
Trade-off relations between Bell nonlocality and local Kochen-Specker contextuality in
generalized Bell scenarios

Lucas E. A. Porto,1, 2, ∗ Gabriel Ruffolo,1, 3 Rafael Rabelo,1 Marcelo Terra Cunha,4 and Pawe l Kurzyński3
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The relations between Bell nonlocality and Kochen-Specker contextuality have been subject of
research from many different perspectives in the last decades. Recently, some interesting results
on these relations have been explored in the so-called generalized Bell scenarios, that is, scenarios
where Bell spatial separation (or agency independence) coexist with (at least one of the) parties’
ability to perform compatible measurements at each round of the experiment. When this party has
an n-cycle compatiblity setup, it was first claimed that Bell nonlocality could not be concomitantly
observed with contextuality at this party’s local experiment. However, by a more natural reading of
the definition of locality, it turns out that both Bell nonlocality and local contextuality can, in fact,
be jointly present. In spite of it, in this work we prove that there cannot be arbitrary amounts of
both of these two resources together. That is, we show the existence of a trade-off relation between
Bell nonlocality and local contextuality in such scenarios. We explore this trade-off both in terms of
inequalities and quantifiers, and we discuss how it can be understood in terms of a ‘global’ notion of
contextuality. Furthermore, we show that such notion does not only encompass local contextuality
and Bell nonlocality, but also other forms of nonclassical correlations.

I. INTRODUCTION

Bell nonlocality [1, 2] and Kochen-Specker contextual-
ity [3, 4] are two of the most remarkable features of quan-
tum theory. They reveal a fundamental contrast between
its predictions and those of classical theories. As such,
they constitute some of the cornerstones for how our cur-
rent understanding of quantum theory is conceived. They
are also essential resources for quantum advantage in in-
formational tasks.

Nonlocality and contextuality are in fact closely related
concepts, since they both are associated to stronger-than-
classical correlations between the outcomes of compatible
measurements. Bell nonlocality can actually be seen as a
particular case of contextuality, which takes place in sce-
narios where there exist multiple observers far apart (or
informationally isolated) from each other and the com-
patibility relations are solely inherited from such spatial
separation.

The similarity between these two concepts motivates
investigations from many different perspectives to bet-
ter understand their connections. For example, since the
first decades after they were discovered, there is an on-
going search for how to convert proofs of contextuality
into proofs of nonlocality [5–8]. In another direction, the
Cabello-Severini-Winter graph-theoretic approach [9, 10]
can be adapted to demand compatibilities coming from
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separated parties [11], allowing one to compare the sets
of quantum correlations coming from Bell or Bell-like sce-
narios with the larger quantum sets allowed in contextu-
ality scenarios [12, 13].

In yet another way, the relations between nonlocality
and contextuality can be explored in the framework of
the so-called generalized Bell scenarios [14, 15]. These
are Bell scenarios where (at least) one of the parties is
allowed to perform compatible measurements on their
local system at each round of the experiment. This party
is then able to make a local contextuality test at the same
time as the nonlocality experiment is performed amongst
all the observers [16]. These are precisely the scenarios
we study in this work.

In recent years, some rather surprising results on the
simplest generalized Bell scenarios have been explored in
literature. For example, in the bipartite scenario where
Alice has two incompatible measurements and Bob has
a 5-cycle setup [17], local contextuality on Bob’s experi-
ment has been observed concomitantly with Bell nonlocal
correlations between him and Alice [16], a phenomenon
that was previously thought to be impossible [15, 18].
The key fact behind this joint observation is a suitable
modification in the definition of Bell nonlocality, specifi-
cally tailored for the generalized scenarios [14, 19]. This
new definition is in fact more powerful than the usual one,
and leads to new relevant classes of Bell-like inequalities.
One of these new inequalities, in particular, is then used
to jointly witness nonlocality and contextuality in the
above mentioned scenario [16].

In this work, we further investigate the relations be-
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tween these different types of nonclassicalities in gener-
alized Bell scenarios. More specifically, we prove that
even though nonlocality and contextuality can be jointly
observed in scenarios such as the one mentioned above,
they still satisfy trade-off relations. That is, there cannot
be arbitrary amounts of both nonlocality and contextu-
ality together. Moreover, we extend our arguments to
go beyond the scenarios where Bob has an n-cycle setup,
by identifying geometrical conditions that lead to such a
trade-off. Finally, after defining quantifiers of nonlocal-
ity and contextuality for generalized Bell scenarios and
rephrasing the trade-off relations in terms of them, we ex-
plore a more general notion of nonclassical correlations
that may appear in these scenarios.

The manuscript is structured as follows. In Section II,
we discuss some of the background required and intro-
duce the concepts related to generalized Bell scenarios.
In Section III, we show that in the generalized Bell sce-
narios where Bob has an n-cycle, maximal contextuality
on his experiment implies locality in the generalized sce-
nario. On the other hand, we also show that, for small
values of n, maximal nonlocality implies noncontextual-
ity on Bob’s experiment. In section IV we discuss which
are the features of these scenarios that lead to such a rela-
tion. Then, we explore the consequences of the trade-off
in terms of inequalities, and in terms of quantifiers in
Section V and Section VI, respectively. We conclude in
Section VII, also discussing some of the further questions
raised by this work.

II. PRELIMINARIES

In this section, we present some of the definitions and
previous results relevant to our discussion. In particular,
we introduce the generalized Bell scenarios and discuss
some of the distinct definitions of locality applicable to
them [14, 19]. Also, we present some of the recent results
relating nonlocality and local contextuality on these sce-
narios.

A. Contextuality and polytopes

To begin with, let us recall some of the basic concepts
related to Kochen-Specker contextuality [4]. A contextu-
ality scenario is specified by a set of measurements M,
their compatibility relations, and a set of possible out-
comes for each of them O. The compatibility relations
are typically specified by a set C, whose elements are
subsets of M composed by compatible observables. The
elements of C, that is, the sets of measurements which
can be jointly performed, are named contexts.

Then, to describe a contextuality experiment we need,
for each context C ∈ C, a probability distribution pC for
its possible outcomes. These probabilities, considering all
contexts and all possible outcomes, can be organized as

the entries of a vector p ∈ Rd in an appropriate dimension
d. This vector is called behavior of the experiment.

The acceptable behaviors in a contextuality scenario
are typically required to satisfy some consistency condi-
tions, known as no-disturbance conditions, stating that
marginals be well defined. More specifically, for every
C,C ′ ∈ C, these conditions can be written as

pC|C∩C′ = pC′|C∩C′ , (1)

where pC|C∩C′ denotes the restriction of the distribution
pC to the measurements in the intersection C ∩ C ′.

A behavior is said to be noncontextual if there exists a
variable λ, described by a probability distribution q(λ),
such that for every C ∈ C we can write

pC(s) =
∑
λ

q(λ)
∏

M∈C

pλM (sM ), (2)

where s denotes the outcome of the context C, and sM
denotes the corresponding outcome of the measurement
M ∈ C. Moreover, pλM is a probability distribution on
the outcomes of the measurement M which may depend
on λ.

