for both the GCL2
(Eq. 22) and the Zwanzig model (Eq. 59). Addition-
ally, we examine how the convergence rate of the MFGS
towards the USC results varies with an increase in the
system-environment coupling, across different model pa-
rameters.
For both the GCL2 and Zwanzig model, we consider

a simplified scenario involving a qutrit system interact-
ing with a single environmental particle. This allows for
the convenient numerical evaluation of the exact MFGS,
denoted by ρ̂num. By increasing the coupling strength,
we can then compare the approach of ρ̂num to the corre-
sponding ρ̂USC derived in this paper. We note that the
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system MFGS will get closer to the USC-result if mul-
tiple environment particles are simultaneously made to
interact it.

The system free Hamiltonian, ĤS , and the system
coupling-operator, Â, are fixed throughout to be

ĤS =

1 1 0
1 0 1
0 1 −1

 , Â =

1 0 0
0 0 0
0 0 −0.5

 . (68)

We set β = 5Eh throughout, where we are working in
the Hartree atomic units. For the GCL-model, the inter-
action Hamiltonian, ĤI , (Eq. 24) simplifies as

ĤI =
P̂ 2

2M
+ V (Q̂− cÂ). (69)

Here M = 1 and V (x) is assumed to be of the form

V (x) =

3∑
n=1

a2nx
2n. (70)

Figure 2 plots the trace distance between ρ̂num and
ρ̂USC (Eq. 22) for this model as we increase the coupling
parameter, c, for different values of the positive semi-
definite coefficients a2n. We generically find that, as ex-
pected, the trace distance drops quickly as the value of
c is increased. We also find that higher order system-
environment coupling causes the MFGS to approach the
USC state faster as a function of the coupling parameter
c.

This behaviour can be explained for a generic GCL-
model if we note that a path A(t) will contribute signifi-
cantly to the path integral only if we have σA ≲ O(∆/ck).
For USC limit, we therefore require that ∆/ck ≪ 1.
Hence, the USC limit is approached based on the inter-
play between the coupling parameter ck and ∆ [52]. So,
if ∆ is small for some coupling potential Vk(x, y), like
in the case of the potentials with a4 = 1 or a6 = 1 in
Figure 2, then it will facilitate the approach to the USC
limit.

Next, for Zwanzig-model, the interaction Hamiltonian
ĤI (Eq. 49) is assumed to be

ĤI =
P̂ 2

2M
+ U(Q̂) +

c

2
(Q̂− q̂)2. (71)

Here, again, M = 1 and U(x) is a Morse potential

U(x) ≡ (1− e−x)2. (72)

Figure 3 plots the trace distance between ρ̂num and
ρ̂USC (Eq. 59) for this model as we increase the value
of the coupling parameter, c. We again observe that, as
expected, the trace distance drops quickly as the value of
c is increased, though the rate of approach to the USC
result is much slower than the GCL case.

VI. CONCLUSION

The MFGS result, defined in Eq. 1, has been studied
in USC limit for a system coupled to an anharmonic en-
vironment, hence going beyond the known USC result
valid for the CL-model. For all the generalized system-
environment models studied, the USC-MFGS has been
found to always be diagonal in the basis set by the
system-environment interaction, although the exact form
of the state differs from the CL-USC result, like in the
case of a quite general class of models that we call the
GCL-model (Sec. III). We also identify a subclass of the
GCL-model, which we call the GCL2-model (Sec. IIIA),
for which the USC-MFGS remains equivalent to the CL-
USC result. Furthermore, for a so-called Zwanzig-model
(distinct from the GCL-model) (Sec. IV), analytical ex-
pression for the USC state has been derived and is found
to have qualitative differences from the GCL-USC result
(Eq. 66).
Since the USC-MFGS acts as a good indicator for the

deviation of the MFGS state from the textbook Gibbs
state at large coupling, these results have immediate ap-
plication in several aspects of strong coupling quantum
thermodynamics as well as chemical and biological sys-
tems, where the effect of the anharmonicity of the en-
vironment becomes relevant. These results also demon-
strate how accurate the CL-USC result is when the dif-
ferent assumptions of the model for which it was derived
are relaxed one by one.
Our results across a broad range of models indicate

that the USC-MFGS invariably becomes diagonal in the
basis of the system coupling-operator. Looking forward,
it would be interesting to investigate whether this diag-
onalization is a universal feature of the USC-limit, inde-
pendent of the further details of the system-environment
model. Additionally, exploring the MFGS in models be-
yond the CL-model at intermediate system-environment
coupling would extend the applicability of the MFGS for-
malism to more realistic scenarios.
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APPENDIX

