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Abstract—Quantum machine learning was recently applied to
various applications and leads to results that are comparable or,
in certain instances, superior to classical methods, in particular
when few training data is available. These results warrant a
more in-depth examination of when and why improvements can
be observed. A key component of quantum-enhanced methods is
the data encoding strategy used to embed the classical data into
quantum states. However, a clear consensus on the selection of a
fitting encoding strategy given a specific use-case has not yet been
reached. This work investigates how the data encoding impacts
the performance of a quantum-classical convolutional neural net-
work (QCCNN) on two medical imaging datasets. In the pursuit
of understanding why one encoding method outperforms another,
two directions are explored. Potential correlations between the
performance of the quantum-classical architecture and various
quantum metrics are first examined. Next, the Fourier series
decomposition of the quantum circuits is analyzed, as variational
quantum circuits generate Fourier-type sums. We find that while
quantum metrics offer limited insights into this problem, the
Fourier coefficients analysis appears to provide better clues to
understand the effects of data encoding on QCCNNs.

Index Terms—quantum machine learning, data encoding,
quantum convolutional neural networks, medical imaging

I. INTRODUCTION

Quantum convolutional neural networks (QCNNs) are a
promising architecture in the domain of image classification
that is theoretically shown to be beneficial in situations where
few training data points are available [1]. This makes them
particularly interesting for e.g. medical applications where data
availability is limited due to data collection and annotation
costs, as well as privacy and security concerns. While QCNNs
are originally designed to be fully implemented on quantum
computers [2], the currently available quantum hardware –
commonly referred to as Noisy Intermediate-Scale Quan-
tum (NISQ) computers – are not yet up to the task. More
technological development is required in order to implement
robust fully-quantum solutions, such as an increased number
of qubits, reduced error rates and improved coherence times.

A more NISQ-friendly approach to QCNNs is achieved
by running a hybrid quantum-classical version, where one or
several chosen components of the classical convolution neural
network (CNN) architecture are replaced by a quantum variant.
In the classical case, a CNN typically comprises convolutional
layers responsible for extracting characteristic features from

images, followed by fully connected layers employed for the
classification. In the quantum-classical case, the convolutional
layers stand out as promising candidates for their mapping
onto a NISQ quantum computer, as they handle data sequen-
tially in smaller segments, in contrast to the linear layers
that process all features simultaneously. In that scenario, the
convolutional layer is replaced by a variational quantum circuit
(VQC) containing trainable operations, while the remainder
of the architecture remains classical. The optimization is then
performed on a classical computer using a classical optimizer.

In order to process classical data with a quantum circuit, a
crucial step is the data encoding, as it defines the feature space
the quantum circuit is able to generate ([3], [4]). The choice
of a suitable encoding strategy for a given dataset is therefore
a non-trivial endeavour, with literature displaying ongoing
efforts to better understand its impact on the performance
of the entire algorithm [5]. Further techniques related to
data encoding, such as data-reuploading, have demonstrated
the potential to enhance performance significantly [6]. In
this approach, the encoding scheme is repeated between the
different variational layers.

In this work, we evaluate the performance on two medical
imaging datasets of QCCNNs with four different encoding
strategies, namely the angle encoding around the X- and
Y-axis, the higher-order, and the amplitude encoding. The
studied datasets include 2D ultrasound images of the breast for
identifying malignant lesions, alongside abdominal computed
tomography (CT) scans for conducting multi-class classifica-
tion of body organs. Specifically, we compare the performance
of the selected data encoding strategies when they are re-
uploaded up to five times. We then strive to understand
the differences in performances by employing two distinct
approaches: in the first approach, we use quantum metrics
proposed in literature to quantify the power of quantum
neural networks. In the second approach, we apply the Fourier
formalism to the outputs generated by our quantum circuits.
The motivation behind pursuing the latter arises from the
observation that outputs generated by variational quantum
circuits can be expressed in terms of Fourier series [7].

Our contributions are thus as follows:
• We analyze the effect of four different data encodings

on the performance of a quantum-classical convolutional
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neural network (QCCNN) for binary and multi-class
classifications of ultrasound and CT medical images. We
additionally investigate the impact of input scaling and
data-reuploading on the results.