Fine’s theorem states that the distributions pλM might
be taken to be deterministic without loss of general-
ity [20]. Thus, the noncontextual behaviors are convex
combinations of deterministic behaviors, that is, behav-
iors whose entries are either 0 or 1, respecting the no-
disturbance conditions. So, in a noncontextual behavior
it is possible to think of measurements as if they were sim-
ply revealing a property of the system which was already
well defined prior to the measurements. In this case,
the probabilities only arise as a consequence of a lack
of knowledge of the system’s preparation, in accordance
with what we would expect within a classical theory.

Geometrically, both the set of nondisturbing behaviors
and the set of noncontextual behaviors in Rd are poly-
topes. A polytope is a bounded convex set specified by a
finite number of linear inequalities. Every polytope has
a finite set of points which cannot be written as a con-
vex combination of any other points belonging to it, the
so-called vertices, or extremal points of the polytope. A
polytope can also be alternatively defined as the convex
hull of such points. In fact, there is a fundamental re-
sult in polyhedral theory, known as Minkowski’s theorem,
stating the equivalence between these two descriptions of
a polytope, either in terms of inequalities or in terms of
its vertices [21].

Even though one could, in principle, interchange be-
tween the two descriptions of polytopes, this is, in gen-
eral, a difficult task. There are computational methods,
such as the one described in [22], which can handle this
transformation for sufficiently simple cases. Neverthe-
less, these methods do not scale particularly well with
the dimension of the polytope [22].

In a typical contextuality scenario, we easily know
how to specify the noncontextual polytope by its ver-
tices, which are the deterministic behaviors. However,
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for many reasons it is desirable to characterize it in terms
of inequalities, often called noncontextuality inequalities.
Beyond the computational tools mentioned in the last
paragraph, there are some scenarios, such as the n-cycles,
where the inequalities characterizing the noncontextual
polytope have been analytically found [17].

On the other hand, we easily know how to specify the
nondisturbing polytope via the inequality description,
using no-disturbance conditions and non-negativity and
normalization of probabilities. For some of the purposes
of this work, however, it will be useful to characterize it
via the vertex description. Again, in some scenarios, e.g.,
the n-cycles, we can find these vertices analytically [17].
In cases considered in this manuscript, though, we will re-
sort to the computational methods previously mentioned
(see Section III)[22].

B. Usual and generalized Bell scenarios

So far, the discussion concerns arbitrary contextual-
ity scenarios. Now, to include the notion of nonlocality,
we must consider scenarios of a particular kind, namely,
those composed by multiple observers spatially separated
from one another. For simplicity, we only consider sce-
narios composed of two parties, referred to as Alice and
Bob.

Usually, to define a Bell scenario we specify the num-
ber of measurements each of the parties can perform on
her respective subsystem, as well as the number of pos-
sible outcomes per measurement. Then, in a typical Bell
experiment, Alice and Bob each receive a part of jointly
prepared physical system, and then each of the parties
independently choose one measurement to be performed
on their individual system. Denoting Alice’s measure-
ment choice by x, and Bob’s by y, we might describe
such a Bell experiment by probability distributions pxy
on the possible outcomes of x and y. Repeating the ex-
periment many times, Alice and Bob are able to estimate
such probabilities.

Notice that a Bell scenario nicely falls into the descrip-
tion of a contextuality scenario. In this case, the contexts
are given by a pair xy composed of one measurement of
Alice and one measurement of Bob. That is, the compat-
ibility relations are granted by the spatial separation be-
tween the observers. Then, the no-disturbance conditions
(1) lead to the so-called no-signaling conditions, which
state that the probability distribution describing Alice’s
(Bob’s) local experiment does not depend on Bob’s (Al-
ice’s) measurement choice.

The noncontexutal behaviors of a Bell scenario are
named local behaviors, and they satisfy

pxy(a, b) =
∑
λ

q(λ)pλx(a)pλy (b), (3)

where a (b) denotes the possible outcomes of the mea-
surement x (y), while q(λ) ≥ 0 and

∑
λ q(λ) = 1 here

and in every subsequent use of this notation.

On the other hand, in the so-called a generalized Bell
scenario, instead of only performing one measurement
at each round of the experiment, Alice and/or Bob are
allowed to jointly perform compatible measurements on
their local systems. For simplicity, we restrict the dis-
cussion to scenarios where Alice still performs one mea-
surement at each round, and only Bob has compatible
measurements. Thus, in a generalized Bell scenario of
this kind, a behavior is given by probability distributions
px,CB

, where x denotes Alice’s single measurement and
CB denotes a context of Bob’s experiment, i.e., a set of
compatible measurements he is able to perform.

A generalized Bell scenario also can be seen as a con-
textuality scenario according to our previous discussion.
In this case, the no-disturbance conditions represent both
no-signaling conditions and no-disturbance conditions
on Bob’s local experiment. Thus, we refer to the set
of acceptable behaviors in generalized Bell scenarios as
NSND (nonsignaling and nondisturbing) polytope.

For the sake of nomenclature, when dealing with the
whole scenario as a single contextuality setup, we will
refer to noncontextual behaviors as classical behaviors.
Thus, classical behaviors are convex combinations of
nonsignaling and nondisturbing deterministic ones. Or,
equivalently, a behavior px,CB

is said to be classical if it
admits a decomposition of the form

px,CB
(a, b) =

∑
λ

q(λ)pλx(a)
∏

M∈CB

pλM (bM ), (4)

where b denotes the outcome of Bob’s context CB , and
bM denotes the corresponding outcome of measurement
M ∈ CB .

From now on, in the generalized Bell scenarios here
considered the term ‘contextuality’ will be used in refer-
ence to local contextuality on Bob’s marginal experiment.
That is, a behavior of the generalized scenario will be said
to be noncontextual if Bob’s marginal is noncontextual.

We should also be careful with the notions of locality
for the generalized Bell scenarios. To begin with, notice
that the definition (3) can also be applied to such sce-
narios. To do so, however, we cannot consider the full
behavior px,CB

at once. Rather, we should marginalize
it to consider only one measurement y of Bob at a time.
We will refer to this as the usual notion of locality.

Nevertheless, since Bob is typically performing more
than one measurement at each round of the experiment,
there might be correlations between Alice and a whole
context of Bob. In this sense, in Ref. [19] the authors
propose a generalized definition of locality, given by

px,CB
(a, b) =

∑
λ

q(λ)pλx(a)pλCB
(b), (5)

where b denotes a possible (joint) outcome for the context
CB . Here, we ask for pλCB

to be only a nondisturbing be-
havior of Bob’s setup, and this is the key difference when
this definition is compared with equation (4), where the
response functions of Bob’s are also required to be non-
contextual [14]. Furthermore, notice that if a behavior is
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local according to the generalized definition (5), it is also
local in the usual sense, given by equation (3), consider-
ing any of the appropriate marginalizations.

