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Abstract

The relativistic Dirac theory laid the foundation for understanding antiparticles and the poten-
tial for particle creation and annihilation within the realm of quantum field theory(QFT). This
theory laid the groundwork for understanding the fundamental behavior of particles in the con-
text of QFT. Moreover, the dynamic nature of gravitational fields, particularly in an expanding
Universe, is pivotal in enabling the spontaneous generation of particles from the vacuum. While
conceptually straightforward, this process leads to the transformation of creation operators into
superpositions of creation and annihilation operators, with profound implications for our un-
derstanding of phenomena such as black holes, the early Universe, and quantum aspects of
gravitational physics.Additionally, similar behavior is observed when dealing with time-varying
electric fields, as discussed in reference [5]. This behavior effectively recovers the Schwinger
effect, particularly in the case of a constant electric field. This phenomenon exemplifies the in-
tricate interplay between quantum fields and varying background fields.QFT grapples with the
profound and unresolved challenge of describing quantum systems undergoing time-dependent
and far-from-equilibrium transformations. Traditional particle concepts become inadequate in
such scenarios, necessitating the introduction of quasi-particles to characterize the evolving
states better. Perturbative methods, typically employed in near-equilibrium conditions, are the
cornerstone of QFT. However, this study delves into the semi-classical aspects of QFT, exploring
the universal principles of asymptotic expansions to dissect the behavior of quantum systems
as they evolve under the influence of time-dependent forces far from equilibrium. The research
motivation behind this study stems from fundamental inquiries. The objective is to investigate
whether real-time particle production observations are feasible and devise methodologies for ad-
dressing the non-equilibrium consequences arising from the back-reaction in particle generation
mechanisms. In the specific context of Schwinger particle production, developing a real-time
framework for tracking particle numbers carries significant promise. Such an approach can
potentially lower the critical electric field threshold required for observing the Schwinger effect
and offer precise control over this phenomenon. These insights are not confined to theoretical
exploration but extend to practical applications, especially in the realm of high-intensity laser
physics.

Furthermore, a real-time framework may unlock a deeper understanding of the time-dependent
process of pair recombination, a pivotal phenomenon involving the annihilation of particle-
antiparticle pairs. This understanding is crucial for unraveling the back-reaction effects that
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influence particle production. Such insights enrich our comprehension of the Schwinger Ef-
fect and other particle production mechanisms.The significance of these developments extends
beyond high-energy physics, reaching into the domain of cosmology. A deeper understanding
of particle production and related processes may illuminate the fundamental dynamics of the
universe, shedding light on the early moments of the cosmos and its subsequent evolution. This
research serves as a bridge between the quantum realm of particle physics and the macroscopic
universe, offering a more profound grasp of the physical processes underlying our universe’s
existence.

Pair creation can be envisaged as transforming a quantum system, traversing from an ini-
tial state of equilibrium to a final equilibrium state through an intermediate phase of non-
equilibrium instigated by a potent external field. During these intermediate non-equilibrium
phases, as matter fields interact with a time-dependent external field, the classical Hamilto-
nian loses its time translation symmetry. Consequently, various options for annihilation and
creation operators (and, consequently, the vacuum) emerge within Fock quantization, thereby
engendering complexities in depicting the evolution of the vacuum and generating particle-
antiparticle pairs over time. Numerous approaches to vacuum selection have been explored
in the literature, their choice contingent upon the specific system attributes under scrutiny
and the adopted quantum theory. Adiabatic vacua have found wide applicability, especially in
cosmological and Schwinger effect contexts. These adiabatic modes are constructed through
semiclassical WKB-type approximations, often employing reference mode functions in the form
of plane waves, particularly effective when the external background field evolves gradually over
time. An alternative to this traditional approach is the utilization of adiabatic vacua, an idea
initially proposed by Parker and subsequently formalized by Lueders and Roberts. Within this
established framework, the asymptotic analysis of particle states in the distant past (in-states,
prior to the initiation of the external field) and the distant future (out-states, long after the
interaction with the external field has concluded) is well-understood. This relies on the ex-
pression of the quantum field operator in terms of creation and annihilation operators, linked
to one-particle states in both the present and the future. By exploiting the interrelationship
between these sets of operators in the past and the future, we can derive an equation for the
S-matrix of the process and quantify the number of particles generated throughout the process.

We investigate the production of electron-positron pairs from the vacuum in a time-varying,
spatially uniform pulsed electric field given by E(t) = E0sech

2(t/τ), with height of E0 and width
of τ . Such background field has received extensive attention in the literature [1,2,3], with a
focus on its asymptotic behavior, particularly the probability of pair production. However, the
problem of pair production after a finite evolution time has rarely been discussed [4,5]. This
raises questions about the instantaneous appearance of particles in pair production and their
behavior at intermediate times when using a formalism that involves solving an evolution equa-
tion for a dynamical quantity. Is it possible to make general statements about this behavior?
To address these questions, we analytically compute the probability of (e+e−) pair production
in momentum space using the exact solution of the one-particle time-dependent Dirac equation,
and we compare the result with quantum kinetic theory (QKT), which is rigorously derived
from QED by canonical quantization of the Dirac field and subsequent Bogoliubov transfor-
mation to a quasi-particle representation [6]. Both approaches allow us to study the particle
momentum spectrum at any instant of time and can potentially unveil valuable information
regarding quantum non-equilibrium physics. We analyze the Longitudinal Momentum Spec-
trum (LMS) of the created particles at finite times in both approaches. We observe oscillatory



structure in the LMS at time t > τ , and this oscillation pattern continuously changes from t > τ
up to t < 6τ . After that, this oscillation slowly fades away, and we see smooth Gaussian-shape
spectra for late times, reproducing Schwinger’s non-perturbative signature. This oscillation
behavior at finite time clearly illustrates the quantum interference effects associated with par-
ticle production, as explained in recent work [7,9]. It is worth noting that both approaches
exhibit quantum interference patterns at finite times, manifested as oscillations observed in
the LMS. This clearly reveals that these oscillations are not due to transient excitations and
basis-dependent signatures [8]. We again emphasize that the oscillations seen in the LMS from
both approaches are not artifacts but rather possess significant physical relevance. Therefore,
comparing the two approaches sheds light on pair production at finite times and provides more
physical information on the non-equilibrium state.
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