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In this work, we present a model for the behavior of Dirac particles under the tensor effect in the
spherical core/shell regime. We examine the change of energy levels corresponding to the particles
localized in a space of approximately 1. 0 fm in the core region of the quantum sphere, with the well
width. It also occurs from the analytical solutions that the two different levels accompany particle
states of the same mass. Additionally, the solutions exhibiting anomalous behavior, giving rise to
antiparticle-type states, occur at heavier mass.
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I. INTRODUCTION

As a cornerstone of solvable models in relativistic
quantum mechanics, the Dirac equation boasts a rich
legacy of applications, as evidenced by its extensive
study in high-energy physics [1–3], optical topics [4] and
condensed matter physics [5]. Theoretical approaches
to modelling Dirac’s particles have, for 50 years, fo-
cused on the interactions in view of the spinor systems
[6–9]. Such models have been launched on the forma-
tion of quantum systems such as hot nucleus [10], cor-
relation in nuclear spinors [11] and polar representation
[12]. Within the context of space-time dimensionality,
exact solutions of the Dirac equation have been also
obtained [13–15].

In the computational manner, pseudo-spin symmetric
solutions of Dirac equation based on radial interactions
in spherical shell have pioneering results in mathemat-
ical physics [16]. In studies involving the integrated
effect of tensor interactions regarding spherical quan-
tum wells within the Dirac equation, degenerate states
and their removing have been observed in the analytical
studies such as exponential oscillator [17], Yukawa ten-
sor interaction [18] and Coulombic tensor [19]. Further-
more, Dirac particles in quantum well with topological
insulator [20] and spherical core systems [21] have been
also studied through analytical approaches. In previous
research we have demonstrated that the pseudo-spin so-
lutions in Dirac’s spinor systems are calculable context
on the relevant energy spectra through spatially varying
mass [22].

In the Dirac equation, the pseudospin concept occurs
in the constant potential energy context [23]. In total,
we deal with the radial interactions are given by

Σ(r) = V (r) + S(r); Σ′ = 0, (1)

where V (r) and S(r) are the scalar potential and the
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relevant mass distribution, respectively. Constant po-
tential energy allows the radial-spinor equations to be
reduced to Schrödinger-type solvable eigenvalue equa-
tion. In a way, under the spin & pseudospin concepts,
the upper- and lower-spinor states are clearly revealed
when the analytical or full numerical method is applied.

In radial form, the Schrödinger-type solvable spinor
equations require a constant total-potential under the
pseudospin concept, so the other "difference potential,
∆(r) = V (r)− S(r)" is valid for variable form through
radial mass distribution. This "key mechanism" also
needs to be understood in the spherical quantum well,
where the size effect is described. In other words, in
cases where the mass distribution varies only in the
core and shell regions, there is a need to determine how
the energy values change with the size effect, similar to
the formation of particles and antiparticles, even if it is
constant in the material region, to determine normal or
anomalous states.

In this study, we focus on calculation of energy lev-
els regarding Dirac particles in the core/shell sphere,
considering quantum well regions with different mass
distributions. As a logical approach to the quantum
confinement, we determine the particle and antiparticle
states representing the decrease and increase in energy
levels based on the increasing change in the core radius.
From these results, we also establish that the heavier
mass distribution in the core region corresponds to an
antiparticle state. We also show new numerical results
of the tensor interaction related to physically accept-
able solutions applied to the spherical quantum well at
fm-scale nuclear distance.

II. MODELING

Considering atomic units ℏ = c = 1, a typical Dirac
equation with spatial varying mass including tensor, is

ar
X

iv
:2

40
5.

02
91

6v
1 

 [
qu

an
t-

ph
] 

 5
 M

ay
 2

02
4

mailto:sami.ortakaya@yahoo.com


2

given by [22]

[α · p+ βm(r)− iβαr̂U(r)] Ψ(r) = [E − V (r)]Ψ(r),

(2)

where p = iℏ∇ is the momentum operator, m(r), U(r)
and V (r) denotes position-dependent mass which has
energy equivalent, tensor interaction and spherical sym-
metric potential, respectively. α and β are also Dirac
matrices defined by
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Figure 1. Scalar potential energy, V (r) profile of Dirac’s
core/shell