• We analyze the performance of all architectures in the
light of 3 relevant quantum metrics, namely the express-
ibility, the entanglement capability and the normalized
effective dimension to find possible correlations.

• We extend this analysis by applying the Fourier formal-
ism on the outputs produced by the quantum circuits.

The paper is structured as follows. We present the related
work in section II. The background information relevant to the
designed QCCNNs and their encodings, the data-reuploading
scheme, the three quantum metrics and the Fourier series
representation of quantum circuits is introduced in section III.
We present the datasets used, the performances of the QCC-
NNs and their potential correlations with the defined quantum
metrics and Fourier coefficients in the results and discussion
section IV. We conclude in section V.

II. RELATED WORK

A. Empirical studies on the performance of QCCNNs

Fully quantum QCNNs have been studied in several works
([2], [8], [9], [10], [11], [12]). However, with the current
limitations posed by NISQ hardware, it is of interest to move
only specific components of the architecture to the quantum
computer, resulting in a hybrid quantum-classical architecture.
The convolutional layer in the classical CNN is substituted
with either an untrainable or trainable quantum convolutional
layer in ([13], [5], [14], [15], [16]), where good performance
is shown on the MNIST dataset in ([13], [5]). [5] particularly
focuses on the impact of the encoding scheme and filter size
of the quantum convolution, showing that some architectures
perform better than others. Building upon this, our work
in [15] and [16] introduces diverse VQC architectures with
varied encoding schemes across multiple medical datasets. We
notably show that the choice of ansatz significantly impacts
the performance of the algorithm, and start to examine some
theoretical clues to elucidate why this is the case.

B. Performance analysis with theoretical clues

Different metrics have been proposed in literature to quan-
tify certain properties of quantum circuits, such as the express-
ibility, the entanglement capability and the effective dimension
([17], [18]). Work to link these properties to the performance
of the VQC has not yet shown conclusive correlation. In
[19], the authors study the influence of the chosen ansatz on
the prediction quality and speed of convergence of a hybrid
quantum reinforcement learning algorithm. We studied in [16]
the link between various quantum pooling strategies to reduce
the dimension of the data and the effective dimension of the
circuit, again without finding a correlation between the two.
This still raises the question as to whether these metrics might
be relevant for choosing a good embedding strategy.

Alternatively, it is possible to look at the problem from a
different angle: previous work in ([7], [20]) shows that QML

S(X) W (θ)

|0⟩

U(f ∗ xi)

RX(θ0)

|0⟩ RX(θ1)

|0⟩ RX(θ2)
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Fig. 1: The circuit structure used in this study.

models that use the variational approach generate Fourier-type
sums. From a signal processing point of view, this means
that the outputs of quantum circuits can be decomposed into
their constituting sine and cosine waves, each with a weighted
contribution to the overall output. In [21], the authors analyze
this formalism and its implications for different types of
circuit architectures commonly used in QML for both one-
dimensional and multi-dimensional inputs, while using a vary-
ing number of data encoding and ansatz layers. The authors
of [22] compare the Fourier coefficient distributions for a 2-
qubit circuit and a similar one with an additional ancillary
qubit, revealing distinct distributions. This suggests that they
learn different function classes despite only varying in qubit
count. They also observe that measurements on different qubits
in the 2-qubit circuit yield varying coefficient distributions.

To the best of our knowledge, our study represents the first
attempt to analyze the performance of a QCCNN using diverse
encoding strategies, considering both the quantum metrics
mentioned earlier and Fourier decomposition.

III. BACKGROUND

In this section, we provide the relevant information for
the construction of the QCCNNs, specifically addressing the
encodings employed and the data re-uploading strategy. Fol-
lowing that, we define the quantum metrics used in this work,
and describe the Fourier representation of quantum circuits.

A. QCCNNs and encodings within this work

We build on the study conducted in [15] and construct a
QCCNN by replacing the first classical convolutional layer
of a CNN by a VQC, while keeping the remainder of the
architecture unaltered. All qubits are then measured and their
outcomes are mapped onto separate output channels. A classi-
cal fully-connected layer performs the final classification using
the sigmoid activation function.

