
Logical Error Rates for a [[4,2,2]]-encoded

Variational Quantum Eigensolver Ansatz ∗

Meenambika Gowrishankar1,3, Daniel Claudino2,3, Jerimiah Wright2 and

Travis S Humble1,3

1 Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
2 Quantum Information Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3 Quantum Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

E-mail: mgowrish@vols.utk.edu

Keywords : quantum error detection, variational quantum eigensolver

Abstract. Application benchmarks that run on noisy, intermediate-scale quantum (NISQ) computing

devices require techniques for mitigating errors to improve accuracy and precision. Quantum error

detection codes offer a framework by which to encode quantum computations and identify when

errors occur. However, the subsequent logical error rate depends on the encoded application circuit

as well as the underlying noise. Here, we quantify how the [[4,2,2]] quantum error detection code

improves the logical error rate, accuracy, and precision of an encoded variational quantum eigensolver

(VQE) application. We benchmark the performance of the encoded VQE for estimating the energy

of the hydrogen molecule with a chemical accuracy of 1.6 mHa while managing the trade-off between

probability of success of various post-selection methods. Using numerical simulation of the noisy mixed

state preparation, we find that the most aggressive post-selection strategies improve the accuracy and

precision of the encoded estimates even at the cost of increasing loss of samples.
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1. Introduction

Quantum computing hardware has made remarkable strides in improving the coherence

times of qubits and the fidelity of gates with error rates in state-of-the-art devices around

0.5− 0.01% per two-qubit gate [1–3]. Error rates required for implementing large scale

quantum computations are much lower at ∼10−9, which is extremely challenging to

achieve on hardware. Such error rates are made possible by the discovery of quantum

error correction (QEC) codes, which involve redundantly encoding logical qubits using a

larger number of physical qubits such that errors can be detected, decoded and corrected

during the computation [4–7]. The leading QEC codes that promise such error rates

at high physical gate error thresholds of 0.1% are the surface code and quantum Low-

Density Parity-Check (LDPC) codes [8, 9]. However, successfully implementing these

error correction codes on near-term devices for large scale quantum algorithms remains

an ongoing area of research [1, 10–15].

Quantum error detection (QED) codes, on the other hand, can be implemented on

current quantum computers. Unlike QEC, quantum error detection uses encoded data

qubits only to identify if an error occurred and does not require syndrome decoding

or feed-forward operations for its implementation. While QED does not enable fault

tolerant implementations, post-selection of the flagged measurement results can be used

to improve the accuracy of calculated outcomes. For example, the [[4,2,2]] QED code

uses 4 physical qubits to encode 2 logical qubits and detects at most one physical qubit

error [7].

QED codes have been studied extensively both theoretically and experimentally

[16–29]. Most experiments to date have focused on demonstrating that the QED codes

can successfully detect errors during state preparation [20,21,24,28], while others have

tested early fault tolerance on near-term devices [23, 25–27]. The [[4,2,2]] code and its

variant [[4,1,2]] code have been at the center of most of these studies. Several studies have

reported on improvements during state preparation, while others have demonstrated

the use for applications [3,30,31]. These encoded applications include using the [[4,2,2]]

QED code with the variational quantum eigensolver (VQE) algorithm and Grover’s

search algorithm, respectively [30,31]. The former demonstrated the use of the [[4,2,2]]

code to encode a two-qubit ansatz for molecular hydrogen for the VQE algorithm [30].

The study showed improvement in accuracy of the ground state expectation value of

the encoded hydrogen ansatz across the potential energy surface when compared to the

unencoded simulation on an IBM 5Q quantum computing device. The encoding uses

a circuit construction introduced in [22] that uses an ancilla and a destructive parity

measurement to construct state preparation circuits for certain specific input states using

the [[4,2,2]] error detection code such that the qubits are fault tolerantly protected.

In this work, we build upon the results in [30], by (i) studying the different post-

selection methods individually and in comparison with the unencoded ansatz, and

(ii) quantitatively evaluating the trade-off between the probability of success and the

accuracy of the estimated energy for each method. We perform our analysis using
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numerical simulations under a standard depolarizing noise model and report results for

a single internuclear distance. We estimate the energy expectation value of the ground

state of molecular hydrogen using the VQE algorithm with a [[4,2,2]] encoded ansatz

for each post-selection method and calculate the precision (variance and standard error

of the mean) of the estimate with increasing depolarizing noise.

Here, we use ‘chemical accuracy’ as a useful benchmark to evaluate error estimates

in applications of computational chemistry. Chemical accuracy is defined in practice

to be within 1.6mHa of the full configuration interaction (FCI) energy for the chosen

basis set and is necessary for making reliable predictions about the properties derived

from these estimates, such as atomization energies and reaction enthalpies [32]. Many

studies have reported energy estimates close to or within chemical accuracy for molecular

hydrogen using VQE [33–35]. We estimate the error rate at which chemical accuracy

is possible when using this encoding in comparison to the unencoded simulation in the

presence of single- and two-qubit gate depolarizing errors. Additionally, we present

an error analysis for each post-selection method using density-matrix simulations and

fidelity calculations to elucidate on the advantages and disadvantages of using this

specific circuit construction for the [[4,2,2]] error detection code.

2. VQE for Chemical Accuracy

This section presents an overview of the VQE algorithm for estimating the energy

of a molecular Hamiltonian with chemical accuracy. We then review how to apply

the encoding methods defined by the [[4,2,2]] code to prepare the underlying circuit

for creating the variational anstaz state before discusing methods to post-process the

detection outcomes.

2.1. Molecular Electronic Hamiltonian

The central problem of electronic structure theory is to find the ground state of a

molecule by finding the lowest eigenvalue of the electronic Hamiltonian. We start with

the molecular Hamiltonian in first quantized form:

Ĥmol = −
∑
i

∇2
Ri

2Mi

−
∑
i

∇2
ri

2mi

−
∑
i,j

Zi

|Ri − rj|
+
∑
i,j>i

ZiZj

|Ri −Rj|
+
∑
i,j>i

1

|ri − rj|
(1)

where Ri and ri are the positions of the ith nuclei and electron, respectively, Mi, mi

their respective masses and Zi the charge of the nuclei. Under the Born-Oppenheimer

approximation, the nuclei are treated as classical point charges due to the large difference

in mass between the nucleus and electron. This leads to an electronic Hamiltonian with

coefficients that are a function of the internuclear geometry, R and is represented in the

second quantized form as:

H(R) =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa

†
qaras (2)
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where a†p and aq are creation and annihilation operators and follow the cannonical

fermionic anti-commutation relations:

{a†p, aq} = δpq

{ap, aq} = 0
(3)

and hpq and hpqrs are one- and two-electron integrals classically computed as

hpq =

∫
dσφ∗

p(σ)

(
∇2

r

2
−
∑
i

Zi

|Ri − r|

)
φq(σ) (4)

and

hpqrs =

∫
dσ1dσ2

φ∗
p(σ1)φ

∗
q(σ2)φs(σ1)φr(σ2)

|r1 − r2|
(5)

where σ encodes the position and spin.