α =

(
0 σ
σ 0

)
, β =

(
0 I
I 0

)
, (3)

where I is 2×2 identity matrix and σ represents three-
vector spin matrices via following spinor form:

Ψnκ(r) =

(
Fnκ(r)

r Ωℓ
jm(θ, φ)

Gnκ(r)
r Ωℓ̃

jm(θ, φ)

)
, (4)

where F and G are upper- and lower- spinors; respec-
tively, Ω is the spin & pseudospin spherical harmonics
for ℓ and ℓ̃. Within the spherical nuclei, the eigenvalues
of spin-orbit coupling lies that

κ =

{
− (j + 1/2) < 0, j = ℓ+ 1/2 (aligned spin),
(j + 1/2) > 0, j = ℓ− 1/2 (unaligned spin).

We can launch the pseudospin symmetry as a case of
potential energy profile, m(r) = mi + S(r) for i = 1 in
core and i = 2 in shell; so considering that

Σ(r) = V (r) + S(r), (5a)
∆(r) = V (r)− S(r), (5b)

we should get the spinor G(r) in pseudospin represe-
natation at dΣ(r)/dr = 0. One can also obtain two
couples for upper- and lower-spinor components(

d

dr
+

κ

r
− U(r)

)
Fnκ(r) = (m0 + Enκ −∆)Gnκ(r),(

d

dr
− κ

r
+ U(r)

)
Gnκ(r) = (m0 − Enκ +Σ)Fnκ(r),

(5c)

so we obtain that the solvable Schrödinger-type equa-
tion in the pseudospin symmetry where radial varying
energy becomes Σ′ = 0 in Equation (5c). Inserting
pseudospin symmetry, we should have a solvable eigen-
value equation of the form[

d2

dr2
− κ(κ− 1) + f [U(r)]

r2
− ϵi

]
G(r) = 0 (6)

where

ϵ1 = m2
1 − (E + V0)

2, r < r0, (7a)
ϵ2 = m2

2 − (E − V0)
2, r ≥ r0. (7b)

Putting Coulombic interaction as a radial component,
U(r) = −U0

r , we obtain that

f(U0) = (2κ− 1)U0 + U2
0 . (7c)

Defining the physical acceptable solution G = rag(r)
for a > 0, we have

a±(κ) = 0.5±
√
0.25 + κ(κ− 1) + (2κ− 1)U0 + U2

0 .

(8)
The second proposed-function based on the behavior of
wave function at large distance reads

g(r) = exp(−br)M(r),

and then Equation (6) is turn into the Kummer’s eigen-
value equation is obtained the form

rM ′′ + (2a− 2br)M ′ − 2abM = 0, b =
√
ϵi > 0. (9)

So that, unnormalized form is given in following func-
tion

G(r) = rae−brM(a, 2a ; 2br), (10)

where M denotes confluıent hypergeometric functions.

III. NUMERICAL RESULTS

From Eq. (8), we conclude that the degeneracies are
taken throught U0 = 0, so there is a degeneracy between
κ = 0 and κ = −1. The all degeneracies remove when
tensor interaction exists and then we can take the values
of En,κ which has non-degeneracy as En,0 ̸= En,−1.

Especially, the mathematical manner at ground state;
κ = 0 leads to

a(U0 = 0) = a(U0 = 1).

But now we consider the arbitrary values of U0 and
then we should know the range, a > 0 under physical
acceptable solutions. In the ground state κ = 0, the U0
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has to been tuned in the range, U2
0 < U0 for a > 0 in

Eq. (8) through acceptable lines. In a way, we have the
second solution given by

a− = 0.5−
√
0.25 + U2

0 − U0 for a > 0 ∧ U2
0 −U0 < 0.

(11)
We firstly set up energy spectra without tensor inter-

action, so the solutions of Eq. (6) are obtained by the
boundary conditions

G1(r0) = G2(r0),

1

m1
G′

1(r0) =
1

m2
G′

2(r0), (12)

and then the considered transcendental equation yields
energy spectra.