Fig. 1 shows the general structure of this circuit. The
VQCs in this study are designed as follows: we first define
an encoding strategy S(x), then we select an ansatz W (θ)
to remain unchanged for every encoding tested, as we are



interested in observing the effect of the data embedding. We
choose a basic entangling layer as it combines simplicity with
high performance ([15], [16]). In this ansatz, each qubit i
is rotated by a trainable angle θi around the X-axis before
applying a sequence of CNOT entangling gates on adjacent
qubit pairs. Note that for a 2x2 filter size in the convolutional
layer, the number of qubits required to construct such a filter
may vary depending on the choice of encoding, e.g. 4 qubits
for the angle and higher-order encoding, versus 2 for the
amplitude encoding. For all encoding strategies used in this
study, a rescaling factor f is multiplied with the input data.

The following encoding techniques are explored:
1) Angle Encoding: This embedding method is popular

particularly due to its simple implementation and typ-
ically satisfactory performance [15]. For an N-entry
classical data vector x = (x1, .., xN ) we can encode
the data as

|Ψ⟩ =
N⊗
i=1

cos(xi) |0⟩+ sin(xi) |1⟩ (1)

and we can write the state preparation unitary as
U =

⊗N
i=1 exp

(
−iϕσj

2

)
with σj the Pauli matrices,

generators of the Pauli gates. While the execution of
this encoding is relatively straightforward, there is no
efficiency benefit in the number of required qubits, with
an N-dimensional input requiring an N-qubit system. In
this work, we use two possible angle encoding schemes,
namely with an RX gate or an RY gate, corresponding
to σX and σY respectively.

2) Higher-Order Encoding: First proposed in [4], this
encoding was initially designed for Support Vector
Machine (SVM) classifiers where it was shown that a
quantum advantage can only be achieved if the encoding
feature map is classically hard to simulate. The feature
map unitary as used in [18] is given by

|Ψ⟩ = H⊗n exp

i ∑
S⊆[n]

ϕS(x⃗)
∏
i∈S

Zi

 . (2)

A Hadamard gate is first applied on each qubit, followed
by a first-order angle encoding using RZ(ϕ1(xi)) gates
with ϕ1(xi) = f ∗ xi and a pairwise second-order
operation RZZ(ϕ2(xi, xj)) with ϕ2(xi, xj) = f ∗ xixj .

3) Amplitude Encoding: Classical data can be represented
as amplitudes of a quantum state. For a classical data
vector x = (x1, .., xN ), this can be written as

|Ψ⟩ =
N∑
i=1

xi |i⟩ (3)

where |Ψ⟩ is the resulting quantum state, xi are the
amplitudes containing the classical information such that∑N

i=1 |xi|2 = 1, and |i⟩ are the quantum states for each
vector component, with i being the index written in

binary. An N-dimensional amplitude encoded classical
vector requires log2(N) qubits. This implies that we
only require 2 qubits to encode an input of size 4.
This reduction in the required number of qubits is the
main advantage of amplitude encoding. To prepare the
amplitudes, a quantum state preparation is used. In this
work, we use the Möttönen state preparation [23] as
implemented in pennylane [24].

B. Data-reuploading

Unlike classical neural networks, which are able to pro-
cess the original data multiple times in their hidden layers,
quantum neural networks are limited by the no-cloning the-
orem. To circumvent this limitation, [6] propose a single-
qubit universal classifier consisting of an encoding and a
trainable unit through which the data is repeatedly passed.
For a general single-qubit rotation U(θ, ϕ, δ) which we con-
sider as the processing unit, and an arbitrary data encod-
ing rotation gate U(x), we can define a single layer as
L(x, θ, ϕ, δ) = U(θ, ϕ, δ) U(x). This constitutes the building
block of the classifier and can be applied repeatedly. The
circuit unitary for N layers can be written as U(x, θ, ϕ, δ) =
L1(x1, θ1, ϕ1, δ1) .. L1(xN , θN , ϕN , δN ). The principle can
also be extended to a multi-qubit classifier which enables
entangling operations between qubits, improving the perfor-
mance and lowering the number of required layers.