In the case study below, we estimate the ground state energy of the hydrogen

molecule using VQE. The Hamiltonian in the minimal STO-3G basis can be presented

in a two-qubit representation that considers only the spin singlet configuration [36]. In

this minimal basis, molecular orbitals |ψu⟩ and |ψg⟩ for the hydrogen molecule are given

as linear combinations of the respective atomic orbitals, leading to spin orbitals |Ψi⟩
each with spin α or β, as shown in 6 and 7, respectively [37,38].

|ψg⟩ = |ψ1⟩+ |ψ2⟩ (6a)

|ψu⟩ = |ψ1⟩ − |ψ2⟩ (6b)

|Ψ0⟩ = |ψg⟩|α⟩ (7a)

|Ψ1⟩ = |ψu⟩|α⟩ (7b)

|Ψ2⟩ = |ψg⟩|β⟩ (7c)

|Ψ3⟩ = |ψu⟩|β⟩ (7d)

Using a series of fermionic and spin transformations we arrive at the final Hamiltonian

shown in equation 8. Details of the transformations are presented in Appendix 7.1.

H(R) = g0I + g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 (8)

2.2. Variational Quantum Eigensolver

The VQE algorithm is a leading quantum-classical hybrid algorithm for electronic

structure calculations on near-term noisy intermediate scale quantum devices (NISQ)

and has been extensively studied for simulations of small quantum chemistry problems

[32, 35, 38–43]. The VQE algorithm is a method to estimate the minimal expectation

value of a Hermitian operator with respect to a variable pure quantum state [39]. The

method itself is based on the variational principle from quantum mechanics, which

asserts that only the lowest eigenstate, aka ground state, of a non-negative, hermitian
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operator minimizes the expectation value. Estimating the energy is then described by

the optimization

E(θ⋆) = min
θ

⟨ψ(θ)|H|ψ(θ)⟩ (9)

where |ψ(θ)⟩ = U(θ)|ψ(0)⟩ is a variable pure quantum state prepared by a unitary ansatz

operator U(θ) from the reference state |ψ(0)⟩. The parameter θ⋆ denotes the optimal

value obtained from minimizing the energy. While the quantum operator or ansatz

for preparing the quantum state can often be efficient relative to classical technique,

the number of iterations required to reach the minimum energy is not guaranteed by

the method and varies widely. Physically motivated ansatzes, such as ansatzes derived

from Unitary Coupled Cluster (UCC) theory, often scale unfavourably in the number

of gates with increasing system size while hardware efficient ansatzes (HWE) can suffer

from optimization problems due to “barren-plateaus” [32, 44, 45]. Improvement of the

performance of the VQE algorithm by finding strategies to address the unfavourable

scaling and classical optimization challenges is an active area of research [43,44,46–53].

When computing the electronic structure of molecules, the VQE reference state is

often represented by the Hartree-Fock solution to the electronic Hamiltonian or some

other mean-field approximation. In our encoding of the hydrogen molecule above,

the Hartree-Fock state corresponds to the |00⟩ state. In practice, the choice of the

underlying unitary ansatz and the optimization routine play a significant role in whether

the prepared quantum state approaches the true ground state of a molecule [54,55].

We consider an ansatz based on UCC theory which derives from the well known

coupled cluster methods in quantum chemistry [38,56,57]. To derive the UCC ansatz, we

start by replacing operators from classical coupled cluster theory with unitary excitation

operators. This results in an exponentiated sum of operators which can be approximated

as a product of exponentiated operators using Trotterization resulting in a unitary

coupled cluster operator [58–60]. The unitary operator approximated to the first Trotter

step (t = 1) is shown in 10.

U(θ) = eT (θ)−T (θ)† = e
∑

i θi(τi−τ†i )

≈ (
∏
i

e
θi
t
(τi−τ†i ))t

≈
∏
i

eθi(τi−τ†i )

(10)

T (θ) =
∑
k

TK(θ)

T1 =
∑

q∈occ,p∈virt

θpqa
†
paq

T2 =
∑

r>s∈occ,p>q∈virt

θpqrsa
†
pa

†
qaras

(11)

where Tk is the excitation operator manifold and θpq and θpqrs are singles and doubles

amplitudes, respectively.
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Considering only the contribution from T2 we arrive at the unitary coupled cluster

doubles (UCCD) ansatz shown in 12. The transformation leading to this operator is

presented in Appendix 7.2.

U(θ) = e−iθY0X1 (12)

The circuit decomposition of 12 involves the subcircuit for the e−iθZ0Z1 operator

surrounded by single qubit rotations to perform the transformation to e−iθY0X1 [61, 62].

Some of the single qubit rotations in the decomposition are redundant for the initial

Hartree-Fock input state, |00⟩, in our encoding, and can be removed. This results in the

two-qubit unencoded circuit shown in Figure 1, which prepares the final state, |χ(θ)⟩,
shown in 13.

q0 = |0〉 RY (θ)

q1 = |0〉

Figure 1. The unencoded two-qubit UCC single parameter VQE ansatz.

|χ(θ)⟩ = cos
θ

2
|00⟩+ sin

θ

2
|11⟩ (13)

We present results for the expectation value of the Hamiltonian at the internuclear

distance of 0.74Å shown in 14, where the coefficients are obtained from [34].

H = −0.349833 I− 0.388748 Z0 − 0.388748 Z1

+ 0.0111772 Z0Z1 + 0.181771 X0X1

(14)

The analytical energy expectation value and optimal parameter for this Hamiltonian

and ansatz are shown in 15.

θ∗ = −0.2297 rads (15a)

⟨χ(θ∗)|H|χ(θ∗)⟩ = −1.13712 Ha (15b)

2.3. [[4,2,2]] Quantum Error Detection Code

The [[4,2,2]] quantum error detection code, following the [[n, k, d]] convention, is a

distance d = 2 code that encodes k = 2 logical qubits using n = 4 physical qubits.

The basis states for the logical codespace of this encoding are shown in 16 and the

corresponding physical operations for each logical operation are described in Table 1.
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|00⟩ = 1√
2
(|0000⟩+ |1111⟩)

|10⟩ = 1√
2
(|0101⟩+ |1010⟩)

|01⟩ = 1√
2
(|0011⟩+ |1100⟩)

|11⟩ = 1√
2
(|0110⟩+ |1001⟩)

(16)

Basis Operations

Logical Basis Physical Basis

X1 ⊗ I2 X ⊗ I ⊗X ⊗ I

I1 ⊗X2 X ⊗X ⊗ I ⊗ I

Z1 ⊗ I2 Z ⊗ Z ⊗ I ⊗ I

I1 ⊗ Z2 Z ⊗ I ⊗ Z ⊗ I

H1 ⊗H2 H ⊗H ⊗H ⊗H

CNOT12 SWAP12

CNOT21 SWAP13

Table 1. Basis operations.

The code can detect at most one-single physical qubit bit flip and/or phase flip

error (Pauli X or Z error, respectively) that occurs during the encoding of the initial

state [7]. The circuit for the error detection or syndrome measurement for this encoding

is presented in Figure 2. Ancillas sX and sZ are used for error syndrome measurement

and detect bit flip and phase flip errors, respectively.

encoded [[4,2,2]] circuit

H H

H H

H H

H H

sX = |0〉

sZ = |0〉

Figure 2. Syndrome measurement circuit for the [[4,2,2]] error detection code.

Since all the basis states of this encoding have even parity (even number of 1s in

the physical basis), any single physical qubit bit flip error will take the state outside the

logical codespace and result in a state with odd parity. As a result, a single physical
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qubit bit flip error will lead to a measurement of sX = 1. If the state is rotated using

the Hadamard (H⊗4) operation before measurement, any single physical qubit phase flip

error will lead to a measurement of sZ = 1. Two physical qubit bit-flip errors take the

state to another logical state and will remain undetected by the ancillas. Two physical

qubit phase-flip errors can add a global phase to the state or leave the state effectively

unchanged.