Let us also stress that the generalized definition of lo-
cality is better suited to the generalized scenarios than
the usual one, as it takes the local compatibility struc-
ture of Bob into account. This will be the main notion of
locality adopted in this work, and it is to be understood
that whenever we mention ‘locality’ in a generalized Bell
scenario, we are referring to the generalized definition.
Moreover, the inequalities associated with this definition
of locality will be referred to as generalized Bell inequal-
ities.

Geometrically, in the generalized scenarios the visual-
ization of the sets of interest is somewhat more compli-
cated than in a typical contextuality scenario, or even
in an usual Bell scenario, see Figure 1. Note that the
NSND polytope contains (but is not necesserily equal
to) the set all physically acceptable behaviors for the gen-
eralized scenario. Entirely contained in it, the classical
polytope is the convex hull of the deterministic behaviors.
The noncontextual polytope has nonempty intersection
with the classical polytope, but there are also noncon-
textual behaviors that are nonclassical, since they may
be nonlocal. Furthermore, there are the usual-local and
generalized-local polytopes, the latter contained in the
former and none entirely contained in the classical poly-
tope, since both have contextual points. Finally, it will
be important to consider the nondisturbing polytope of
Bob’s marginal experiment, which can be seen as a pro-
jection of the NSND polytope of the whole scenario.

C. Relations between nonlocality and contextuality
in generalized Bell scenarios

Let us now move on to the discussion of some of the
recent results relating nonlocality and contextuality in
generalized Bell scenarios. Most of them have to do with
a particular kind of the scenarios we discussed in the
previous section, where the contextuality setup of Bob
is an n-cycle [17]. That is, Bob is able to perform n
possible measurements {B0, B1, ..., Bn−1}, with contexts
{Bi, Bi+1} (sum modulo n). All the measurements Bi,
as well as Alice’s measurements, that from now on will
be denotet by Ax, with x = 0, 1, are dichotomic, with
outcomes labeled by +1 and −1.

One of the reasons why an n-cycle contextuality sce-
nario is interesting is the fact that the nondisturbing
polytope has been completely characterized in terms of
its vertices, and the noncontextual polytope has been
completely characterized in terms of its inequalities.
Moreover, the 5-cycle corresponds to the KCBS scenario
[23], which is the simplest scenario for which quantum
theory exhibits contextuality. These generalized scenar-
ios, where Alice has two incompatible measurements and
Bob has an n-cycle setup, are also the focus of this work.

In Ref. [15], the authors consider precisely the scenario

FIG. 1. Schematic figure representing the NSND polytope of
a generalized Bell scenario, highlighting all its possible kinds
of vertices and interesting subpolytopes it contains. There can
be local and noncontextual vertices, whose convex hull con-
stitutes the classical (Cl) polytope (green region); there can
also be local and contextual vertices, which, together with
the local and noncontextual vertices, are the vertices of the
local (L) (union of the green and the red regions); there are
nonlocal and noncontextual vertices, which are also vertices
of the noncontextual (NC) polytope (union of the green and
the blue regions); and finally there can be nonlocal and con-
textual vertices. Also depicted in the figure is a joint witness
of nonlocality and contextuality, i. e., an inequality that can
only be violated by behaviors which are nonlocal and contex-
tual at the same time.

in which Bob has a KCBS setup. Then, they analyze
violations of a KCBS inequality on Bob’s experiment,

βKCBS = ⟨B0B1⟩ + ⟨B1B2⟩ + ⟨B2B3⟩
+⟨B3B4⟩ − ⟨B4B0⟩ ≤ 3,

(6)

together with a CHSH inequality of the form

αCHSH = ⟨A0Bi⟩+ ⟨A0Bj⟩+ ⟨A1Bi⟩−⟨A1Bj⟩ ≤ 2, (7)

where Bi and Bj are incompatible measurements of Bob.
Notice that this CHSH inequality is associated with the
usual notion of locality.

Using the techniques of Ref. [24], it is possible to prove
that for every nondisturbing behavior of the generalized
scenario, the following relation holds:

αCHSH + βKCBS ≤ 5. (8)

In other words, inequalities (6) and (7) cannot be simul-
taneously violated in such an experiment [15].

Furthermore, notice that all the Bell inequalities asso-
ciated with the usual notion of locality in such a scenario
are CHSH inequalities of the form (7), up to relabelings
[25]. Also, all the noncontextuality inequalities for Bob’s
experiment are known, and are also similar to (6) up to
relabelings.

The argument leading to equation (8) can then be ap-
plied to any of those CHSH inequalities together with
any of the noncontextuality inequalities of the scenario.
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Therefore, if Alice and Bob share nonlocal correlations
(according to the usual sense of locality), then Bob’s lo-
cal experiment cannot exhibit contextuality. Conversely,
if Bob’s experiment exhibits contextuality, then the cor-
relations with Alice are local. That is, there is a fun-
damental monogamy relation between contextuality and
the usual notion of locality in this scenario. The same
argument was later extended to scenarios where Bob can
perform joint measurements according to an arbitrary n-
cycle [18].

However, as we discussed in the previous section, the
usual definition of locality, the one considered to prove
this monogamy, is not the most appropriate notion of lo-
cality for generalized Bell scenarios. Thus, it is intersting
to investigate whether this monogamy still holds when
considering the generalized definition of locality proposed
in Ref. [19].

In Ref. [16], the authors present a negative answer to
this question. They show a family of quantum states
exhibiting both local contextuality on Bob’s experiment
and nonlocality in the generalized sense. The conclusion,
then, is that there is not a strict monogamy relation be-
tween contextuality and nonlocality when the adequate
definitions are considered.

Nevertheless, such results suggest that there would still
exist a certain trade-off between nonlocality and con-
textuality in such scenarios. This phenomenon can be
clearly seen for a particular pair of Bell and noncontex-
tuality inequalities investigated in Ref [16]. It was, how-
ever, unclear whether this trade-off relation was a partic-
ularity of the inequalities considered, or if this relation
was a fundamental feature of these scenarios. That is the
question we investigate in this manuscript.

III. A FIRST GLANCE AT THE TRADE-OFF:
THE CYCLE SCENARIOS

In this section, we analyze the suggested trade-off be-
tween nonlocality and contextuality when considering
nonsignaling and nondisturbing behaviors in the scenar-
ios where Bob has an n-cycle. For that matter, we start
investigating behaviors which exhibit ‘maximal’ contex-
tuality or ‘maximal’ nonlocality: behaviors whose viola-
tion of a noncontextuality or generalized-Bell inequality,
respectively, is the maximum allowed within the NSND
polytope.

Result 1 Consider a generalized bipartite Bell scenario
where Alice has two incompatible measurements and Bob
has an n-cycle contextuality setup. If a NSND behavior
maximally violates a noncontextuality inequality of Bob’s
marginal experiment, then it must be local.