C. Quantum Metrics

Multiple metrics to describe the properties of quantum cir-
cuits were proposed in literature. In this work, we investigate
three quantum metrics to identify their possible correlations
with the choice of an encoding strategy.

1) Expressibility [17]: The expressibility quantifies the
ability of a circuit to explore the Hilbert space. For a
single qubit, a highly expressible VQC is able to explore
the entire Bloch Sphere uniformly. The degree of uni-
formity is measured by randomly sampling parameters
θ of the VQC and taking the statistical distance measure
Kullback–Leibler-divergence relative to the ensemble of
Haar random states. If a circuit is highly expressible,
this distance is low. This is given by

Expr = DKL

(
P̂VQC(F ;θ) ∥PHaar(F )

)
(4)

where the fidelities F are obtained by repeating the
procedure of uniformly sampling doublets of parameter
vectors and computing their corresponding state overlap.
P̂VQC(F ; θ) is the estimated probability distribution
of fidelities obtained by sampling from the VQC
and PHaar(F ) is known and obtained analytically by
PHaar(F ) = (N − 1)(1− F )N−2 [25].

2) Entanglement capability [17]: This metric is given by
the Meyer-Wallach (MW) entanglement measure and
quantifies the capacity of a VQC to generate entangled
states. It would be equal to zero for a circuit that
generates product states (no entanglement) and one in



the case of an output consisting only of maximally
entangled states. The MW measure is described by

Q(|ψ⟩) ≡ 4

N

N∑
j=1

D (ιj(0)|ψ⟩, ιj(1)|ψ⟩) (5)

where N is the number of qubits in the system and
ιj(b) is a linear mapping that acts on the state in the
computational basis (b ∈ {0, 1}) with the j-th qubit
absent using the Kronecker delta as

ιj(b) |b1 . . . bN ⟩ = δbbj |b1 . . . bj−1bj+1 . . . bN ⟩ . (6)

The generalized distance D is computed as

D(|u⟩, |v⟩) = 1

2

∑
i,j

|uivj − ujvi|2 . (7)

The final numerical value used to estimate the entangle-
ment capacity is computed using the following equation

Ent =
1

|S|
∑
θi⊂S

Q (|ψθi
⟩) . (8)

where the average of the MW measure is taken over
the set S of sampled circuit parameter vectors θi.

3) Effective Dimension (ED) [18]: The ED is designed
to evaluate the information capacity of a statistical
model. When considering ML models as such, the actual
dimension they explore may be a subset of the model
space. The metric characterizing this space is given by
the Fisher Information Matrix (FIM). A higher effective
dimension can be interpreted as corresponding to a
model exploring more of the space of all its possible
functions. We define a d-dimensional real Riemannian
parameter space Θ for our statistical model MΘ with
parameters θ ∈ Θ ⊂ [−1, 1]d and consider input-output
data pairs (x, y) with x ∈ X in and y ∈ Yout which are
related for a fixed choice of parameter θ as p(x, y; θ) =
p(y|x; θ)p(x). One can capture the amount of informa-
tion acquired from such parameterization using the FIM
F (θ) ∈ Rd×d, described by

F (θ) = E
[
∂

∂θ
log p(x, y; θ)

∂

∂θ
log p(x, y; θ)⊤

]
(9)

Geometrically, the FIM captures the curvature of the log-
likelihood function and it is a gauge for the sensitivity
of the model to movements in the parameter space. A
high FIM reflects a steeper curvature and thus greater
information content. With the help of the FIM as a
metric for the parameter space Θ, we can now define
the effective dimension as a bounded capacity measure
for a number n > 1 of data samples as

deff (MΘ) :=

2 log

(
1
VΘ

∫
⊖

√
det

(
idd +

γn
2π logn F̂ (θ)

)
dθ

)
log

(
γn

2π logn

)
(10)

In order to obtain a quantity that can be used to
compare the different models, the effective dimen-
sion is then divided by the number of parameters
and is referred to as normalized effective dimension
(NED).

