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Abstract

Negative probabilities arise primarily in quantum theory and computing. Bartlett
provides a definition based on characteristic functions and extraordinary random
variables. As Bartlett observes, negative probabilities must always be combined
with positive probabilities to yield a valid probability distribution before any phys-
ical interpretation is admissible. Negative probabilities arise as mixing distribu-
tions of unobserved latent variables in Bayesian modeling. Our goal is to provide
a link with dual densities and the class of scale mixtures of normal distributions.
We provide an analysis of the classic half coin distribution and Feynman’s negative
probability examples. A number of examples of dual densities with negative mix-
ing measures including the linnik distribution, Wigner distribution and the stable
distribution are provided. Finally, we conclude with directions for future research.

Keywords: Bayes, Negative Probability, Half Coin, Quantum computing, Dual Den-
sities, Wigner, Feynman.

1 Introduction

This paper was motivated by numerous conversations with Nozer Singpurwalla in 2022.
Nozer had a keen interest in quantum probability, negative probabilities and the founda-
tions of statistical inference Lindley (1985). He had a great sense of interesting problems
that spanned many scientific fields and was fearless in his pursuit of such ideas.

Negative probabilities are a useful tool for explaining physical phenomena in quan-
tum mechanics. Many authors including Heisenberg (1931); Wigner (1932); Dirac (1942),
Feynman (1987) use negative probabilities in such a manner. They also arise in quan-
tum computing, see Polson et al. (2023). As Dirac noted, “negative energies and probabili-
ties should not be considered as nonsense. They are well-defined concepts mathematically, like a
negative of money.”

To illustrate our methodology, we show that the classic negative probability half coin
distribution is related to the Polya Gamma mixing distribution (Barndorff-Nielsen et al.,
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1982; Polson et al., 2013). The Linnik distribution (Devroye, 1990) can be expressed as a
Gaussian scale mixture but with negative mixing weights (Chu, 1973; West, 1987; Smith,
1981; Kingman, 1972). Mixtures of Exponential and Gaussian distributions have a long
history in Bayesian MCMC algorithms and hierarchical representations of distributions
Polson and Scott (2015) and lead to EM algorithms for posterior mode and maximum
likelihood inference. Our results build on this literature by extending the class of distri-
butions to those with negative mixing weights.

From another perspective, Gill (2014) provides a simple proof of the famous Bell’s in-
equality wing two applications of Hoeffding’s inequality. Gill also relates Bell’s theorem
to statistical causality, See also Tian and Pearl (2013) for probability bounds. Dirac (1942)
“negative energies and probabilities should not be considered as nonsense. They are
well-defined concepts mathematically, like a negative of money.” Hudson (1974) shows
that that for the Wigner quasi-probability density to be a true density is that the cor-
responding Schrödinger state function is the exponential of a quadratic polynomial (a
2-dim multivariate normal).

The rest of the paper is organized as follows. Section 2 revisits the definition of
negative probability and extraordinary random variables due to Bartlett. We consider
a archetypal example of half-coin distribution due to Szekely. Section 3 provides our
results on new characterizations of scale mixture of normals using dual densities (Good,
1995; Gneiting, 1997). Bernstein’s theorem fo completely monotone functions is used
to determine when the mixing weights are non-negative. Our work shows that many
results in quantum mechanics are also related to the notion of dual densities and scale
mixtures of normal. Section 4 considers a number of examples, including the Linnik
family, the stable family and Wigner distribution. Finally, Section 5 concludes with the
directions for future research.

1.1 Motivating Example

Feynman (1987) provides the following simple example of negative probabilities. Feyn-
man discusses the case with a conditional table for p(state = j | E) for j = (1, 2, 3) and
E = {A,B} with a negative entry

given A given B

1 0.3 -0.4
State 2 0.6 1.2

3 0.1 0.2

Table 1: Conditional Probabilities for Feynman’s Example.

Notice that p(state = 2|B) = 1.2 > 1 in order to offset the negative conditional
probability p(state = 1|A) = −0.4. The sum total of probabilities is still one, and we
have a valid probability distribution over the states.