Another way to extract the error syndrome is by measuring all the data qubits and

selecting measurements based on parity. Odd parity measurements indicate that a single

qubit bit-flip error has occurred and is akin to performing the stabilizer measurement

with ancilla sX in Figure 2. Similarly, odd parity of measurements made after rotating

the state by applying the Hadamard (H⊗4) operation indicate that a physical qubit

phase-flip error has occurred and is equivalent to an sZ = 1 measurement in Figure 2.

The advantage of this method over the stabilizer measurement is the reduction in

the number of two-qubit gates for syndrome detection. The disadvantage is that the

detection of errors requires a destructive measurement and only allows detection of one

of the two types of errors, a physical bit flip or phase flip error.

This alternate method can be coupled with an ancilla for additional error detection

during state preparation. This is applicable only to certain specific input logical states,

|00⟩, |0+⟩, |00⟩+ |11⟩ and can be used during the preparation of the Hartree-Fock initial

state, |00⟩, in this study [22]. The ancilla detects physical qubit bit-flip errors during

preparation of the input state while the parity check measurement described earlier

enables detection of single physical qubit bit or phase flip errors.

3. Simulated Encoding Methods

In this section, we present details on the methods to encode the VQE algorithm and

UCCD ansatz using the [[4,2,2]] code. We also review the methods used to simulate

and post-process results for the electronic Hamiltonian of molecular hydrogen in the

presence of circuit noise.

3.1. [[4,2,2]] Encoding of the UCC Ansatz

We transform the two-qubit Hamiltonian in 14 into the corresponding encoded, four

qubit Hamiltonian shown in 17 using the mapping in Table 1. The corresponding

[[4,2,2]] encoding of the parameterized UCC two-qubit ansatz shown for simulating the

hydrogen molecule is presented in Figure 3 [30]. The first block on the left, labeled

“STATE PREP”, represents the circuit to prepare the initial logical |00⟩ state of the

unencoded ansatz and can be prepared in a wide variety of ways [22, 23, 30]. The

second block labeled,“UCC Ansatz”, represents the execution of the UCC ansatz in the

[[4,2,2]] encoding [30]. The parameterized rotation gate in the ansatz is non-transversal

in this encoding and therefore, an ancilla, a2, is used to teleport the gate. The final

state following the action of the paramatrized unitary operator corresponding to the
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state prep ucc ansatz

a1 = |0〉

q0 = |0〉 H Rt = H/I

encoded [[4,2,2]] circuit

q1 = |0〉 Rt = H/I

q2 = |0〉 Rt = H/I

q3 = |0〉 Rt = H/I

a2 = |0〉 H RY (−θ)

Figure 3. The [[4,2,2]] encoded ansatz for the hydrogen molecule. The block labeled ’STATE PREP’

describes the circuit to prepare the initial state in the [[4,2,2]] encoding. The block labeled ’UCC ansatz’

describes the implementation of the UCC derived hydrogen VQE ansatz in the [[4,2,2]] encoding.

Rt = H/I indicates the basis of the state prior to measurement, in the X or computational basis,

respectively.

unencoded (|χ(θ)⟩) and encoded circuit (|ψenc(θ)⟩) is shown in 18.

Hphysical = g0I + g1Z0Z1 + g2Z0Z2 + g3Z1Z2 + g4X1X2 (17)

|χ(θ)⟩ = cos
θ

2
|00⟩+ sin

θ

2
|11⟩ (18a)

|ψenc(θ)⟩ =
1√
2
[(|0⟩a1 ⊗ (cos

θ

2
|00⟩q0−q3 + sin

θ

2
|11⟩q0−q3)⊗ |0⟩a2)

+ (|0⟩a1 ⊗ (cos
θ

2
|11⟩q0−q3 − sin

θ

2
|00⟩q0−q3)⊗ |1⟩a2))]

(18b)

The action of this non-transversal gate in the encoded circuit results in a uniform

superposition of equivalent states, each representing the unencoded final state, with

equal probability to be in a2 = |0⟩ or |1⟩, and with each minimizing the expectation

value at a different parameter. The optimal parameter, θ∗ = θ, at a2 = |0⟩, is shifted

by π to θ∗ = θ±π when a2 = |1⟩. For the purpose of calculating expectation values, we

only use outcomes with a2 = |0⟩ resulting in the final state shown in 19. This excludes

∼ 50% of the total number of outcomes measured, belonging to the subset with a2 = |1⟩,
from our calculations. The corresponding state for a2 = |1⟩ is shown in 20.

|ψa2=0
enc (θ)⟩ = (I⊗5 ⊗ |0⟩⟨0|a2)⊗ (|ψenc(θ)⟩)√

(⟨ψenc(θ)|0⟩⟨0|a2ψenc(θ)⟩)

= |0⟩a1 ⊗ (cos
θ

2
|00⟩q0−q3 + sin

θ

2
|11⟩q0−q3)⊗ |0⟩a2

(19)

|ψa2=1
enc (θ)⟩ = |0⟩a1 ⊗ (cos

θ

2
|11⟩q0−q3 − sin

θ

2
|00⟩q0−q3)⊗ |1⟩a2 (20)
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For expectation value calculations, since each Pauli term in the Hamiltonian in

17 is in a single basis, X or Z, we measure the final state of the encoded ansatz in

the computational basis and rotate the state using the Hadamard operation prior to

measurement for the “X0X1” term. This is shown in Figure 3 as Rt = H for the “X0X1”

Pauli term or Rt = I for terms in the computational basis, prior to measurement.

3.2. Numerical Model and Simulations

We use the XACC framework to run the numerical simulations of the VQE algorithm.

XACC is a software framework for the development of hardware-agnostic programs for

quantum-classical hybrid algorithms, and their implementation on near-term quantum

hardware [63, 64] . We use the IBM Aer simulator within XACC for numerically

simulating each ansatz and use brute force optimization by scanning 150 values of

parameter θ ∈ [−π, π].
We model gate noise with a depolarizing error channel given as

ξGj (ρ) = (1− p)ρ′ + p
∑
k

σk
j ρ

′σk
j (21)

where ρ′ = GρG†, G is any single-qubit gate in the circuit acting on qubit j in density

matrix ρ, σj ∈ {Xj, Yj, Zj}, and p is the noise parameter. Errors on a two-qubit gate

acting on qubits i and j are modeled as ξGi,j(ρ) = ξIi (ξ
G
j (ρ)) with I the identity. The noise

parameter for the two-qubit gate is an order of magnitude higher than the single-qubit

noise parameter as is typical in current devices. The errors resulting from this channel

are single qubit errors, Ej on qubit j or two qubit errors Ei ⊗Ej on qubits, i and j for

Ek ∈ {Xk, Yk, Zk, Ik}.
We calculate the energy expectation values for both the unencoded and encoded

simulations and for each post-selection method, using N = 2 × 106 shots, which we

determined by calculating the shot count required to estimate the energy within standard

error of the mean (SEM) of 0.5mHa for a noiseless simulation. The SEM, σ, is calculated

as:

σE(θ∗) =

√
var

N
(22)

where N is the number of shots and var is the variance of the calculation. The variance

is calculated as,

var =
∑
i

g2i (⟨P 2
i ⟩ − ⟨Pi⟩2)

=
∑
i

g2i (1− ⟨Pi⟩2)
(23)

where, Pi is the ith Pauli term of the Hamiltonian and gi is the coefficient of the ith Pauli

term. We analytically calculated the variance of the Hamiltonian to be 0.04700 Ha2 by
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using the expectation value of each Pauli term in 14. We found the number of shots

required to reach our target SEM of 0.5 mHa as shown in 24

N =
var

σ2
E(θ∗)

=
0.04700

0.00052

= 188000

(24)

and rounded up to result in N = 2× 106 shots.