D. Quantum circuits and Fourier series

One way to understand QML models constructed with
VQCs is through a Fourier series representation [7]. This
is especially relevant for models that use data-reuploading
schemes with encoding gates of the form S(x) = eixH , where
x ∈ RM is the input and H is a general Hamiltonian for an
arbitrary dimension M ∈ N of the input data. The function
describing the model can thus be written as

fθ(x) =
∑
w∈Ω

cw(θ)eiwx, (11)

such that x is a M-dimensional input vector, w is a M-
dimensional frequency vector in the Ω ⊂ RN frequency
spectrum determined by the eigenvalues of the data encoding
Hamiltonians, wx is a scalar product and the coefficients
cw ∈ C are determined by the remainder of the circuit and
satisfy the condition cw = c∗−w.

In order to extend the frequency spectrum of a quantum
circuit and therefore to increase the degree of the Fourier
series it generates, one may increase the number of qubits
in the circuit, or the number of reuploading layers. In the
ideal case, a chosen VQC architecture should be able to
generate a rich frequency spectrum and adapt the coefficients
of the series in such a way that it can approximate the target
function well. However, not all architectures are able to contain
enough adaptable degrees of freedom to appropriately adjust
the coefficients of the series they generate. A detailed study of
how the choice of the model architecture affects the number
of parameters can be found in [21]. In this work, we are solely
focused on what the authors refer to as a Parallel Ansatz (PA),
where each data feature is encoded in a different qubit with
a single-qubit gate. Following the notations used in [21], the
number of parameters that the PA contains is given by

NPA
p = (d2M − 1)(L+ 1) (12)

where d is the local dimension given by d = 2n for a qubit
system in which n is the dimensionality of the local space and
depends on the encoding, M is the number of qubits, and L
is the number of layers. The degrees of freedom for a general
Fourier series of degree D is given by

ν = (2D + 1)M (13)

with D = (d− 1)L. The condition NPA
p ≥ ν is to be met for

the circuit to adapt all coefficients in the series.

IV. RESULTS AND DISCUSSION

We proceed to present the performances of our developed
QCCNNs on two medical datasets, considering different en-
codings and varied scalings of the inputs. Subsequently, we
analyze these performances considering three quantum metrics



typically employed in literature, and using the Fourier formal-
ism, which describes the function class that quantum circuits
give rise to. All experiments in this work were performed
in simulation using the PennyLane software library [24] in
conjunction with PyTorch [26] in a noiseless environment.

A. Datasets

In this study, we work with relatively small datasets. This
requirement comes both from the application side, as medical
imaging datasets usually are in the order of 100 to 1000
images, and from the method side, since quantum variants
of CNNs were shown to generalize well even when little
training data is available. We select two datasets from the the
MedMNIST benchmark ([27], [28]).

The first dataset is BreastMNIST, which contains 546 train-
ing and 78 validation images of 2D ultrasounds of the breast in
a 28x28 pixels resolution. The images display breast tissues
that are either normal, malignant or benign. The task is to
perform binary classification, where the benign and normal
lesions are combined into one class.

Our second dataset is OrganAMNIST, which consists of
cropped and resized images to a 28x28 resolution based on
3D abdomen CT scans from the Liver Tumor Segmentation
Benchmark (LiTS) [29]. A subset of 1,000 training and 600
validation images is taken for this study. The task is to perform
multi-class classification of 11 organs.

B. Performances of the QCCNNs

1) Performance with varying input scalings: The scaling
of the classical input data before encoding is not a trivial
choice and impacts both the function expressed by the circuit
[3] and the circuit’s coverage of the Hilbert space. In this
work, the pixel values of the images are normalized between
-1 and 1 before a scaling factor f is applied. Due to the
excessively long training times, the study of the performance
of the QCCNN across different input scaling factors is only
conducted on our bigger dataset – OrganAMNIST – utilizing
one encoding method – the higher-order encoding – due to its
superior performance in prior research [15].