Suppose that the underlying base rates are given by p(A) = 0.7, p(B) = 0.3. Now we
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calculate the observable marginal distributions.

p(state = 1) = p(state = 1 | A)p(A) + p(state = 1 | B)p(B) = 0.7 × 0.30.3 × 0.4 = 0.09.

Although p(state = 2 | B) = 1.2, is allowed to be greater than one,

p(state = 2) = 0.7 × 0.6 + 0.3× 1.2 = 0.78,

which is still a valid probability. Finally, we have

p(state = 3) = 0.7× 0.1 + 0.3.2 = 0.13.

We can see that have ordinary probabilities. The key point is that the law of total prob-
ability still holds even though the mixing weights, which are unobserved (latent) are
allowed to contain negative values.

2 Negative Probabilities

Negative probabilities arise as convolutions of probability measure. Imagine a random
variable represented as a convolution

Y = X + Z.

Here, Z can have an extraordinary probability distribution. X and Z are independent in
the usual statistical sense. We can think of Y as observed and Z as a hidden latent state
and X the state of nature.

In terms of generating functions, by independence,

GY (s) = E(sY ) = E(sX)E(sZ) = GX(s)GZ(s).

The following is a fundamental result in negative probability.

Fundamental theorem For every generalized g.f. f(z) of a signed probability distribu-
tion there exist two probability generating functions g and h of ordinary non-negative
distributions such that

f(z)g(z) = h(z).

The sum of independent random variables leads to a product if their generating func-
tions. Let L+

1 denote the space of integrable densities. Then,

f ∈ L+
1 , g ∈ L1,∃f s.t. f ⋆ g ∈ L+

1 ,

where the convolution

(f ⋆ g)(z) =

∫

f(z − x)g(x)dx

The law of total probability is convolution for random variables.
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Extraordinary Random Varaibles. Bartlett (1945) provides the following definition and
intuition definition of extraordinary random variables.

Let φX(t) = E(eitX ) denote the characteristic function of a non-negative variable X.
They are defined via their characteristic functions. In terms of Fourier transforms

(aka characteristic functions) we have

φY (t) = φX(t)φZ(t).

Given φY , φX , we would like to identify the mixing measure of the hidden variable Z .
Solving for φZ(t) we have,

φZ(t) =
φY (t)

φX(t)
= φY (t)φ

−1
X (t)

This has the same form, as the convolution product above!
Therefore, we write the characteristic function of Z in terms of a random variable

denoted by W .
φZ(t) = φY (t)φW (t), with φW (t) = φ−1

X (t),

However, the following identity holds

φ−1
X (t)φ−1

X (t) = 1 = E(eit0).

Hence, X +W
P
= 0.

Therefore, W will have an extra-ordinary probability distribution. Thats is will take
negative values in parts of its domain.

A related concept is that of a van Dantzig pair of functions f(s) and g(s) = 1/f(is)
are both characteristic functions. For applications, see Lukacs (1972) and Polson (2021).

2.1 Mixture Convolutions

One can view the law of total probability as a convolution theorem for random vari-
ables. Hence, a natural generalization of Feynman’s examples are mixture distributions
with negative weights. In this section we give a number of examples. The classic ex-
ample is the half coin. We provide a connection with the Polya-Gamma mixture model
Polson et al. (2014); Polson and Scott (2015).

Wigner (1932) shows that in quantum theory the joint density function P (x, p) of the
location and momentum of a particle cannot be non-negative everywhere as it is always
real and yet its integral over the whole space is zero. Hence written asa convolution
(aka Bayesian mixture model) the mixing weights can be negative. Feynman provides
the following concrete example.
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Half Coin The probability generating function (probability-generating function) is de-
fined by the formula f(z) =

∑∞
n=1 pnz

n. The pdf of a fair coin is

f(z) = 1

2
+ 1

2
z.

If we assume that
∑∞

n=1 pn = 1 and
∑

n |pn| < ∞ but drop the non-negativity of its
probabilities, we can define the half coin as having pdf

f 1

2

(z) =
√

1

2
+ 1

2
z =

1√
2
(1 +

1

2
s− 1

8
s2...)