Proof: To prove this statement, we start by showing
that, in an n-cycle contextuality scenario, the only behav-
iors which maximally violate noncontextuality inequali-
ties are vertices of the associated nondisturbing polytope.

To do so, let us recall that the contextual vertices of the
nondisturbing polytope of such scenarios are given by:

⟨Bi⟩ = 0 (9a)

⟨BiBi+1⟩ = γi, (9b)

where i = 1, 2, ..., n and γi = ±1, such that the number
of i’s for which γi = −1 is odd [17].

Now, consider a generic noncontextuality inequality of
an n-cycle scenario. Since the inequality is linear, there
must be at least one vertex of the NSND polytope which
maximally violates it. If there are two such vertices, then
all convex combinations of them would also violate it
maximally and, thus, be maximally contextual. How-
ever, an equally weighted convex combination of any two
distinct such vertices is proven to be noncontextual [26].
Thus, there can only be one vertex which maximally vi-
olates this inequality, and it also follows that this is the
only behavior achieving this violation.

To complete the proof, we slightly modify an argu-
ment presented in Ref. [27] to the generalized scenarios.
Consider a behavior pAx,BiBi+1

such that Bob’s marginal
pBiBi+1

is a vertex of his nondisturbing polytope. Then,
we may write

pBiBi+1(bi, bi+1) =
∑
a

pAx,BiBi+1(a, bi, bi+1)

=
∑
a

pAx
(a) pAx

BiBi+1
(bi, bi+1|a).

(10)

Notice that, for each value of a, pAx

BiBi+1
(bi, bi+1|a) can

be seen as a nondisturbing behavior of Bob’s local ex-
periment, and the above sum is a convex combination
of such behaviors. However, since pBiBi+1

is a vertex
of Bob’s nondisturbing polytope, then the above con-
vex combination must be composed of only one term.
That is, pAx,BiBi+1

(a, bi, bi+1) = pAx
(a)pBiBi+1

(bi, bi+1)
and there is no correlation whatsoever between Alice and
Bob.

Thus, in the scenarios here considered, this result
shows that if a behavior is maximally contextual, it can-
not contain the tiniest amount of nonlocality, it has to
be local. Moreover, Alice and Bob are completely uncor-
related.

On the other hand, let us now explore whether the
same kind of phenomenon happens for maximally non-
local behaviors, that is, whether a maximally nonlocal
behavior can be contextual. Analytically, this is a much
harder question to address, since it genuinely involves the
geometry of the whole NSND polytope. A significant
part of the proof of Result 1 is based on the nondisturb-
ing polytope of Bob’s local experiment, which is a much
simpler and well-known set. Still, for (at least) a few
simple scenarios, this question might be addressed with
the aid of computational methods.

Result 2 Consider a generalized bipartite Bell scenario
where Alice has two incompatible measurements and Bob
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has an n-cycle contextuality setup, with n = 3, 4 or 5.
If an NSND behavior maximally violates a generalized-
Bell inequality, then Bob’s marginal must be noncontex-
tual.

Proof: As previously discussed, there is a duality in the
description of a polytope: one might describe it either in
terms of linear inqualities, or in terms of its vertices. We
know how to specify the NSND polytope using inequali-
ties, and based on this we can use computational tools to
obtain its vertex description [22]. The code details and
the list of vertices for the three scenarios n = 3, 4 and 5
are available at [28].

Once all the vertices of the NSND polytope are enu-
merated, it is possible to identify the local and the non-
local ones. The local vertices, for instance, are easily
identifiable, because, in this case, Alice’s marginal be-
havior must be deterministic. All the other vertices are
nonlocal. Then, for the nonlocal vertices, the values of
all the noncontextuality inequalities’ expressions, which
are known for n-cycle scenarios [17], are computed. If all
inequalities are satisfied, we conclude that the behavior
is noncontextual. The result then follows from the fact
that all nonlocal vertices of the NSND polytope for the
considered scenarios are noncontextual, and if a behavior
maximally violates a generalized-Bell inequality, then it
must either be one of such nonlocal vertices, or a convex
combination of them.

So, at least in the simplest of the scenarios we consider,
maximal nonlocality implies noncontextuality. In fact,
we believe this remains true for every n-cycle setup of
Bob.

Conjecture 1 In any generalized bipartite Bell scenario
where Alice has two incompatible measurements and Bob
has an n-cycle setup, if an NSND behavior maxi-
mally violates a generalized-Bell inequality, then Bob’s
marginal must be noncontextual.

This conjecture is mostly based on the fact that the
n-cycle contextuality scenarios are very similar to one
another. Notice, for instance, that for all n, both the
vertices of the nondisturbing polytope and noncontex-
tuality inequalities have similar forms [17]. In addition,
this similarity seems to be carried out to the generalized
scenarios. For example, the strict monogamy relation (8)
and the synchronous observation of nonlocality and con-
textuality reported in Ref. [16] are seen in generalized
scenarios where Bob has an arbitrary n-cycle setup[29].

To reinforce the conjecture, in the appendices we
present results for specific families of generalized Bell
inequalities valid for scenarios were Bob has an n-cycle
setup. We show, for instance, that maximal violations of
such inequalities imply noncontextuality. In Appendix
A, we consider CHSH-like inequalities [16, 19, 30], and
in Appendix B we deal with generalizations of the so-
called chained inequalities [31, 32].

IV. WHICH SCENARIOS EXHIBIT THIS
TRADE-OFF?

At this point, we have proven that in the scenarios
where Bob has an n-cycle, all maximally contextual be-
haviors are local, and conjectured that all maximally non-
local behaviors are noncontextual, a fact which was veri-
fied for particular values of n. However, before we explore
the consequences of this relation between nonlocality and
contextuality, we first discuss the features of such scenar-
ios which are responsible for this relation. In other words,
we analyze which conditions must be met in generalized
Bell scenarios so that all maximally nonlocal behaviors
are noncontextual and all maximally contextual behav-
iors are local.

To begin with, notice that the key fact to prove Result
2 for the simplest cycle scenarios is that all nonlocal ver-
tices of their NSND polytopes are noncontextual. This
is equivalent to saying that all maximally nonlocal be-
haviors are noncontextual. It turns out that this fact
also implies that all maximally contextual behaviors are
local, as we prove in the following.

For the sake of clarity, if a generalized Bell scenario
where only Bob has compatible measurements is such
that all the nonlocal vertices of its NSND polytope are
noncontextual, we say that this scenario only has monog-
amous vertices.

Lemma 1 In a bipartite generalized Bell scenario where
only Bob has compatible measurements, all the maximally
nonlocal behaviors are noncontextual and all the maxi-
mally contextual behaviors are local if, and only if, this
scenario only has monogamous vertices.