Fig. 2 shows the evolution of the best training and best
validation accuracies achieved within 20 training epochs for
scaling factors in the encoder ranging from f = π/4 to
f = 4π. Note that at π and given the normalization, the
rotation gates already cover the full circle. However, for
experimental purposes, we extend to 4π. This figure clearly
shows that the validation accuracy drops dramatically as the
scaling factor grows. While this could be expected for values
above π, this result is surprising, as one would expect the
performance to be best when the coverage of the Hilbert
space of the circuit is high. Further interpretation on this
phenomenon will be provided in section IV-C. Interestingly,
a good training accuracy can nevertheless be obtained with
all tested scaling factors. In the rest of this paper, a scaling
factor of π/4 was selected for all encodings to maximize the
obtained accuracies.
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Fig. 2: Comparison of the performance of a hybrid QCCNN
for different scaling factors on OrganAMNIST using the
higher-order encoding.

2) Performance with varying encodings: We proceed to
compare the performance of the developed QCCNNs for
the chosen encoding methods using data-reuploading. The
performances are analyzed in terms of best reached training
and validation accuracies achieved within 20 training epochs.
For every QCCNN architecture, three training sessions were
conducted with different weight initialization. The reported
metrics represent the averages across these training runs,
and the error bands reflect the variance observed. Fig. 3
compares the accuracies achieved by the models with the
RX , RY , higher-order, and amplitude encodings for 1 up to 5
reuploading layers on BreastMNIST and OrganAMNIST.

With one encoding layer, the higher-order and RX encoders
achieve the best validation accuracy on both datasets, even
when taking into account the error bands that are notably larger
on the BreastMNIST dataset, due to the smaller size of the
dataset. The RY encoding performs a little bit worse, while the
amplitude encoding performs significantly worse in validation
accuracy, despite achieving a training accuracy on-par with
the other models. This gap in performance of the architecture
with amplitude encoding is likely attributed to its utilization
of a smaller number of qubits (2 instead of 4 as seen in other
approaches).

With two layers, the higher-order encoder exhibits a slight
decline compared to other methods, while the RX encoder
remains stagnant, and the RY encoder achieves validation
accuracies comparable to (on BreastMNIST) or even surpasses
the two previous methods (on OrganAMNIST). The amplitude
encoder benefits from the additional reuploading layer but the
performance remains less than ideal.

When adding three and more reuploading layers, the gain
and loss in accuracy due to the additional layers seems to
saturate as the accuracies remain more or less constant on Or-



ganAMNIST for all architectures but the amplitude encoding.
In particular, they reach a similar final accuracy around 87%.
On BreastMNIST, in spite of the relatively large error bands,
we observe a similar behavior of saturation of the performance.
On the other hand, the architecture with amplitude encoding
alternatively varies as the number of reuploading layers in-
creases, while overall improving but remaining at a low value
compared to the other encoders.

All in all, the highest mean validation accuracy in all
considered models is achieved on both datasets with the
RY encoding, at 4 and 2 layers for the BreastMNIST and
OrganAMNIST, respectively.

C. Quantum metrics and their correlation to performance

We now examine the various metrics outlined in section
III-C and explore potential correlations with the performance
presented in IV-B2. The highest validation accuracy attained
for all models is plotted against the analyzed quantum metrics
in Fig. 4. We first note that these correlation plots look similar
for both datasets.

Starting with the expressibility, we see that most circuits
exhibit low values, making them highly expressible, with the
exception of the RX , RY and higher-order encodings with
one layer, which have comparatively higher values. Increasing
the number of data-reuploading layers results in an increase
in the expressiblity, but is not necessarily accompanied with
an improved validation accuracy. Among the more expressible
circuits, we encounter instances with good accuracy such as
the four-layer RY encoding, while others, such as amplitude
encoding with 4 layers, demonstrate comparatively poorer
performance. This tends to indicate that there is no clear
correlation between the best achieved accuracy and the ex-
pressibility.