According to the Binomial theorem

√

1

2
+ 1

2
z =

1√
2

∞
∑

n=0

(

1/2

n

)

zn,

where the coefficients are, with Cn the n-th Catalan number,

(

1/2

n

)

= (−1)n−1 2Cn−1

4n
and Cn =

1

n+ 1

(

2n

n

)

.

Pólya-Gamma The probability-generating function of the half-coin is related to that of
the Pólya-Gamma distribution. LetX ∼ PG(b, 0). By definition, the moment-generating
function is

E
{

e−tX
}

=
1

coshb(
√
t)

=
1

(e
√
t + e−

√
t)b

Letting s = e−t, yields p.g.f.

E(sX) =

(√
s+

1√
s

)−b
.

Barndorff-Nielsen et al. (1982) (section 3.6) gives the mixing density

f(u) =
∞
∑

k=0

(−2δ

k

)

(δ + k)

B(δ, δ)
e−

1

2
(δ+k)2u δ > 0.

Hence, we see the equivalence with the half-coin, where = −1/2 and δ = 2!

Bayes Rule for Negative Probabilities Suppose that the prior is a negative weight
mixture

p(θ) =

∫ ∞

0
e−θsg(s)ds
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Given a likelihood f(y|θ), then we have posterior

p(θ|y) = f(y|θ)p(θ)
m(y)

=
f(y|θ)
m(y)

∫ ∞

0
e−θsg(s)ds

=
1

m(y)

∫ ∞

0
e−θs

f(y|θ)
h(s)

g(s)h(s)ds

=
1

m(y)

∫ ∞

0
f⋆(y|s, θ)g⋆(s)ds

where g⋆(s) = g(s)h(s) is a signed measure, and f⋆ is the exponentially tilted probability
measure

f⋆(y|s, θ) = e−θsf(y|θ)
h(s)

.

Hence propagation by Bayes rule exists for negative probabilities.

3 Dual Densities

The appearance of negative probability arises mainly in quantum theory. Bartlett (1945)
provides a formal extension of Kolmogorov’s mathematical probability as follows. He
introduces extraordinary random variables through their characteristic functions. We re-
late this approach with the notion of dual densities. A number of illustrations within the
class of scale mixtures of normals are provided. In particular the Linnik and Cauchy dis-
tributions. As Bartlett observes, negative probabilities must always be combined with
positive ones to give an ordinary probability distribution before a physical interpreta-
tion is admissible. This can always be done as the fundamental theorem shows.

Mixture of Exponentials

1

π

∫ ∞

0
e−tu sin(u1/2)du =

1

2π1/2
1

t3/2
e−1/4t = ϕ1/2(t)

e−|t|1/2 =

∫ ∞

0
e−xtϕ1/2(t)dt.

Good (1995); Gneiting (1997) introduced the concept of a dual density. Given a den-
sity p(x), its dual density is given by its characteristic function

p̂(t) = E(eitX ) =

∫ ∞

−∞
eitxp(x)dx,

appropriately normalized. The characteristic function is simply the Fourier transform
(with sign reversal) of the probability density function.

The pair of dual densities (p, p̂) follow a Heisenberg principle principle, when one
learns something about p one has information about the other, but they both cannot be
observed at the same time.
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Scale Mixtures of Normals. The class of scale mixtures of normal looks like

p(X) =

∫ ∞

0
v−1φ(v−1X)p(v)dv,

see Andrews and Mallows (1974); Carlin et al. (1992); Carlin and Polson (1991).
An interesting class arises when p is a scale mixture of normals with bounded density

p(x) =

∫ ∞

0

1√
2πv

e−x
2/2vdF (v),

where F is a mixing measure defined on (0,∞).
Another way to write a scale mixture is X =

√
V Z , where Z ∼ N(0, 1). The Laplace

(a.k.a. double exponential) is a scale mixture of Cauchy.
Consider the characteristic function

φ(t) =

∫ ∞

0
e−vt

2/2dF (v).

It is the characteristic function of a normal

E(eitZ) =

∫ ∞

−∞
eitx

1√
2πv

e−x
2/2vdx = e−vt

2/2.