3.2.1. Post-Selection Strategies We introduce and analyze several different post-

selection strategies. We post-select outcomes from the measurement bitstrings once

all qubits are measured. The expectation values of each Pauli term in the Hamiltonian

are estimated from the available, post-selected measurements. Measurement of ancilla,

a1 = 1 indicates a bit flip error has occurred on qubit q0. As a result, for post-selection

by ancilla a1 (PSA) measurement, we discard all measurements with a1 = 1.

Since measurements of the encoded qubits/data qubits with odd parity indicate

a single physical qubit bit or phase flip error, for post-selection by logical state parity

(PSP), we discard measurement bitstrings that have odd parity but include measurement

counts with both measurements of ancilla, a1 = 0 and a1 = 1. We also consider a post-

selection strategy labeled PSAP that combines both the PSA and PSP strategies. In

this post-selection method, we discard measurement outcomes that have odd parity or

ancilla, a1 = 1.

We also calculate the SEM for the energy estimated from each post-selection method

by modifying 22 to be:

σE(θ∗) =

√
var

n
(25)

where n is the number of samples retained after each post-selection method.

3.2.2. Probability of Success We report on the probability of success (η) for each post-

selection strategy. We define it as the fraction of samples that are retained after each

post-selection method.

η =
n

N
(26)

The SEM for the resulting binomial distribution for each post-selection method is

calculated as

ση =

√
(1− η)(η)

N
(27)

where n is the number of the samples after post-selection for each method, N is the

number of samples with a2 = 0.
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3.2.3. Logical Fidelity We calculate the logical fidelity of the prepared states as

generated by the noisy circuit simulations. We simulate the two-qubit UCCD ansatz

state for the hydrogen molecule and the corresponding [[4,2,2]] encoded circuit described

in Figure 1 and Figure 3, respectively. With the resulting final state for the encoded

circuit shown in 19 we use projection operators to assess the impact of each post-

selection technique using fidelity. We calculate the fidelity for the PSA method by using

operators, ΠA, to project states from the noisy state with ancilla, a1 = |0⟩ and identity

(I) for all other qubits. For the PSP strategy, we project states within the codespace,

i.e., within the states in 16, using operators ΠP . And we use the operator, ΠAP for

projecting states with a1 = |0⟩ and states within the codespace. The operators are

shown in 28 and presented in expanded form in Appendix 7.3.

ΠA = |0⟩⟨0|a1⊗|I0I1I2I3⟩⟨I0I1I2I3|⊗|0⟩⟨0|a2=0 (28a)

ΠP = Ia1 ⊗ (|00⟩⟨00|q0−q3+|01⟩⟨01|q0−q3

+ |10⟩⟨10|q0−q3+|11⟩⟨11|q0−q3)⊗ |0⟩⟨0|a2=0

(28b)

ΠAP = ΠA ⊗ ΠP (28c)

We calculate the logical fidelity of the states projected using operators ΠA,ΠP ,ΠAP ,

and the original encoded and unencoded states. We define the fidelity F between two

states ρ1 and ρ2 as

F (ρ1, ρ2) = (Tr
√√

ρ2ρ1
√
ρ2)

2 (29)

Here, we consider the case that ρ1 = |Ψ⟩⟨Ψ|, |Ψ⟩ is the expected ground state, i.e.,

the noiseless state, from the noise-free simulation and ρ2 is the representation of the

prepared, noisy unencoded, encoded or projected state. The fidelity of the projected

state, Fi, is given as:

Fi(ρ1, ρi) = (Tr
√√

ρiρ1
√
ρi)

2 (30)

where ρi =
ΠiρnoisyΠ

†
i

Tr(ΠiρnoisyΠ
†
i )

is the projected state, ρnoisy is the noisy encoded state, and

Πi ∈ {ΠA,ΠP ,ΠAP}. We also calculate the minimum expectation value of energy for

the state ρ as

E(θ∗) = Tr(Hρ(θ∗)) (31)

which represents an estimate in the limit of infinite samples of the measured state.

3.2.4. Logical Errors We define logical error (pϵ) for the encoded circuit in Figure 3 as

probability of any error that takes the target or ideal encoded logical state to a different

encoded logical state. We restrict the calculation to states with a2 = 0. Therefore the

logical error is the probability of measuring any state within the codespace shown in 16

other than the state |ψa2=0
enc (θ∗)⟩ shown in 19.
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We first calculate the probability to measure the ideal state, pideal, in the noisy

mixed state, ρnoisy, and the probability to measure any logical state, i.e., any state in

the codespace described in 16.

pideal = Tr(ρnoisyρideal) (32a)

plogical = Tr(ΠPρnoisy) (32b)

From these we find the probability of any error (pϵall) and probability of any non-logical

error (pϵNL
), which is any error, single- or multi-qubit, that takes the target or ideal

state, ρideal, outside the codespace described in 16.

pϵall = 1− Tr(ρnoisyρideal) (33a)

pϵNL
= 1− plogical (33b)

The probability of any logical error to occur, pϵL , is then obtained by subtracting the

probability of any non-logical error from the probability of any error as shown in 34.

pϵL = pϵall − pϵNL

= Tr(ρnoisyΠP )− Tr(ρnoisyρideal)
(34)

We additionally calculate the impact of PSA on the logical error by replacing ΠP

in 32b with ΠAP and find probability of logical error pϵA in this case as:

pϵA = Tr(ΠAPρnoisy)− Tr(ρnoisyρideal) (35)

3.3. Circuit Error Analysis

While the errors detected by the PSP method are straightforward, in that, the method

detects single physical qubit bit-flip or phase-flip error, the errors detected by the ancilla,

a1, in the PSA and PSAP methods are not as clear. We analyze the errors in this

circuit construction under the standard depolarizing error model we have considered to

elucidate on the errors discarded when the PSA or the PSAP method is used.

Errors under the depolarizing noise model we have considered include one- and two-

qubit gate errors of the form Ei on qubit qi and Ei ⊗ Ej on qubits qi, qj, respectively.

Additionally, CNOT gates generate two-qubit correlated errors such as a bit-flip error

on the control qubit will result in a bit-flip error in the target qubit. The effective error

(E
′

k) after a CNOT operation is applied on control qubit, i and target qubit j after an

error has occurred on one of the qubits can be represented as UijEk|qiqj⟩ = E
′

kUij|qiqj⟩
where Uij = CNOTij is the ideal operation and E

′

k = UijEkU
†
ij for k ∈ {i, j}. Multi-

qubit errors of the form E1 ⊗ E2 ⊗ E3 ⊗ E4 for Ek ∈ {X, Y, Z} may also arise from

concurrent one-qubit noise processes occurring on multiple qubits or from propagation

of error under the two-qubit error model.

During the [[4,2,2]] input state encoding, or the section labeled “STATE PREP”

in Figure 3 and shown explicitly in Figure 4, the ancilla qubit a1 is entangled with the
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a1 = |0〉

q0 = |0〉 H E E E Eeff

encoded [[4,2,2]] circuit

q1 = |0〉 E

q2 = |0〉 E

q3 = |0〉 E

Figure 4. Logical |00⟩ state preparation circuit for error analysis. Errors, E ∈ {X,Y, Z}, that can occur

in the input state preparation circuit, locations are representative. Ancilla a1 = 1 if Eeff ∈ {X,Y }.

data qubit q0. Any bit-flip error E0 ∈ {X0, Y0} that occurs on qubit q0, and effectively

remains a bit-flip error after the last two-qubit CNOT gate from control q0 to target

q3, labeled Eeff ∈ {X, Y } in Figure 4, will result in a measurement outcome for ancilla

a1 = 1 and indicate that an error has occurred. However, a similarly occurring phase-flip

error on q0 will not impact the ancilla, a1 and therefore, will remain undetected.