It should additionally be noted that in the experiment
outlined in section IV-B1, where a fixed encoding strategy, the
higher-order encoding, was employed, the accuracy notably
decreased with an increase in the scaling factor. However,
a higher scaling factor corresponds to a more expressible
circuit as it allows it to encompass a larger portion of the
Hilbert space. This observation suggests a negative correlation
between expressibility and performance achieved. Such an
effect may stem from training challenges associated with high
expressibility, as discussed in [30]. The study highlights that
low-expressibility ansätze (characterized by a high express-
ibility value) can result in both small and large cost gradients,
whereas high-expressibility ansätze (low expressibility value)
tend to exhibit predominantly flat cost landscapes, making
them generally challenging to train.

Next, we examine the entanglement capacity of the various
encodings. One first notes that the amplitude encoding displays
clearly lower entangling capabilities than other setups. This
is expected as only 2 qubits are used in this case. For the
other architectures, one observes a cluster around high values
of entanglement capacity, with the exception of the higher-
order encoding with one layer. No correlation is therefore
observable in the plot between the best validation accuracy

and the entanglement capability. For instance, both the four-
layer RY and the two-layer higher-order encoding settings
exhibit similar metric values but show significantly divergent
performances across both datasets.

Lastly, the normalized effective dimension appears to follow
a downward trend as the number of layers increases, with
the exception of the RY encoding, where an increase in
NED is observed from layer 1 to layer 2, coinciding with a
significant increase in validation accuracy. Although no clear
correlation is observed between the NED and the VQCs’
performances, these results seem to indicate a saturation effect
as the number of layers increases, given four qubits and the
chosen application datasets, as suggested in [21].

D. Fourier Coefficients and their correlation to performance

In the following subsection, the Fourier coefficients gen-
erated by the angle encodings and the higher-order encoding
are examined, and potential relations to the performance are
discussed. The amplitude encoding is not addressed here due
to the state normalization requirement. To address visualiza-
tion challenges associated with higher-dimensional cases, this
analysis is done in a univariate scenario, where the same input
is passed to each qubit in the quantum circuit. The output is
classically decomposed into its constituent frequencies using
the discrete Fourier decomposition. The coefficients corre-
sponding to the various frequencies can then be displayed on
the complex plane-where the x-axis represents the real part
and the y-axis is the imaginary component-and analyzed. This
study is a simplification of what really happens in the quantum
convolution, where at each iteration of the convolution process,
one pixel value is mapped onto one qubit, and where therefore
all mapped values differ. This univariate analysis neglects the
possibility of having different input pixel values at a given
stride of the filter. Nonetheless, it provides some insights into
the expressive power of the different circuits.

1) Experimental procedure: A set of 21 ordered, linearly
spaced inputs within [−1, 1] are sampled and passed onto
the circuit. This replicates the possible input values in the
normalized datasets. 100 weights are additionally randomly
sampled from [0, 2π[ from a uniform distribution. The outputs
are then measured and decomposed using the Real Fast Fourier
Transform (RFFT) implemented in the Numpy package [31].
The chosen number of coefficients to be considered was set to
10, plus the zero frequency coefficient. The distribution of the
resulting coefficients is displayed in the complex plane. For
each encoding in this analysis, the procedure is performed for
up to four data reuploading layers. The effect of the chosen
embedding strategy as well as the increase in the number of
layers is studied.

Following the analysis presented in [21] and by putting
equations 12 and 13 together, the number of adaptable degrees
of freedom is expected to saturate at two circuit layers for the
two angle encodings (where the dimensionality of the local
system n = 1), and at four layers for the higher-order encoding
(where n = 2 due to the pairwise CNOT operations in the
encoding).
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Fig. 3: Comparison of the performance of 4 encoding methods for up to 5 layers for hybrid QCCNNs in terms of best training
and validation accuracies.

2) Fourier coefficients analysis: The distributions of the
Fourier coefficients for each qubit for the RX , RY and higher-
order encodings are shown in Fig. 5. We particularly pay
attention to the number of non-null frequencies present, their
rank (from 0 to 10) and the distribution of their coefficients.