Proof: In a given generalized Bell scenario, it is not dif-
ficult to see that all maximally nonlocal behaviors are
noncontextual if and only if the scenario only contains
monogamous vertices, as we mentioned in the proof of
Result 2. So, for this lemma to be proved, we only
need to prove that if the scenario only contains monog-
amous vertices, then all maximally contextual behaviors
are local. Consider a behavior of the generalized scenario
such that Bob’s marginal behavior maximally violates a
noncontextuality inequality. Then, any decomposition
of Bob’s marginal behavior in terms of the vertices of
its ND polytope can only include contextual vertices.
Thus, any decomposition of the behavior of the general-
ized scenario can also only include contextual vertices of
the associated NSND polytope. However, by hypotesis,
all of those vertices are local.

In summary, if we want to verify whether a generalized
Bell scenario exhibits the trade-off relation between non-
locality and contextuality just described, we need to an-
alyze the vertices of its NSND polytope. If the scenario
only contains monogamous vertices, then the trade-off
holds. Otherwise, at least one of the following is true:
either there exists a behavior which maximally violates
a generalized-Bell inequality and is, at the same time,
contextual, or there exists a behavior which maximally
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violates a noncontextuality inequality and is, at the same
time, nonlocal.

However, as we have mentioned, enumerating the
NSND vertices of a generalized Bell scenario is, usually,
a difficult task. So, it is useful to have other means to
conclude that a scenario only contains monogamous ver-
tices. For example, the following lemma states sufficient
conditions for that to happen.

Lemma 2 Consider a bipartite generalized Bell scenario
where only Bob has compatible measurements and such
that the following properties hold:

(i) every contextual vertex of the NSND polytope of
the generalized scenario is such that Bob’s marginal max-
imally violates a noncontextuality inequality; and

(ii) Bob’s local contextuality scenario is such that the
only behaviors which maximally violate noncontextuality
inequalities are vertices of its nondisturbing polytope.

Then, the NSND polytope of this scenario only has
monogamous vertices.

Proof: The two conditions allow us to conclude that all
contextual vertices of the NSND polytope are such that
Bob’s marginals are vertices of his ND polytope. Then,
analogously to the proof of Result 1, we conclude that
every contextual vertex is local, that is, the scenario only
contains monogamous vertices.

For the scenarios where Bob has an n-cycle setup, dis-
cussed in the previous section, we can prove that condi-
tion (ii) holds (see Result 1). So, for Conjecture 1 to be
true, it is only necessary that condition (i) holds.

Apart from clarifying Conjecture 1 for the scenarios
with n-cycles, the above lemma also helps in understand-
ing why this trade-off may not happen in other scenar-
ios. Let us consider, for example, another well studied
proof of contextuality, the so-called Peres-Mermin square
[4, 33, 34]. In the contextuality scenario associated with
this proof, there exists behaviors which are not vertices
of the associated ND polytope, but that are still able
to maximally violate a noncontextuality inequality [35].
Therefore, in the generalized scenario where Bob has a
Peres-Mermin scenario, condition (ii) is not satisfied and
thus we do not expect maximally contextual behaviors
to necessarily be local. Indeed, in such a generalized
scenario, a maximal violation of a noncontextuality in-
equality has been jointly observed with a violation of a
Bell inequality [36].

V. THE TRADE-OFF WITH INEQUALITIES

So far in this manuscript, we used the word trade-off
to refer to the fact that maximally nonlocal behaviors are
noncontextual, and maximally contextual behaviors are
local. However, this fact has implications for all NSND
behaviors, not only those containing a maximum amount
of nonlocality or contextuality. In this section, we explore
these consequences by studying violations of generalized-
Bell and noncontextuality inequalities.

To do so, it is useful to consider normal-
ized generalized-Bell/noncontextuality inequalities. A
generalized-Bell (noncontextuality) inequality S is nor-
malized if S ≤ 0 for all local (noncontextual) behav-
iors, and the maximum achieved by NSND behaviors is
S = 1.

Result 3 Consider a generalized Bell scenario where
only Bob has compatible measurements, and contain-
ing only monogamous vertices. For any normalized
generalized-Bell inequality SGBell and any normalized
noncontextuality inequality SNC , every NSND behavior
satisfies

SGBell + SNC ≤ 1. (11)

Proof: Since the expression SGBell + SNC is linear, its
maximum in the NSND polytope is achieved in a vertex.
The result then follows from the fact that, if the scenario
only contains monogamous vertices, all nonlocal vertices
of the NSND polytope are noncontextual.

This finally shows that in the generalized scenarios
only containing monogamous vertices, the no-signaling
and no-disturbance conditions bound the joint amount
of nonlocality and contextuality a behavior might have.
This bound is not as strict as firstly proposed in Ref. [15],
but it still imposes a fundamental trade-off relation be-
tween these two features. In particular, it is interesting to
notice that the maximum value of SGBell +SNC allowed
by no-signaling and no-disturbance may be achieved hav-
ing only one of nonlocality or contextuality. In this sense,
having both is not particularly an advantage that allows
one to increase the maximum violation of inequalities of
this form.

Since nonlocality and contextuality are both resources
for information processing tasks, a joint observation of
them in the generalized scenarios hinted that these sce-
narios could offer novel possibilities for such applications,
using both resources together. However, the existence of
this trade-off relation between them shows that we can-
not expect advantages coming from considerable amounts
of nonlocality and contextuality concomitantly. In addi-
tion, considering the comment of the last paragraph, one
might ask whether the joint presence of nonlocality and
contextuality brings any advantage at all.

On the other hand, there might be possibilities for
practical applications of the generalized scenarios based
on this trade-off. For instance, if Bob certifies a given
amount of contextuality he locally posess, then he can
bound the amount of nonlocal correlations he has with
other observers.

On a more foundational note, some interesting results
on the connection between nonlocality and contextual-
ity in scenarios similar to the ones we consider here are
based on inequalities that can only be violated by behav-
iors containing both nonlocality and contextuality [37–
39]. However, in scenarios only containing monogamous
vertices, this kind of witness does not exist (see Fig. 1).
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Result 4 In a generalized Bell scenario where only
Bob has compatible measurements, and containing only
monogamous vertices, there cannot be a convex witness
of nonlocality and contextuality together.

Proof: If this witness were to exist, its maximum value
in the NSND polytope would be achieved in a vertex.
However, if the scenario only contains monogamous ver-
tices, there is no vertex which is simultanously contextual
and nonlocal.

We must stress that the notion of ‘nonlocality revealed
by local contextuality’ [37–39] has never been studied in
terms of the generalized definition of locality. However,
Result 4 already hints that such a phenomenon is not
possible in the scenarios with only monogamous vertices.

VI. THE TRADE-OFF WITH QUANTIFIERS

Inequality (11), discussed in the last section, expresses
a fundamental trade-off relation between nonlocality and
contextuality in the generalized scenarios only containing
monogamous vertices, as it does not involve a particular
choice of generalized-Bell or noncontextuality inequali-
ties. In fact, this relation can be equivalently described
in terms of quantifiers of nonlocality and contextuality.
This is precisely the motivation for this section, but we
will see that the quantifiers actually bring valuable in-
sights both on the trade-off and on the actual meaning
of nonclassical correlations in generalized Bell scenarios.