In the case when both p and φ are bounded and integrable

p(0) =

∫ ∞

0

1√
2πv

dF (v) <∞,

the dual density p̂ is proportional to φ and is given by

p̂(t) = p̂(0)φ(t).

The dual density is then a scale mixture of normal as well, with density

p̂(x) =

∫ ∞

0

1√
2πv

e−x
2/2vdF̂ (v),

where
1√
2πv

dF̂ (v) =
1

2πp(0)
dF (1/v), v > 0.

This follows for

p̂(x) = p̂(0)φ(x) =
1

2πp(0)

∫ ∞

0
e−vx

2/2dF (1) =
1

2πp(0)

∫ ∞

0
e−x

2/2vdF (1/v).

Suppose that p(x) =
∫∞
0 (2πv)−

1

2 exp(−x2/2v)dF (v) is a normal scale mixture. Then the
dual density is also a normal scale mixture.
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Then its dual characteristic function is given by

p̂(t) =

∫ ∞

−∞
exp(itx)

∫ ∞

0
(2πv)−

1

2 exp(−x2/2v)dF (v) =
∫ ∞

0
exp(−1

2
uω2)f(u)du

Therefore,

p̂(t) =

∫ ∞

0
(2πv)−

1

2 exp(−x2/2v)dG(v) where g(v) = u−
3

2 f(u−1)

See also Andrews and Mallows (1974); West (1987); Carlin and Polson (1991); Carlin et al.
(1992).

Given p(x), the mixing measure can then be obtained via an inversion of a Laplace
transform.

pX(x) =

∫ ∞

0

1

(2πv)1/2
e−x

2/2vdF (v),

ϕ(t) = E(eitX ) =

∫ ∞

0
e−vt

2/2dF (v).

Scale mixtures. p̂(t) := p̂(0)ϕ(t), so 2πp(0)p̂(0) = 1.
Gneiting (1997); Good (1995) show that if p and p̂ are normal scale mixtures,

σpσp̂ ≥ 1 ⇔ p, p̂ are normal

Can prove these identities by flopping between Fourier and Laplace transforms.
Some functions are invariant under this transform. For example, the characteristic

function of normal is again normal. We call the two densities dual if if each is propor-
tional to the characteristic function of the other. The normal is its own dual. The pair:
Cauchy-Laplace is another example.

1

2
e−|x| =

∫ ∞

−∞
eitx

1

π

1

1 + x2
dx.

This is a special case of the t-distribution being dual with the Bessel function Wishart and Bartlett
(1932); Good (1995).

A function f(x) is completely monotone if and only if it can be represented as a
Laplace transform of some distribution function F (s) as

f(x) =

∫ ∞

0
e−sxdF (s)

The exponential power is a Gaussian mixture for α ∈ (0, 2] given by

exp(−|t|α) =
∫ ∞

0
e−st

2/2f(s)ds

where f(s) can be identified as a positive α-stable r.v. with index α/2. when α = 2 we
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get the Cauchy/Laplace dual density pair.
Normal Scale Mixtures can be derived using the link between completely monotone

functions. Here p(
√
x) is completely monotone if (−1)k d

k

dxp(
√
x) ≥ 0 ∀k = 1, 2, 3, . . ..

Bernstein’s theorem states that p(x) is completely monotonic if and only if there is a
unique measure G on [0,∞) such that p(x) =

∫∞
0 e−xλdG(λ). and Bernstein functions

which include the class of scale mixtures of normals. We will see that there are two
representations

p(x) = exp (−φ(x)) =
√

2

π

∫ ∞

0

√
λ exp

(

−λx2
)

dG(λ) ⇐⇒ p(
√
x) completely monotone

Bernstein-Widder-Schoenberg theorem applied to p(x) = exp (−φ(x)).
Negative convolution arise when p(

√
x) is not completely monotone.

Wigner Distribution. Heisenberg (1931) uncertainty principle asserts a limit to the
precision with which position x and momentum p of a particle can be known simul-
taneously, namely

σxσp ≤ h/2

where h is Planck’s constant. Wigner (1932), exhibited a joint distribution function
f(x, p) for position and momentum however some of its values have to be negative
and he asserts that “this cannot really be interpreted as the simultaneous probability for
coordinates and momentum” but can be used in calculations as an auxiliary mixture
measure. For a unit vector, ψ, the Wigner distribution is defined as

fψ(x, p) =
1

2π

∫

ψ

(

x+ s
h

2

)

ψ⋆
(

x− s
h

2

)

eispds.