At one layer, we first observe that more frequencies are
present in the RX and higher-order encodings compared to
the RY encoding, as for RY , the number of non-null Fourier
coefficients is limited to the first 4, as opposed to all 10 for
the RX encoding and also 10 for the higher-order encoding
on qubits 1 and 3. In terms of their coefficient, while a mix of
both real and imaginary is accessible with the RX and higher-
order encodings (both on the x and y-axis), the RY encoding
is limited to purely real values (only on the x-axis). When
comparing to the performance of the QCCNNs, we see that
on both datasets, RY performs worse than RX and the higher-
order encodings at 1 layer. This seems to be in line with the
interpretation of the expressibility of the Fourier coefficients.

In the RX angle encoding, the addition of one data-
reuploading layer results in a more widespread distribution
of the first coefficient at qubit 2. As the number of layers
is further increased, the number of accessible frequencies is
reduced in qubit 4 and then in qubits 2 and 3. These findings
are consistent with [21], where it is suggested that the number
of adjustable degrees of freedom will saturate at two circuit
layers. In comparison, the best accuracy is achieved at 2 layers
for the BreastMNIST dataset, followed with a drop in accuracy
at 3 layers, which aligns again with these results. On the
OrganAMNIST dataset, the best performance is attained at
3 layers but with only a marginal improvement observed from
the second to the third layer.

For RY and the higher-order encoding, increasing the
number of data-reuploading layers causes the variance of the

Fourier coefficients to increase and their values to become
more mixed (real and imaginary). For both encodings, this
increase is mostly noticeable when transitioning from one to
two circuit layers, and becomes less visible when increasing
further. This is an indication of a saturation of adaptable
degrees of freedom at two layers, which was expected for RY ,
but was expected at 4 layers for the higher-order encoding.
Regarding performance, the best performance with RY occurs
at 4 and 2 layers on BreastMNIST and OrganAMNIST,
respectively. The findings on OrganAMNIST are in line with
both the observed distribution of Fourier coefficients and the
previous work on the saturation of adjustable degrees of
freedom. However, the result on BreastMNIST diverges, likely
due to the limited size of the dataset. For the higher-order
encoding, the best outcomes are achieved at 3 and 4 layers,
indicating the relevance of the analysis in [21].

V. CONCLUSION

We analyze the performance of various hybrid quantum-
classical convolutional neural networks composed of different
encodings on two medical imaging tasks, namely breast cancer
detection on ultrasound images and organ classification with
CT scans. We first observe that the encoding used – be it RX ,
RY angle encoding, higher-order, or amplitude encoding –
leads to significantly different performances, highlighting the
critical significance of encoding selection when implementing
quantum variants of classical algorithms. We additionally
examine the effects of input scaling and data-reuploading and
show that a well-chosen parametrization of these two elements
can also lead to a substantial gain in performance on a chosen
dataset. These findings point to the need for continued investi-
gation into QCCNNs, considering their compatibility with cur-
rent NISQ hardware thanks to the minimal qubit demands and
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Fig. 4: Correlation plots between the performance of 4 encoding methods for up to 5 layers and the expressibility, the entangling
capability and the normalized effective dimension. The numerical labels indicate the number of layers.
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Fig. 5: Distributions of the Fourier coefficients of the outputs generated by the various encodings and basic entangling circuit
for different reuploading layers.



shallow quantum circuit depths involved. When attempting to
explain these performances using quantum metrics such as the
expressibility, the entanglement capability, and the normalized
effective dimension of the circuit, a clear correlation is yet to
be observed. On the other hand, a discernible trend begins
to emerge upon closer examination of the Fourier coefficients
generated by the quantum circuits, where a high number of
non-null frequency as well as a wide-spread distribution of
coefficients across both real and imaginary axes is linked to a
good performance. Moreover, one can observe changes in the
distribution of coefficients, thus indicating potential saturation
effects as additional reuploading layers are incorporated. Still,
additional work is needed to understand how these findings
can effectively inform encoding selection based on the dataset
employed. Furthermore, future work should also focus on
investigating the impact of noise on these architecture, via
simulation packages, but also by running the results on the
hardware to comprehensively assess its impact.
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