We start by properly defining quantifiers of nonlocal-
ity and contextuality for generalized Bell scenarios, the
nonlocal fraction and contextual fraction, respectively.
These definitions are natural extensions of the ones in
Refs. [40, 41].

In a given generalized Bell scenario, the nonlocal frac-
tion of a behavior p belonging to its associated NSND
polytope, denoted by NLF (p), is defined by

NLF (p) = min{λ ∈ [0, 1]|p = (1 − λ)pL + λpNSND},
(12)

where the minimization is taken over all local behaviors
pL and all behaviors pNSND belonging to the NSND
polytope. In a similar way, for the generalized scenarios
here considered, where only Bob has compatible measure-
ments, the contextual fraction of a behavior p, denoted
by CF (p), is defined by

CF (p) = min{λ ∈ [0, 1]|pB = (1 − λ)pBNC
+ λpBND

},
(13)

where the minimization is taken over all noncontextual
behaviors pBNC

and all nondisturbing behaviors pBND
of

Bob’s local experiment [42].
With these definitions for quantifiers, we are able to

use the results in Ref. [41] to restate Result 3 in terms of
them.

Result 5 Consider a generalized Bell scenario where
only Bob has compatible measurements, and containing

only monogamous vertices. In such a scenario, every
NSND behavior p satisfies

NLF (p) + CF (p) ≤ 1. (14)

Proof: For every behavior p belonging to the NSND
polytope, we can construct a normalized generalized-Bell
inequality SGBell such that SGBell(p) = NLF (p). Anal-
ogously, for every nondisturbing behavior of Bob’s local
experiment pB , we can construct a normalized noncon-
textuality inequality SNC such that SNC(pB) = CF (pB)
[41]. Result 3 completes the proof.

This result resembles a similar inequality for quan-
tifiers of entanglement and contextuality of quantum
states, obtained in Ref. [43]. However, notice that in this
work our approach is completely theory-independent,
and inequality (14) is valid for all nonsignalling and
nondisturbing behaviors in the considered scenarios.
Meanwhile, in Ref. [43] the author works in the scope
of quantum theory, and their result is related to con-
cepts only well defined therein, like that of entanglement.
Also, it is worth noting that entanglement and nonlo-
cality are related but not equivalent concepts, see, for
example, Ref. [44].

Written in this form, and taking into account the fact
that both the nonlocal fraction and the contextual frac-
tion may vary from zero to one, expression (14) seems
to suggest the existence of a more general fraction, en-
compassing both nonlocal and contextual correlations.
Accordingly, this might simply be associated with ‘con-
textuality’ when we consider the whole generalized Bell
scenario as a contextuality scenario. As we mentioned
in Subsection II B, in order to avoid confusions with the
notion of local contextuality on Bob’s local experiment,
we refer to the ‘contextuality’ in the whole scenario as
nonclassicality.

Thus, we may define the nonclassical fraction of a be-
havior p, denoted by NClF (p), by

NClF (p) = min{λ ∈ [0, 1]|p = (1 − λ)pCl + λpNSND},
(15)

with minization over all classical behaviors pCl and all
behaviors pNSND belonging to the NSND polytope.
Recall that a behavior is said to be classical if it can be
decomposed as equation (4). That is, a classical behavior
can be seen either as a convex combination of determin-
istic NSND behaviors, or as admiting a decomposition
like (5), where the behaviors pλCB

must be noncontextual
[14].

In fact, we can prove that in a generalized scenario
only containing monogamous vertices, the nonclassical
fraction indeed bounds the sum of the nonlocal fraction
and the contextual fraction.

Result 6 Consider a generalized Bell scenario where
only Bob has compatible measurements, and containing
only monogamous vertices. In such a scenario, every
NSND behavior p satisfies

NLF (p) + CF (p) ≤ NClF (p). (16)
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Proof: For any given NSND behavior p, we can write

p = NClF (p)pNSND + (1 −NClF (p))pCl, (17)

where pNSND is some NSND behavior, and pCl is a
classical behavior.

The behavior pNSND, in particular, can be further de-
composed into a convex combination of a local behavior
and a strongly nonlocal behavior (a behavior is said to
be strongly nonlocal if its nonlocal fraction is equal to
one). Consequently, we can think of them as being a
convex combination of nonlocal vertices of the NSND
polytope. Thus, we may write

p = αpSNL + (NClF (p) − α)pL + (1 −NClF (p))pCl,
(18)

where 0 ≤ α ≤ 1. Moreover, from (12), it follows that
α ≥ NLF (p).

Then, since the scenario only contains monogamous
vertices, the equation above implies that Bob’s marginal
behavior satisfies

pB = (NClF (p) − α)pBND
+ (1 + α−NClF (p))pBNC

.
(19)

Therefore, from definition (13) we conclude that
NClF (p)−α ≥ CF (p), from which the result follows.

This suggests that nonlocality and contextuality can be
seen as two distinct manifestations of a broader notion
of nonclassicality for the generalized scenarios. Thus, the
trade-off between them follows from the fact that the no-
signaling and no-disturbance conditions limit the amount
of nonclassicality allowed in such scenarios, in accordance
with the inequality (16).

Even so, we know that inequality (16) is not valid in
all generalized scenarios. We have already mentioned, for
example, that when Bob has a Peres-Mermin square, the
trade-off discussed in this work does not occur. Conse-
quently, inequality (16) also does not hold. That is, in
those scenarios the sum of the nonlocal and contextual
fractions may overcome the nonclassical fraction. So, it
seems like accounting for nonlocality and contextuality
separately leads to a redundancy in the quantification of
nonclassical correlations. This points out possibilities of
correlations which are only nonclassical if nonlocality and
contextuality are jointly present. This resembles the no-
tion of nonlocality revealed by local contextuality men-
tioned in the last section, and also constitutes another
interesting reason for studying this concept in terms of
the generalized definition of locality in which we based
our discussion [19].

A. Are nonlocality and local contextuality the only
forms of nonclassicality in generalized Bell

scenarios?

A particularly intriguing aspect of expression (16) is
the fact that it may not be an equality, i. e., it indicates
that the sum of the nonlocal and contextual fractions

may be strictly smaller than the nonclassical fraction of
a given behavior. In other words, it suggests that nonlo-
cality and contextuality are not the only kinds of nonclas-
sical correlations in generalized Bell scenarios. Here, we
aim at clarifying this point by showing an explicit exam-
ple of a behavior which is local and noncontextual, but
still exhibits a certain kind of nonclassicality, and, more-
over, the example offers an operational way to interpret
this other form of nonlcassicality.

Consider a bipartite generalized Bell scenario where
only Bob has compatible measurements, and let us as-
sume that at each round of the experiment, after the mea-
surements have been performed, Alice communicates her
input and her output to Bob. Then, with this extra infor-
mation Bob is able to improve his description of his local
experiment, by constructing what we call conditional be-
haviors. Starting from a nonsignaling and nondisturbing
behavior of the whole experiment px,CB

, Bob’s condi-

tional behaviors are defined by pxCB
(b|a) =

px,CB
(a,b)

px(a)
.