A. PROPOSITION 1

Let f(t) be a continuous, differentiable and
square integrable function such that its deriva-
tive, ḟ(t), is also square integrable, such that

f(t) ≡ g(t) + ϵ(t). (73)

Here g(t) is also square integrable. Next, for
some ∆ > 0, we have the constraint that

|ϵ(t)| < ∆. (74)

Next, let us define

⟨g⟩ ≡
∫ β

0

dtg(t), (75)

⟨g2⟩ ≡
∫ β

0

dtg(t)2, (76)

σ2
g ≡ ⟨g2⟩ − ⟨g⟩2 . (77)

Then, in the limit σ2
g ≫ ∆2, we will prove that∫ β

0

dtḟ(t)2 ≥ µ
σ2
g

β2
, (78)

where µ > 0 is a constant.

The intuitive idea behind the proof is as following.
Part 1 of the proof consists of proving that

lim
σ2
g≫∆2

σ2
f ≈ σ2

g . (79)

Part 2 then consists of proving that given σf ,

∫ β

0

dtḟ(t)2 ≥ µσ2
f/β

2, where µ > 0. (80)

Replacing Eq. 79 into Eq. 80 then gives the final result
(Eq. 78).

Both these claims are intuitive, as the first claim states
that if the absolute difference between two functions is
much smaller than the standard deviation of one of the
functions, then their standard deviations are also ap-
proximately equal. The second claim states that, for a
function f(t), if σ2

f > 0, then ⟨ḟ2⟩ > 0 and also that

⟨ḟ2⟩ ∝ σ2
f , which makes sense because if you scale a

function as f(t) → 2f(t), then we have σ2
f → 4σ2

f and

⟨ḟ2⟩ → 4 ⟨ḟ2⟩.
Part 1 of the proof: Let us calculate σ2

f (using

Eq. 73) as

σ2
f = ⟨(g + ϵ)2⟩ − ⟨g + ϵ⟩2 (81)

= ⟨g2⟩+ 2 ⟨gϵ⟩+ ⟨ϵ2⟩ −
(
⟨g⟩2 + 2 ⟨g⟩ ⟨ϵ⟩+ ⟨ϵ⟩2

)
(82)

= σ2
g + σ2

ϵ + 2 (⟨gϵ⟩ − ⟨g⟩ ⟨ϵ⟩) (83)

≤ σ2
g +O(∆2) + 2σgO(∆). (84)

Here, we used ⟨gϵ⟩ − ⟨g⟩ ⟨ϵ⟩ ≤ σgσϵ that can be derived
using the Cauchy-Schwarz inequality. Finally, in the limit
σ2
g ≫ ∆2, we get the required result (Eq. 79).
Part 2 of the proof: Proof of Eq. 80 follows directly

from Poincaré inequality [53, 54] that can be formally
stated as following [55].

Poincaré inequality

Let Ω be an open, bounded, and connected
subset of Rd for some d and let dx denote d-
dimensional Lebesgue measure on Rd. Then the
Poincaré inequality says that there exist con-
stants C1 and C2 such that∫

Ω

h2(x)dx ≤ C1

∫
Ω

|∇h(x)|2dx

+ C2

[∫
Ω

h(x)dx

]2
, (85)

for all functions h in the Sobolev Space H1(Ω)
consisting of all functions in L2(Ω) whose gener-
alized derivatives are all also square integrable.

For 1-dimensional Euclidean space, for simplicity and
without loss of any generality, let us redefine f(t) such
that ⟨f⟩ = 0. In other words, we shift f(t) → f(t)− ⟨f⟩.
Then, the Poincaré inequality implies that

⟨f2⟩ ≤ C1 ⟨ḟ2⟩+ C2 ⟨f⟩2 (86)

=⇒ σ2
f ≤ C1 ⟨ḟ2⟩ . (87)

Since σ2
f ≥ 0 and ⟨ḟ2⟩ ≥ 0, we have that C1 is positive.