Since the “STATE PREP” section is dominated by two-qubit CNOT gates, there’s

a high likelihood of two-qubit errors occurring in that section. Additionally, these

errors may cascade into multi-qubit errors with each successive CNOT gate execution

as represented in Figure 4. As a result, the discarding of the errors by ancilla a1 while

effected by detection of bit-flip errors on q0, may inadvertently remove multi-qubit errors

as well. Construction of the circuit such that all the CNOT gates originate at q0 with q0
as the control ensures that many, if not most, two-qubit errors will impact q0. Entangling

the ancilla a1 to this qubit q0 enables the additional detection of errors that impact more

than a single qubit. Conversely, the errors that do not affect q0 in this “STATE PREP”

section will not be detected by a1 but the likelihood of such errors is low.

To verify whether the detection of error events by ancilla a1 indeed enables multi-

qubit error detection, we study the input logical state, |00⟩, prepared under the

depolarizing noise channel immediately after the disentangling CNOT on the ancilla,

a1, which is the circuit labeled “STATE PREP” in Figure 1 and shown explicitly in

Figure 4. We calculate the contribution towards improvement in fidelity of each post-

selection method at this initial stage, when errors detected by each method are for the

same final state, |00⟩, as opposed to the circuit with the UCC ansatz where the PSA

method is used to detect errors during initial input state preparation and PSP at the

end of the circuit. We run density matrix simulations of the circuit shown in Figure 4

for preparing the encoded logical |00⟩ state |ϕ⟩ shown in 36 with increasing depolarizing

noise and use operators to project states similar to those in 28. Since this circuit does

not include the ancilla a2, the projection operators differ slightly and are presented in

37. We calculate the fidelity corresponding to each post-selection method by projecting

states (i) with a1 = |0⟩, (ii) within the codespace, and (iii) both within the codespace

and with a1 = |0⟩, using projection operators, SA, SP , and SAP , respectively. We use
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30 to calculate fidelity, FSi
, of the projected states where, in this case, ρ1 = |ϕ⟩⟨ϕ| is

the noiseless state, ρi =
SiρnoisyS

†
i

Tr(SiρnoisyS
†
i )

for Si ∈ {SA, SP , SAP} are the projected states and

ρnoisy is the noisy encoded input state.

|ϕ⟩ = |a1⟩ ⊗ |00⟩

= |0⟩ ⊗ 1√
2
(|0000⟩+ |1111⟩)

(36)

SA = |0⟩⟨0|a1⊗|I0I1I2I3⟩⟨I0I1I2I3| (37a)

SP = Ia1 ⊗ (|00⟩⟨00|q0−q3+|01⟩⟨01|q0−q3

+ |10⟩⟨10|q0−q3+|11⟩⟨11|q0−q3)
(37b)

SAP = SA ⊗ SP (37c)

The key comparison to understand the contribution of ancilla, a1, is between the

fidelity FSP
and FSAP

of states projected by SP and SAP , respectively. Once the single

qubit bit-flip errors are projected out of the prepared logical |00⟩ state, using SP , any

improvement in fidelity due to projection by SAP is entirely due to the contribution of

ancilla a1 and due to detection of multi-qubit error events.

4. Results

The [[4,2,2]] encoded VQE circuit shown in Figure 3 and the unencoded circuit shown

in Figure 1 were simulated using the IBM ‘aer’ simulator with N = 2× 106 shots under

a standard depolarizing noise model. All qubits were measured and the measurement

counts were used to calculate expectation values of the Hamiltonian for the unencoded

circuit, and the encoded circuit before and after post-selection. We find the threshold

of depolarizing noise at which the energy estimates fall within the chemical accuracy

benchmark, present the change in energy estimates with increasing two-qubit gate noise

and calculate probability of success after each post-selection strategy. We simulated the

exact state for both the encoded and unencoded ansatzes using the IBM ‘aer’ density-

matrix simulator to calculate the logical fidelity, and in the case of the encoded ansatz,

the logical error as well. We also calculate the energy expectation values from the exact

state.

The energy expectation values, variance of the calculation and probability of success

at the noise parameter value at which the energy estimate reached chemical accuracy

(p = 0.09%) are presented in Table 2. The PSAP method reaches chemical accuracy

at the highest noise parameter value of 0.09% than all other methods. Without post-

selection, the energy of the encoded ansatz is much higher than the unencoded ansatz

and the exact energy of −1.13712 Ha. PSA improves the energy of the encoded ansatz

while still falling short of the unencoded ansatz by 0.2% and PSP leads to a lower
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energy than PSA and the unencoded ansatz. The combined method, PSAP, leads to

the highest improvement in the accuracy of the energy estimate and brings the energy

estimate within chemical accuracy of 1.6 mHa.

Energy (mHa) Variance (mHa) Prob. of Success (%)

Unencoded −1134.81± 0.52 5.38 100

Encoded No PS −1131.40± 0.72 5.10 100

PSA −1132.88± 0.71 4.99 99.644± 0.002

PSP −1134.87± 0.70 4.84 99.472± 0.002

PSAP −1135.89± 0.69 4.76 99.232± 0.003

Table 2. Comparing outcomes of the numerical simulations of the unencoded and [[4,2,2]] encoded

ansatzes with and without post-selection at 0.09% depolarizing noise parameter value and N = 2× 106

shots.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Noise Parameter (p)

1.138

1.137

1.136

1.135

1.134

1.133

1.132

En
er

gy
 (

H
a)

Exact Energy
Unencoded
PSA
PSP
PSAP

Figure 5. Estimated energy of post-selected outcomes and unencoded simulation compared against

the benchmark of chemical accuracy. Shaded region represents the region of chemical accuracy and is

set to ±1.6 mHa

The energy estimates from N = 2 × 106 shots at the lower end of the noise range

considered are compared against the benchmark of chemical accuracy in Figure 5 for all

post-selection methods. The trends are similar to those observed in Table 2. The PSAP

method is within chemical accuracy at noise parameters ≤ 0.09% followed closely by the

PSP method, which reaches chemical accuracy at ≤ 0.08% noise. The trend continues

even at larger noise values as shown in Figure 6. PSA improves the energy estimate over

encoded ansatz simulation with no post-selection. However, it results in higher energy
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than the unencoded ansatz. PSP results in lower energy than both the encoded ansatz

without post-selection and PSA. The results are also lower than the unencoded ansatz

below noise level of 4%. Combining the two post-selection methods, PSAP results in

the lowest energy and for all noise levels considered. Error bars in this plot of Figure 6

are too small to be visible and are in the range 0.06− 2.8 mHa.

We also present expectation value calculations using the exact density matrix for

all simulations with increasing two-qubit gate noise in Figure 6. Since calculations

using the exact density matrix represent estimates of the energy in the limit of infinite

shots, the energy estimate from the simulations with finite number of shots should agree

with the exact density matrix calculations within some standard deviation. They are in

agreement for all simulations except the calculations for the PSP and PSAP method. For

both methods, energy estimated from simulations with shots is higher than calculations

using the exact density matrix.