For a recent discussion on the Wigner distribution see Gurevich and Vovk (2020),
Wigner’s quasi-probability distribution, which can be used to make predictions about
quantum systems.

Feynman. Feynman provides a number of examples of physical system that involve
negative probabilities. A particle diffusing in 1-dim in a rod has probability P (x, t) of
being at x at time t and satisfies

∂

∂t
P (x, t) = − ∂2

∂x2
P (x, t)

Suppose that at x = 0 and x = π the rod has absorbers so that P (x, t) = 0 and let
P (x, o) = f(x). What is P (x, t) thereafter? The solution is given by

P (x, t) =

∞
∑

n−=1

pn sin(nx)e
−n2t

9



where

f(x) =
∞
∑

n=1

pn sin(nx) and pn =
2

π

∫

f(x) sin(nx)dx

A mixture with negative weights. Linnik distribution will provide an example of this.

Linnik Distribution. If we start with the Laplace transform identity for a Cauchy ran-
dom variables

1

1 + x2
=

∫ ∞

0
e−txt−

1

2 sin(t)dt,

and allow x → 1

2
x2, under the transformation, this becomes a scale mixture of normals

representation for the Linnik distribution

1

1 + x4
=

∫ ∞

0

√
te−

1

2
tx2t−1 sin(t/2)dt

If P (x) ∝ 1
1+x4 , h(σ) ∝ σ−2 sin(σ−2), we have

P (x) =

∫ ∞

0
σ−1ϕ(σ−1x)h(σ)dσ.

This result follows from the fact
∫ ∞

0

1

4 + x4
=
π

8
,

which can be calculated using identity

1

1 + x4
=

1

(x2 − 2x+ 2)(x2 + 2x+ 2)
.

Similarly, when we have scale mixtures of Gaussians (Chu, 1973; West, 1987; Carlin et al.,
1992),

∫ ∞

0
N(0, t−1C)W (t)dt =

1

1 + (xTC−1x)2

where the weights W (t) = t−n/2 sin( t2 ) can be negative, xT = (x1, x2, ..., xn).

Let n = 2, C =

(

1 0
0 1

)

, and we have the representation.

The Linnik family for 0 < α ≤ 2 has a scale mixture of normals is given by

ϕ(t) = E(eitX ) =
1

1 + |t|α , α ∈ (0, 2].

The mixing measure is given by

∫ ∞

0
e−vβ

e−|t|αvβ

Γ(1 + 1/β)
dv =

1

(1 + |t|α)1/β .
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α = 4, β = 1. mixture representation with positive probability. Linnik distribution can
have negative mixing weights (Devroye, 1990; Chu, 1973; West, 1987).

Stable Distribution. The general positive stable and exponential power are related via

P (y) = ke−|y|a = k

∫ ∞

0
eiytf(t)dt

(

f(t) =

∫ ∞

0
v−1ϕ(v−1t)g(v)dv

)

= k

∫ ∞

0
u−1g(u−1)u−1ϕ(u−1y)du

where u−1g(u−1) is the new mixing measure. See also West (1987) for full details.

4 Discussion

Negative probabilities correspond to extraordinary random variables. They arise in
many physical systems and quantum computing (Polson et al., 2023). They are related
to the notion of dual densities and representing densities s characteristic functions rather
than Laplace transforms (a.k.a. mixtures of exponentials). We provide a number of ex-
amples, including Linnik family of distributions. There are many avenues for future
research, in particular developing optimization algorithms. In particular, EM and MM
algorithms that apply Laplace transform.

Our goal is twofold. First, to show that Feynman’s approach is consistent with that
of Ramsey (1926), Lindley (1985), and Shimony (1955) who use betting rates to derive
the axioms of probability such as Bayes rule. Second, to take definition by Bartlett (1945)
of extraordinary random variables given by their generating functions and to provide
mixing distribution representations involving negative probabilities.
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