Now, assume that in such a scenario Alice and Bob
share a classical behavior px,CB

, that is, a behavior that
can be decomposed as in equation (4). Then, the con-
ditional behaviors computed from it can be written as

pxCB
(b|a) =

∑
λ

q(λ)pλ
x(a)

px(a)

∏
M∈CB

pλM (bM ). However, for

each x and a, this is a decomposition of the form (2),
meaning that Bob’s conditional behaviors are noncontex-
tual. In other words, if Alice and Bob share a classical
behavior, all the conditional behaviors originated from it
must be noncontextual.

With this in mind and now making use of quantum
theory, let us now consider that Alice and Bob share the
qubit-qutrit state

ρ =
1

2
|0⟩⟨0|A ⊗ |0⟩⟨0|B +

1

2
|1⟩⟨1|A ⊗ |2⟩⟨2|B , (20)

and Bob has a 5-cycle structure, with measurements
Bj = 2|vj⟩⟨vj |B − IB , where |vj⟩B = cosθ|0⟩B +
sinθcos(j4π/5)|1⟩B + sinθsin(j4π/5)|2⟩B , with cos2θ =
cos(π/5)/(1 + cos(π/5)), for j = 1, 2, 3, 4, 5. Moreover,
suppose that Alice only performs one measurement, given
by A = σz.

Since the state is separable, the behavior it originates
has to be local (see Ref. [19]). Also, it is possible to
verify that Bob’s marginal behavior is noncontextual. To
do so, we implement a linear program to calculate the
noncontextual fraction of nondisturbing behaviors in a
5-cycle scenario, according to Ref. [41], and check that
the noncontextual fraction of Bob’s marginal behavior is
equal to one [28].

However, consider Bob’s conditional behavior when Al-
ice’s measurement output is +1, that is, the conditional
behavior pCB

(b|a = +1). Since the state shared by Alice
and Bob is the one given by (20), this conditoinal be-
havior refers to the cases when Bob’s marginal state is
|0⟩B . Then, it is straightforward to verify that this state
with the measurements Bj above mentioned violates the
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noncontextuality inequality

⟨B0B1⟩ + ⟨B1B2⟩ + ⟨B2B3⟩
+⟨B3B4⟩ + ⟨B4B0⟩ ≥ −3

(21)

by 5 − 4
√

5 ≈ −3.94 [4]. This implies that Bob’s condi-
tional behavior pCB

(b|a = +1) is contextual, and, there-
fore, the original behavior in the generalized scenario is
nonclassical. In a complementary way, in Appendix C we
also provide an inequality which is satisfied by all classi-
cal behaviors, but is violated by the one discussed here.

In summary, this shows that nonlocality and local con-
textuality are not the only forms of nonclassicality in
generalized Bell scenarios. Furthermore, in the example
here discussed, this nonclassicality can be understood as
an ‘activation of local contextuality via classical commu-
nication’. That is, Bob’s marginal is noncontextual, but
if Alice communicates her measurement choice and out-
come to him, by only using this extra knowledge he is
able to exhibit contextual conditional behaviors.

This ‘activation of contextuality via classical communi-
cation’ thus provides a physical interpretation for a form
of nonclassical correlation which is not local contextuality
nor nonlocality, exemplifying how other forms of nonclas-
sicalities may appear in generalized scenarios. We do not
claim, however, that this is the only possible way of inter-
preting nonclassical correlations (other than nonlocality
and contextuality) on these scenarios and, in fact, we be-
lieve that there are many more interesting phenomena to
be explored in this sense.

VII. FINAL REMARKS

In this work, we further analysed the relations between
nonlocality and contextuality in generalized Bell scenar-
ios. Recently, a joint observation of nonlocality and con-
textuality in a scenario where they were thought to be
monogamous has been reported [15, 16]. Then, it is nat-
ural to investigate whether this joint observation can be
arbitrary, or if there still exist a certain trade-off relation
between nonlocality and contextuality in the considered
generalized scenarios.

Here, we proved that the latter is indeed the case, and
thus one cannot expect to concomitantly observe arbi-
trary amounts of nonlocality and contextuality in the
generalized scenarios studied therein. Also, we identi-
fied which conditions must be met in a given general-
ized scenario so that the trade-off holds. Furthermore,
in rewriting the trade-off relation in terms of quantifiers,
we showed that in the scenarios satisfying these condi-
tions, nonlocality and contextuality can be seen as two
distinct manifestations of nonclassical correlations, and
the trade-off relation then follows from a limitation of the
amount of such correlations imposed by the no-signaling
and no-disturbance conditions.

Our results can also be connected to an existing dis-
cussion in literature related to the notion of nonlocality

revealed by local contextuality [37–39]. The scenarios
considered in this discussion are known to not satisfy the
conditions we described in Sec. IV, and thus are fun-
damentally different from the scenarios we consider in
most of this work. In fact, the trade-off between nonlo-
cality and contextuality exhibited in the scenarios here
considered is a radically different phenomenon from the
revelation of nonlocality by local contextuality. In the
former, it seems like nonlocality and contextuality are
two distinct features coming from a common origin, and
the trade-off follows from a limitation on such an origin.
In the latter, it seems like nonlocality and contextuality
are related in such a way that one cannot exist without
the other.

It is important to stress, however, that the notion of
nonlocality revealed by local contextuality has never been
studied in terms of the generalized definition of locality.
This would be essential for us to better understand how
the relation between nonlocality and contextuality differs
from one scenario to another. Interestingly, in comparing
n-cycles and the Peres-Mermin square, one may wonder
whether this difference is related with state-dependent
versus state-independent quantum contextuality.

Another interesting problem that this work leaves open
is the one of understanding the relations between nonlo-
cality and contextuality from a more physical perspec-
tive. The arguments we have shown take into account
mainly the geometry of the scenarios. However, studying
the relations between these features from a more physical
perspective would guide us towards a more foundational
understanding of them. In the case of the trade-off, for
instance, the underlying reasons for it to exist might be
related to interplays between strongly nonlocal correla-
tions and local randomness.

Finally, from a more practical perspective, the trade-
off between nonlocality and contextuality implies mainly
two considerations. On the one hand, it shows that one
cannot use arbitrary amounts of nonlocality and con-
textuality jointly, thus imposing a fundamental limit on
practical applications based on both of them. On the
other hand, a trade-off can also inspire other possibilities
for applications, such as bounding the amount of nonlocal
correlations from an estimated amount of local contextu-
ality. Since nonlocality and contextuality are resources
for many information-processing tasks, combining their
use in such scenarios is a prominent research endeavor,
which must be thoroughly explored in the near future.
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[17] M. Araújo, M. T. Quintino, C. Budroni, M. Terra Cunha,
and A. Cabello, Phys. Rev. A 88, 022118 (2013).