We therefore have

⟨ḟ2⟩ ≥ β2

C1

σ2
g

β2
. (88)

This proves Eq. 80 for µ = β2/C1 and concludes the
proof of the main result (Eq. 78) as well.

A. Proof of special case of Poincaré Inequality

Here, for completeness, we provide a proof for the
special case of Poincaré inequality (Eq. 80), as per the
present requirement. To simplify the proof, other than
assuming that ⟨f⟩ = 0, we also shift the range of the
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imaginary time from the conventional 0 ≤ t ≤ β to
−β/2 ≤ t ≤ β/2. Now, given a constraint∫ β

2

− β
2

f(t)2dt = σ2
f , (89)

we need to minimize over the action

S =

∫ β
2

− β
2

dtḟ(t)2, (90)

We do this by perturbing the optimum path, f(t) →
f(t) + δ(t), with δ(−β/2) = δ(β/2) = 0. Then Eq. 89
demands that ∫ β

2

− β
2

f(t)δ(t)dt = 0. (91)

Now, the condition for the minimum action is δS = 0,
where

δS

2
=

∫ β
2

− β
2

dtḟ(t)δ̇(t) (92)

= ḟ(β/2)δ(β/2)− ḟ(−β/2)δ(−β/2)

−
∫ β

2

− β
2

dtf̈(t)δ(t) (93)

= −
∫ β

2

− β
2

dtf̈(t)δ(t) = 0. (94)

Comparing Eq. 94 with Eq. 91, for some constant λ, we
get

f̈(t) = ±λ2f(t). (95)

The solution of f(t) can be of either sinusoidal or hyper-
bolic type. For the sinusoidal solution, we have

f(t) = A sin(λt+ ϕ). (96)

Then the condition, ⟨f⟩ = 0, demands that∫ β
2

− β
2

A sin(λt+ ϕ) = 0

(97)

=⇒ −A

λ

(
cos

(
λβ

2
+ ϕ

)
− cos

(
−λβ

2
+ ϕ

))
= 0

(98)

=⇒ cos

(
λβ

2
+ ϕ

)
= cos

(
−λβ

2
+ ϕ

)
. (99)

The solution is either, for a generic λ, ϕ = 0 or for a
generic ϕ, λ = 2πn/β for n ∈ Z. Hence, we have

f(t) =

{
A sin(λt) for generic λ

A sin(λt+ ϕ) for λ = 2πn/β; n ∈ Z
.

(100)

For hyperbolic solution, f(t) is given as

f(t) = A sinh(λt). (101)

Here, we do not have a cosh kind of term because of the

requirement that ⟨f⟩ =
∫ β

2

− β
2

dtf(t) = 0.

1. Sinusoidal solution

Let us first consider the solution for a generic λ and
ϕ = 0

f(t) ≡ A sin(λt) (102)

=⇒ ⟨f2⟩ = A2

∫ β
2

− β
2

sin2(λt)dt (103)

=
A2

2

∫ β
2

− β
2

1− cos(2λt)dt (104)

=
A2

2

(
β − 2 sin(λβ)

2λ

)
(105)

=
A2β

2

(
1− sin(x)

x

)
;x ≡ λβ (106)

=⇒ A2 =
⟨f2⟩
β

2x

x− sin(x)
. (107)

This expression for A2 is crucial, so let us also evaluate
it for the case when, in Eq. 102, ϕ is present and λ =
2πn/β for n ∈ Z.

f(t) = A sin

(
2πnt

β
+ ϕ

)
(108)

=⇒ ⟨f2⟩ = A2

∫ β
2

− β
2

sin2
(
2πnt

β
+ ϕ

)
dt (109)

=
A2β

2
(110)

=⇒ A2 = 2
⟨f2⟩
β

(111)

=
⟨f2⟩
β

2x

x− sin(x)

∣∣∣∣
x=2πn

(112)

This is consistent with Eq. 107. Hence, Eq. 107 holds
generically for the full sinusoidal case. Next, we have
that

f(t)2 +
ḟ(t)2

λ2
= A2 (113)

=⇒ ⟨f2⟩+ ⟨ḟ2⟩
λ2

= A2β (114)
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=⇒ ⟨ḟ2⟩ = λ2
(
A2β − ⟨f2⟩