Figure 6. Energy expectation values calculated from numerical simulations of the unencoded and

[[4,2,2]] encoded ansatz without (No PS) and with post-selection methods, PSA, PSP and PSAP with

increasing two-qubit gate noise at 200000 shots using the IBM aer simulator and a standard depolarizing

noise model.

The consequence of post-selection is having fewer samples for calculating energy

expectation values. In all cases, including the noiseless case, since we are only

considering half of the samples from the uniform superposition of the final state due

to non-transversal rotation by ancilla a2, i.e., only samples with a2 = |0⟩, we start with

∼ 50% of the original number of shots prior to implementation of any post-selection

method due to detection of errors. We present the change in probability of success

after each post-selection method with increasing noise in Figure 7, and in Table 2, for
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a specific noise parameter value, normalized after selecting samples with a2 = |0⟩.

Figure 7. Probability of success of each post-selection method, PSA, PSP and PSAP of the [[4,2,2]]

encoded ansatz under a standard depolarizing model. PSAP X and Z Pauli term plots are representative

of the post-selection outcomes for circuits with and without the Hadamard rotation applied prior to

measurement on all the encoded qubits (q0 − q3) in Figure 3, respectively. Trends between the two

Pauli terms are similar for all post-selection methods.

For all post-selection methods, the probability of success decreases with increasing

noise indicating an increasing proportion of states with detected errors. This proportion

is also determined by the method of post-selection. Post-selection by ancilla, a1 = 0,

measurement, PSA, retains the highest proportion of samples. However, energy

expectation value calculations indicate that this does not lead to an improvement over

the unencoded ansatz. Post-selection by logical state parity, PSP, results in a lower

probability of success than PSA, while the highest proportion of samples are discarded

due to the combined post-selection method, PSAP. Standard error of the mean in the

figure are too small in magnitude to be visible but range from 0.01% (0.006% for 0.01%

noise) to 0.2%. There’s also a difference in the probability of success depending on the

Pauli term being measured as shown in Figure 7. Probability of success for X Pauli term

measurements are slightly lower than for Z Pauli term measurements due to additional

noise in the circuit from the Hadamard gates used to rotate the state prior to making

the measurement. The PSAP X and Z Pauli term plots are representative and apply

to all other post-selection methods.

The number of samples retained consequently impact the precision of the

calculation. Table 2 shows that there is a decrease in precision/ increase in standard

error of the mean of the energy estimate from the encoded simulations with and without
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post-selection compared to the unencoded simulation. However, the variance of the

calculation for the encoded post-selected calculations are lower than the unencoded

simulations and lowest for PSAP calculation, which results in the highest accuracy of

the energy estimate. The decrease in the SEM, therefore, is a result of considering only

half the samples with ancilla a2 = 0 measurement for the encoded ansatz which is not a

consideration for the unencoded ansatz, where the full N = 2×106 samples are included

in the SEM calculation.

We now present the logical fidelity of the the unencoded state, and the encoded

state, without and with projections Πi ∈ {ΠA,ΠP ,ΠAP} corresponding with post-

selection methods PSA, PSP and PSAP, respectively, with increasing two-qubit

depolarizing noise p in Figure 8. The logical fidelity decreases with increasing noise, and

changes with each post-selection strategy. The state fidelity of the unencoded ansatz,

Funenc, decreases with noise but is consistently better than the encoded state fidelity,

Fenc even after projecting states based on the ancilla measurement using projector ΠA,

as indicated by fidelity, FA. A drastic improvement in fidelity is observed for states

projected using projector ΠP . Not only is this fidelity, FP , higher than the fidelity, FA,

it outperforms the fidelity of the unencoded state, Funenc, up to a noise value of ∼ 2%.

Combining the two post-selection methods results in the best fidelity, FAP , for this

circuit and is better than Funenc for all noise parameters considered. Furthermore, overall

decrease in fidelity of all cases with increasing noise in spite of projecting states against

single- and multi-qubit errors is due to errors that go undetected in each projection,

such as logical errors, introduced by the UCC ansatz or by combination of errors from

state-preparation and UCC ansatz, that escaped detection by projection using ΠAP .

Both fidelity and accuracy of the energy estimates in the simulated encoded and

unencoded circuits are impacted by the errors introduced by the depolarizing error

model. In the encoded circuit, in particular, the single- and two-qubit gate errors in

the noise model manifest as logical, pϵL or non-logical errors (pϵNL
) in the final noisy

mixed state. We present the proportion of logical errors, pϵL , in the encoded circuit and

in the projected state with a1 = 0 (pϵA) in Figure 9 and also present the proportion of

all errors with increasing two-qubit depolarizing noise. While the errors increase with

increasing noise, the proportion of all errors that are logical is much smaller. Since

a logical error in this encoding requires an error event on a minimum of two qubits,

the small proportion of logical errors indicate that a large proportion of errors in the

encoded circuit are non-logical, single- and multi-qubit errors.

We additionally calculate the logical fidelity for the encoded input state preparation

circuit alone, shown in Figure 4 to study the contribution of ancilla, a1 in the PSA and

PSAP strategies to the improvement in accuracy of the energy estimate. We compare

the fidelity of the state projected by SP with SAP for the same final encoded, |00⟩, input
state. Improvement in fidelity, FSP

, is due to the removal of states with single qubit

bit-flip errors by projection operator SP . Combining the two methods using projector

SAP not only improves the fidelity over the fidelity FSP
for the state projected by SP ,

but also results in fidelity that’s nearly 1 at ≲ 5% noise.
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Figure 8. Fidelity of the states prepared by numerically simulating the respective unencoded state,

[[4,2,2]] encoded state and projected states corresponding to the post-selection methods, PSA, PSP and

PSAP, with increasing standard depolarizing noise, p.

Figure 9. Probability of Error, (pϵ) in the encoded circuit with increasing two-qubit depolarizing

noise. Plot labeled with a1 = 0 are errors in the state projected with a1 = 0
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Figure 10. State fidelity for the noisy logical input |00⟩ state preparation and the projected states

from the circuit labeled “State Prep” in Figure 3 and shown in Figure 4

5. Discussion

Error detection improves energy estimates over the unencoded ansatz when using post-

selection by logical state parity, PSP, by itself at low noise values, and in combination

with post-selection by ancilla, a1, measurement, PSAP, at least up to 10% noise.

The latter also results in energy estimates within chemical accuracy at a higher noise

threshold than the unencoded simulation. The magnitude of improvement in logical

fidelity, FP , of the state projected by ΠP , under the depolarizing noise model that we

have considered, indicates that single physical qubit errors are the most probable errors

and the leading cause of decrease in energy accuracy. Such single physical qubit errors

can also be caused by multi-qubit errors that effectively become single qubit errors.

The decrease in precision of the estimated energy calculated from post-selected

results of the simulation of the encoded ansatz compared to the unencoded ansatz is due

to consideration of only one half of the results from ancilla, a2, measurement as described

in the Methods section. Within the different post-selection methods, improvement in

precision is consistent with improvement in logical fidelity, indicating that in addition

to improvement in the accuracy of the energy estimate, post-selection also improves

the corresponding precision of the calculation. The improvement in precision in spite

of increasing loss of samples with increasing accuracy of the post-selection method is a

result of the improvement in variance of the calculation.

The deviation of the estimated energy using the the PSP and PSAP methods from

the corresponding energy expectation value calculation using the density matrix, occurs

due to the difference in order of operations between the two methods. In the latter, the
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states of interest are projected and the expectation value is calculated from these states.