[18] Z.-A. Jia, Y.-C. Wu, and G.-C. Guo, Phys. Rev. A 94,
012111 (2016).

[19] T. Temistocles, R. Rabelo, and M. Terra Cunha, Physi-
cal Review A 99 (2019).

[20] A. Fine, Phys. Rev. Lett. 48, 291 (1982).
[21] S. Boyd and L. Vandenberghe, Convex optimization

(Cambridge university press, 2004).
[22] S. Lörwald and G. Reinelt, EURO Journal on Computa-

tional Optimization 3, 297 (2015).
[23] A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S.
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setup is either a 4-cycle or a 5-cycle. However, even for
n-cycles with n > 5 they are still satisfied by all local
behaviors. This can be seen by noticing that the local
maximum of such expressions is achieved in a local vertex
of the associated NSND polytope, and all such vertices
are product behaviors, that is, there isn’t any correlation
between Alice and Bob.

For example, let us analyze inequality (A1a) in a gen-
eralized scenario where Bob has any n-cycle. Considering
the facts just mentioned, in a local vertex of the associ-
ated polytope, the inequality takes the form

⟨A0⟩ (⟨B0B1⟩ + ⟨B2B3⟩) + ⟨A1⟩ (⟨B0B1⟩ − ⟨B2B3⟩) ≤ 2.
(A2)

This can be straightforwardly verified by considering all
possible values of ⟨A0⟩, ⟨A1⟩, ⟨B0B1⟩, ⟨B2B3⟩ = ±1 (Re-
member that all these measurements are dichotomic,
with results labeled by +1 and −1).

On the other hand, regarding the maximal viola-
tions of inequalities (A1a) and (A1b) allowed by the no-
signalling and no-disturbance conditions, by construct-
ing analogues of PR-boxes one can verify that both of
them can achieve their algebraic maximum 4 within the
NSND polytope.

Now, let us suppose that (A1a) is violated to its al-
gebraic maximum. The only way in which this can be
achieved is if ⟨A0B0B1⟩ = ⟨A0B2B3⟩ = ⟨A1B0B1⟩ =
−⟨A1B2B3⟩ = 1.

This means that Alice’s measurement outcomes and
the product of Bob’s measurement outcomes are per-
ferctly correlated or perfectly anti-correlated, which im-
plies that

⟨A0B0B1⟩ = 1 ⇒ ⟨A0⟩ = ⟨B0B1⟩ (A3)

and

⟨A1B2B3⟩ = −1 ⇒ ⟨A1⟩ = −⟨B2B3⟩. (A4)

These relations, in turn, lead to

⟨A0⟩ = ⟨B0B1⟩ = ⟨A1⟩ (A5)

and

⟨A0⟩ = ⟨B2B3⟩ = −⟨A1⟩. (A6)

But these equations can only be satisfied if ⟨A0⟩ =
⟨B0B1⟩ = ⟨A1⟩ = ⟨B2B3⟩ = 0.

However, if Bob’s contextuality scenario is an n-cycle,
all noncontextuality inequalities are of the form

n−1∑
j=0

γj⟨BjBj+1⟩ ≤ n− 2 (A7)

where γj = ±1 and
∏

j γj = −1 [17]. By the result above,

if inequality (A1a) is maximally violated, none of the
noncontextuality inequalities of Bob’s is violated, since

two of the Bob’s correlators ⟨BjBj+1⟩ are zero. Since
these are all the noncontextuality inequalities of the n-
cycle scenarios, this proves the noncontextuality of Bob’s
marginal behavior. A similar argument can be applied to
(A1b), and all the other CHSH-like inequalities obtained
by considering other contexts of Bobs.

Appendix B: Maximal violation of
generalized-chained inequalities implies

noncontextuality

Consider a scenario where Bob realizes an n-cycle and
Alice realizes n incompatible measurements. It’s possible
to prove that the following generalization of (A1a) is a
generalized-Bell inequality:

⟨A0B0B1⟩ + ⟨A1B0B1⟩ + ⟨A1B1B2⟩ + . . .

+ ⟨An−1Bn−1B0⟩ − ⟨A0Bn−1B0⟩ ≤ 2n− 2.
(B1)

Similarly to the inequalities discussed in the last section,
one can prove that the maximum violation of (B1) by
NSND behaviors matches its algebraic maximum 2n,
and this can only happen if ⟨AxBjBj+1⟩ = 1 for all
triple correlators appearing in the inequality, except for
⟨A0Bn−1B0⟩ = −1. This implies that

⟨A0⟩ = ⟨B0B1⟩ = ⟨A1⟩ = · · · = ⟨Bn−1B0⟩ = −⟨A0⟩.
(B2)

Thus, all the correlators ⟨Ai⟩ and ⟨BjBj+1⟩ must be zero,
and, considering that all the noncontextuality inequali-
ties of the n-cycle are of the form (A7), it follows Bob’s
marginal behavior is noncontextual.

Appendix C: Local and noncontextual behavior
exhibiting nonclassicality

In this section, we present an alternative argument to
conclude that the behavior considered in section VI A
exhibits nonclassicality, based on the violation of an in-
equality which is satisfied by all classical behaviors.

To begin with, let us recall the generalized Bell sce-
nario under consideration. In such a setting, Bob has
a 5-cycle setup, i.e., five dichotomic measurements Bj ,
j = 1, 2, 3, 4, 5, such that Bi and Bi+1 (with 5 + 1 = 1)
are pairwise compatible , and Alice can only perform one
dichotomic measurement A. Moreover, consider a quan-
tum realization for this scenario in which Alice and Bob
share the qubit-qutrit state

ρ =
1

2
|0⟩⟨0|A ⊗ |0⟩⟨0|B +

1

2
|1⟩⟨1|A ⊗ |2⟩⟨2|B , (C1)

and in which Alice’s measurement is A = σz and Bob’s
measurements are Bj = 2|vj⟩⟨vj |B − IB , with

|vj⟩B = cosθ|0⟩B+

sinθ

[
cos

(
j4π

5

)
|1⟩B + sin

(
j4π

5

)
|2⟩B

]
,

(C2)
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where cos2θ = cos(π/5)/(1 + cos(π/5)), for j =
1, 2, 3, 4, 5.

Now, recalling the definition of a classical behavior,
given by equation (4), notice that every classical behavior
in the considered scenario satisfies

3 ⟨A⟩ + ⟨(1 + A)D⟩ ≥ −3, (C3)

where D = B1B2 + B2B3 + B3B4 + B4B5 + B5B1. To

see this, one can simply check all the deterministic as-
signments of ±1 to the observables A and Bj . For all
such assignments, we have ⟨(1 + A)D⟩ = ⟨(1 + A)⟩ ⟨D⟩
and ⟨D⟩ ≥ −3, from which the bound in (C3) directly
follows.

On the other hand, a straightforward calculation shows
that the given quantum behavior violates (C3) to 5 −
4
√

5 ≈ −3.94, thus proving its nonclassicality.
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