)
(115)

=
x2

β2

(
⟨f2⟩ 2x

x− sin(x)
− ⟨f2⟩

)
(116)

=
⟨f2⟩
β2

x2

(
x+ sin(x)

x− sin(x)

)
(117)

≥
(
min
x

hsin(x)
) ⟨f2⟩

β2
. (118)

Here

hsin(x) ≡ x2

(
x+ sin(x)

x− sin(x)

)
. (119)

Note that minx hsin(x) > 0, which can also be seen from
Figure 4. Eq. 118 is the desired result for the sinusoidal
case.

4 2 0 2 4
x

10

15

20

25

y

hsin(x)
hhyp(x)

FIG. 4. Plot of hsin(x) (Eq. 119) and hhyp(x) (Eq. 129),
which demonstrates that the minima of both these functions
are larger than zero.

2. Hyperbolic solution

Let

f(t) ≡ A sinh(λt) (120)

⟨f2⟩ ≡ A2

∫ β
2

− β
2

sinh2(λt)dt (121)

= −A2

2

∫ β
2

− β
2

1− cosh(2λt)dt (122)

=⇒ A2 = −⟨f2⟩
β

2x

x− sinh(x)
. (123)

Here, in the last step, we used the analogous derivation
from Eq. 104 to Eq. 107, but with an extra minus sign.

Now, note that we have

ḟ(t)2

λ2
− f(t)2 = A2 (124)

=⇒ ⟨ḟ2⟩
λ2

− ⟨f2⟩ = A2β (125)

=⇒ ⟨ḟ2⟩ = −λ2
(
−A2β − ⟨f2⟩

)
(126)

= −x2

β2

(
⟨f2⟩ 2x

x− sinh(x)
− ⟨f2⟩

)
(127)

≥
(
min
x

hhyp(x)
) ⟨f2⟩

β2
. (128)

In the last step, we used the analogous calculation from
Eq. 116 to Eq. 118, with just an extra minus sign. Here,
hhyp(x) is defined as

hhyp(x) ≡ x2

(
sinh(x) + x

sinh(x)− x

)
. (129)

Note that minx hhyp(x) > 0, which can also be seen
from Figure 4. Eq. 128 is the desired result for the hy-
perbolic case.

B. PROPOSITION 2

Let f(x) be a continuous, differentiable and
square integrable function and let us define
h(x) ≡ d

dxf(x) such that

h(x) ≳ O(1). (130)

Now, let g(t) be another square integrable func-
tion such that

⟨f ◦ g⟩ ≡
∫ β

0

dtf(g(t)) (131)

⟨(f ◦ g)2⟩ ≡
∫ β

0

dtf(g(t))2 (132)

σ2
f◦g ≡ ⟨(f ◦ g)2⟩ − ⟨f ◦ g⟩2 . (133)

Then, we will prove that

σ2
f◦g ≳ σ2

g , (134)

where σ2
g is defined analogously (Eq. 77).

Proof: We first write

f(x1) = f(x0) +

∫ x1

x0

h(x′)dx′. (135)
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Now, from Eq. 130, if x1 > x0, then

∫ x1

x0

h(x′)dx′ ≳ x1 − x0 > 0 (136)

=⇒
∫ x0

x1

h(x′)dx′ ≲ x0 − x1 < 0 (137)

=⇒

∣∣∣∣∣
∫ b

a

h(x′)dx′

∣∣∣∣∣ ≳ |b− a| ∀a, b (138)

=⇒ |f(b)− f(a)| ≳ |b− a|. (139)

Then we have

|(f ◦ g)(t1)− (f ◦ g)(t2)| ≳ |g(t1)− g(t2)| ∀t1, t2.
(140)

Now, let t′ be the time at which we have (f ◦ g)(t′) =
⟨(f ◦ g)⟩. Then we have

σ2
f◦g =

∫ β

0

dt((f ◦ g)(t)− (f ◦ g)(t′))2 (141)

≳
∫ β

0

dt(g(t)− g(t′))2 (142)

≥
∫ β

0

dt(g(t)− ⟨g⟩)2 (143)

=⇒ σ2
f◦g ≳ σ2

g . (144)
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