In the former, the bitstrings are post-selected from the measurement of the final state

and then the expectation values are calculated from these post-selected bitstrings.

Post-selection strategies using the ancilla, a1, lead to improvement in accuracy of

the energy estimate due to detection of single and multi-qubit error events. Nearly unity

fidelity, FSAP
, for projecting states with logical state parity and a1 = 0 measurement

indicates that a1 detects nearly all multi-qubit error events that are left undetected

by projecting states with logical state parity alone. Additionally, the reduction in

probability of logical errors in the state projected for ancilla, a1 = 0 measurement,

further confirm the detection of errors other than single qubit errors by ancilla a1.

6. Conclusion

Post-selection based on detection of single qubit errors alone improves the accuracy of

the energy estimate at low noise levels. Combining this post-selection method with

post-selection using an ancilla for single and multi-qubit error detection during input

state preparation further improves the accuracy of the estimate at noise levels as high

as 10%. Constructing the input state-preparation circuit such that the control qubit for

all the two-qubit CNOT gates is the qubit, q0, which is entagled with the ancilla, a1,

makes the detection of multi-qubit errors possible.

In addition to improvement in accuracy, post-selection also improves the precision

of the calculation. Loss of precision compared to the unencoded ansatz simulation is

due to the superposition of states introduced by the ancilla used to execute the VQE

ansatz/sub-routine in the encoded state. Improvement in fidelity is limited by the errors,

single and multi-qubit, that effectively become or remain as multi-qubit errors because

they were either left undetected by the ancilla during input state preparation and/or

by the parity check after the VQE sub-routine.

We have demonstrated that post-selection methods lead to an energy estimate

within chemical accuracy at a higher threshold of noise than the unencoded simulation

for a small two-electron system. Ansatzes for larger systems will increase the qubit and

gate overhead, which will include an increase in rotation operations and potentially,

parameters for optimization. Since the [[4,2,2]] code is known to be the simplest quantum

error detection code, employing other error detection codes would also increase the

resource cost in terms of qubits and gates. Therefore, the noise threshold at which the

energy estimates reach chemical accuracy for larger systems will depend, at a minimum,

on the complexity of the application circuit, the code used for error detection and the

associated methods of post-selection.
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7. Appendix

7.1. Hamiltonian encoding

We start with the exact electronic Hamiltonian for molecular hydrogen in second

quantized form:

H(R) = h00a
†
0a0 + h22a

†
2a2 + h33a

†
3a3 + h11a

†
1a1

+ h2002a
†
2a

†
0a0a2 + h3113a

†
3a

†
1a1a3 + h2112a

†
2a

†
1a1a2

+ h0330a
†
0a

†
3a3a0 + (h2332 − h2323)a

†
2a

†
3a3a2

+ (h0110 − h0101)a
†
0a

†
1a1a0 + h2103(a

†
2a

†
1a0a3 + a†3a

†
0a1a2)

+ h2013(a
†
2a

†
0a1a3 + a†3a

†
1a0a2)

(38)

The possible states within the spin-singlet configuration in the fermionic basis for

the hydrogen molecule and the corresponding states in the two qubit basis are presented

in Table 3. The indices correspond with those of the molecular orbitals in 7.

|Ψ3Ψ2Ψ1Ψ0⟩ |q1q0⟩
|0101⟩ |00⟩
|0110⟩ |01⟩
|1001⟩ |10⟩
|1010⟩ |11⟩

Table 3. Mapping of fermionic basis to qubit basis for all possible states of the hydrogen molecule

with the spin-singlet configuration. Indices for the fermionic basis correspond with indices in 7 and

indices for the qubit basis correspond with the qubits used in the circuit construction of the unitary

operator.

We define the qubit excitation, de-excitation and number operators as in [37]

Q+ = |1⟩⟨0|= 1

2
(X − iY )

Q− = |0⟩⟨1|= 1

2
(X + iY )

N (0) = |0⟩⟨0|= 1

2
(I + Z)

N (1) = |1⟩⟨1|= 1

2
(I − Z)

(39)

where X, Y , and Z are the Pauli operators. These operators are used to construct the

reduced two-qubit Hamiltonian by using the mapping presented in Table 4.
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Operator Fermionic operators qubit operators Pauli operators for qubits

E10 |0110⟩⟨0101|+|1010⟩⟨1001| |01⟩⟨00|+|11⟩⟨10| 1
2
(X0 − iY0)

E32 |1001⟩⟨0101|+|1010⟩⟨0110| |10⟩⟨00|+|11⟩⟨01| 1
2
(X1 − iY1)

E00 |0101⟩⟨0101|+|1001⟩⟨1001| |00⟩⟨00|+|10⟩⟨10| 1
2
(I + Z0)

E11 |0110⟩⟨0110|+|1010⟩⟨1010| |01⟩⟨01|+|11⟩⟨11| 1
2
(I − Z0)

E22 |0101⟩⟨0101|+|0110⟩⟨0110| |00⟩⟨00|+|01⟩⟨01| 1
2
(I + Z1)

E33 |1001⟩⟨1001|+|1010⟩⟨1010| |10⟩⟨10|+|11⟩⟨11| 1
2
(I − Z1)

Table 4. Fermionic (de)excitation and number operators mapped to the corresponding qubit and

Pauli operators, where Epq represents the excitation and number operators when p ̸= q and p = q,

respectively. The Pauli operators are constructed using 39.

The electronic Hamiltonian is then reduced as

H =
∑
pq

hpqEpq +
1

2

∑
pqrs

hpqrsδqrEps − EprEqs (40)

where Epq = a†paq includes terms with p = q and are presented in Table 4. Using

these operators we proceed to transform the electronic Hamiltonian in 38 to a qubit



[[4,2,2]]-Encoded Variational Quantum Eigensolver 25

representation:

H = h00E00 + h22E22 + h33E33 + h11E11

+ h2002E22E00 + h3113E33E11 + h2112E22E11 + h0330E33E00

+ (h2332 − h2323)(E22 − E23E32) + (h0110 − h0101)(E00 − E01E10)

+ h2103(0− E23E10 + 0− E32E01) + h2013(0− E23E01 + 0− E32E10)

= h00(
1

2
(I + Z0)) + h22(

1

2
(I + Z1)) + h33(

1

2
(I − Z1)) + h11

1

2
(I − Z0)

+ h2002(
1

4
(I + Z1)(I + Z0)) + h3113(

1

4
(I − Z1)(I − Z0))

+ h2112(
1

4
(I + Z1)(I − Z0)) + h0330(

1

4
(I − Z1)(I + Z0))

+ (h2332 − h2323)(
1

2
(I + Z1)−

1

4
(X1 + iY1)(X1 − iY1))

+ (h0110 − h0101)(
1

2
(I + Z0)−

1

4
(X0 + iY0)(X0 − iY0))

+ h2103(−
1

4
(X1 + iY1)(X0 − iY0)−

1

4
(X1 − iY1)(X0 + iY0))

+ h2013(−
1

4
(X1 + iY1)(X0 + iY0)−

1

4
(X1 − iY1)(X0 − iY0))

= (h00 + h33 +
h2002
4

+
h3113
4

+
h2112
4

+
h0330
4

)I

+ (h00 − h11 +
1

4
(h2002 − h3113 − h2112 + h0330))Z0

+ (h22 − h33 +
1

4
(h2002 − h3113 + h2112 − h0330))Z1

+
1

4
(h2002 + h3113 − h2112 − h0330)Z1Z0 + 0 + 0

+ h2103(
1

2
(−X1X0 − Y1Y0)

+ h2013(
1

2
(−X1X0 + Y1Y0)

(41)

g0 = h00 + h33 +
h2002
4

+
h3113
4

+
h2112
4

+
h0330
4

g1 = h00 − h11 +
1

4
(h2002 − h3113 − h2112 + h0330)

g2 = h22 − h33 +
1

4
(h2002 − h3113 + h2112 − h0330)

g3 =
1

4
(h2002 + h3113 − h2112 − h0330)

g4 = −h2103

(42)

Additionally:

g1 = g2

h2013 = h2103

h2112 = h0330

(43)
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This leads to the final two qubit hamiltonian shown in 8.

7.2. Unitary Operator

To transform the fermionic unitary operator to a qubit representation specific to our

encoding we use qubit operators from 39. Considering only the doubles contribution in

10 and 11, we replace the fermionic operators in T2 with qubit operators using 39 as

shown in 44.

T2 =
∑

p>q∈occ.,r>s∈virt.

θpqrs(a
†
pa

†
qaras − asara

†
qa

†
p)

= θ2031(a
†
2a

†
0a3a1 − a†1a

†
3a0a2)

= θ2031(E10E32 − E23E01)

= θ2031
1

4
((X0 − iY0)(X1 − iY1))−

1

4
((X1 + iY1)(X0 + iY0))

= θ2031
1

2
(−iY0X1 − iX0Y1)

= iθ2031
1

2
(−Y0X1 − Y0X1Z0Z1)

(44)

where we have used YkZk = iXk, XkZk = −iYk, to factorize the operator in the

final step. Considering our reference state |00⟩, we arrive at the reduced UCC doubles

ansatz as shown in 45:

U(θ) = ei
θ
2
(−Y0X1)ei

θ
2
(−Y0X1Z0Z1)

= ei
θ
2
(−Y0X1)ei

θ
2
(−Y0X1)

= e−iθY0X1

(45)
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7.3. Projection operators expanded

ΠP = Ia1 ⊗ (|0000⟩⟨0000|+|0000⟩⟨1111|
+ |1111⟩⟨0000|+|1111⟩⟨1111|
+ |0011⟩⟨0011|+|0011⟩⟨1100|
+ |1100⟩⟨0011|+|1100⟩⟨1100|
+ |1010⟩⟨1010|+|1010⟩⟨0101|
+ |0101⟩⟨0101|+|0101⟩⟨0101|
+ |0110⟩⟨0110|+|0110⟩⟨1001|
+ |1001⟩⟨0110|+|1001⟩⟨1001|)⊗ |0⟩⟨0|a2

ΠAP = |0⟩⟨0|a1⊗(|0000⟩⟨0000|+|0000⟩⟨1111|
+ |1111⟩⟨0000|+|1111⟩⟨1111|
+ |0011⟩⟨0011|+|0011⟩⟨1100|
+ |1100⟩⟨0011|+|1100⟩⟨1100|
+ |1010⟩⟨1010|+|1010⟩⟨0101|
+ |0101⟩⟨0101|+|0101⟩⟨0101|
+ |0110⟩⟨0110|+|0110⟩⟨1001|
+ |1001⟩⟨0110|+|1001⟩⟨1001|)⊗ |0⟩⟨0|a2

(46)
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Peropadre B, Sawaya N P D, Sim S, Veis L and Aspuru-Guzik A 2019 Chemical Reviews 119

10856–10915 ISSN 0009-2665 publisher: American Chemical Society URL https://doi.org/

10.1021/acs.chemrev.8b00803

[33] Colless J I, Ramasesh V V, Dahlen D, Blok M S, McClean J R, Carter J, de Jong W A and

Siddiqi I 2018 Physical Review X 8 011021 ISSN 2160-3308 arXiv:1707.06408 [quant-ph] URL

http://arxiv.org/abs/1707.06408

[34] Colless J I, Ramasesh V V, Dahlen D, Blok M S, Kimchi-Schwartz M E, McClean J R, Carter J,

de Jong W A and Siddiqi I 2018 Physical Review X 8 011021

[35] O’Malley P, Babbush R, Kivlichan I, Romero J, McClean J, Barends R, Kelly J, Roushan P,

Tranter A, Ding N, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E,

Lucero E, Megrant A, Mutus J, Neeley M, Neill C, Quintana C, Sank D, Vainsencher A, Wenner

J, White T, Coveney P, Love P, Neven H, Aspuru-Guzik A and Martinis J 2016 Physical Review

X 6 031007 ISSN 2160-3308 URL https://link.aps.org/doi/10.1103/PhysRevX.6.031007

[36] Whitfield J D, Biamonte J and Aspuru-Guzik A 2011 Molecular Physics 109 735–750 ISSN

0026-8976, 1362-3028 arXiv:1001.3855 [physics, physics:quant-ph] URL http://arxiv.org/

abs/1001.3855

[37] Shee Y, Tsai P K, Hong C L, Cheng H C and Goan H S 2022 Physical Review Research 4 023154

ISSN 2643-1564 URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.023154

[38] Romero J, Babbush R, McClean J R, Hempel C, Love P J and Aspuru-Guzik A 2018 Quantum

Science and Technology 4 014008 ISSN 2058-9565 publisher: IOP Publishing URL https:

https://www.nature.com/articles/nature03350
https://doi.org/10.1007/s00453-007-9069-7
https://doi.org/10.1007/s00453-007-9069-7
https://www.nature.com/articles/ncomms4135
https://link.aps.org/doi/10.1103/PhysRevLett.119.180501
https://link.aps.org/doi/10.1103/PhysRevLett.119.180501
https://www.science.org/doi/full/10.1126/science.aat3996
https://www.science.org/doi/full/10.1126/science.aat3996
https://link.aps.org/doi/10.1103/PhysRevLett.128.110504
https://link.aps.org/doi/10.1103/PhysRevA.102.022427
https://link.aps.org/doi/10.1103/PhysRevA.102.022427
https://www.nature.com/articles/s41534-023-00794-6
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
http://arxiv.org/abs/1707.06408
https://link.aps.org/doi/10.1103/PhysRevX.6.031007
http://arxiv.org/abs/1001.3855
http://arxiv.org/abs/1001.3855
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023154
https://dx.doi.org/10.1088/2058-9565/aad3e4
https://dx.doi.org/10.1088/2058-9565/aad3e4


[[4,2,2]]-Encoded Variational Quantum Eigensolver 30

//dx.doi.org/10.1088/2058-9565/aad3e4

[39] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A and

O’Brien J L 2014 Nature Communications 5 4213 ISSN 2041-1723 number: 1 Publisher: Nature

Publishing Group URL https://www.nature.com/articles/ncomms5213

[40] Nam Y, Chen J S, Pisenti N C, Wright K, Delaney C, Maslov D, Brown K R, Allen S, Amini J M,

Apisdorf J, Beck K M, Blinov A, Chaplin V, Chmielewski M, Collins C, Debnath S, Hudek K M,

Ducore A M, Keesan M, Kreikemeier S M, Mizrahi J, Solomon P, Williams M, Wong-Campos

J D, Moehring D, Monroe C and Kim J 2020 npj Quantum Information 6 33 ISSN 2056-6387

URL https://doi.org/10.1038/s41534-020-0259-3

[41] Grimsley H R, Claudino D, Economou S E, Barnes E and Mayhall N J 2020 Journal of Chemical

Theory and Computation 16 1–6 ISSN 1549-9618 publisher: American Chemical Society URL

https://doi.org/10.1021/acs.jctc.9b01083
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