The energy eigenvalues as a function of the well width
are shown in Figure 2. The depth of the quantum well
corresponds to V0 = 1.0 fm−1, taking 2 fm−1 in total
and there is no tensor interaction. The increase in en-
ergy in the excited state and the decrease in energy
with increasing well width represent particle states in
view of light rest-mass m1 = 1.5 fm−1 and heavier value
of m2 = 1.75 fm−1. The other behaviour represents
antiparticles at heavier rest-mass m1 = 1.75 fm−1, so
the shell layer is analyzed at a lighter effective mass
m2 = 1.5 fm−1. For the particle case, the core re-
gion can be considered at a heavier effective mass. The
energy spectra shown summarise the relationships be-
tween the particle and antiparticle states and the mass
combination in a spherical core/shell structure.

When the tensor parameter U0 is unitless, it is ob-
tained that a± = 0.5 for U0 = 0.5. Here, the range
a > 0 provides physical acceptable condition given by

G(r) ∝ ra, G(r = 0) = 0. (13)

The ground state (n = 0, κ = 0) energy eigenvalues
for U0 = 0.5 are shown in Figure 3 through heavy
(m1 = 1.75 fm−1) and light (m1 = 1.5 fm−1) rest-mass
energies. A charged particle of mass m1 = 1.75 fm−1

is heavier mass in the core region and m2 = 1.5 fm−1

denotes lighter mass in the shell layer, which can also
be considered as "effective mass". On the other hand,
the decreasing behavior of the energy spectra in the
core/shell with increasing quantum-well width for m1 =
1.5 fm−1 and m2 = 1.75 fm−1 is in accordance with the
normal energy level (N-EL) concept, similar to particle-
state assignment. The heavier effective mass in the
core layer (m1 = 1.75 fm−1 and m2 = 1.5 fm−1) has
anomalous energy level (A-EL) in accordance with the
antiparticle-state assignment, so the energy values in-
crease with increasing well width. In particular, these
results partially differ from those obtained for U0 = 0
shown in Figure 2. In the presence of the tensor inter-
action, the behaviour of the heavier-mass A-EL is from
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Figure 2. Energy eigenvalues for (a) normal level (particle)
and (b) anomalous level (antiparticle) related to (nκ) states
as a function of well width r0 without tensor interaction.

positive energies to higher energies. In the absence of
the tensor potential, the A-EL (or antiparticle) shifts
from negative to zero level, so that the probability of
tunneling for the so-called A-EL antiparticle contexts
through tensor interaction increases.

IV. DISCUSSION AND CONCLUSION

The key feature of analytical solutions is that the
physically acceptable way is realized if a± > 0. For
U0 = 0.5 as a tensor parameter, the equality, a+ = a−
corresponds to the N-EL and A-EL states assigned
above. However, it is possible to obtain two different
energy levels in both the a+ > 0 and a− > 0 ranges. In
the mathematical lines, a+ = 0.6 and a− = 0.4 values
occur for U0 = 0.4 and these conditions are plotted in
Figure 4 for the (nκ) = (00) ground state, the light-
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Figure 3. Ground state energy as a function of well width
r0 in the presence of Coulombic tensor interaction U0 = 0.5

mass in core and heavy-mass in shell. The optical tran-
sitions between the energy levels with identical spins
exhibit the blue-shift as the energy differences decrease
with increasing well width.

It is arguable how these particle states would fill space
or occupy energy levels. In a way, it is possible to fill
the space with particle state representations or N-EL
with different probabilities of occurrence when two so-
lutions are available. In the other way, principal quan-
tum numbers can be assigned, i.e. the lower and upper
energy levels can be given values n = 0 and n = 1 re-
spectively. Even if such situations are mathematically

possible, they may need to be verified experimentally.

-0.10

-0.08

-0.06

-0.04

-0.02

 0.00

 0.75  1.00  1.25  1.50

N-EL regime

E
n
er

g
y
 [

fm
-1

]

 Width [fm]

0.4 (-)

0.4 (+)

Figure 4. Particle states and its behaviour as a function of
well width at ground state for tensor interaction U0 = 0.4.

In the above analyses, the shift of the excited en-
ergy levels of Dirac particles in the spherical core/shell
structure to lower energy levels with reference to the
ground state and the increase in energy levels with in-
creasing well width were assigned as ‘anomalous levels’
and thus antiparticle states were detected. As a result
of the Coulomb tensor interaction, the existence of two
energy levels exhibiting particle behaviour at the same
mass is still a puzzle phenomenon in terms of question-
ing how to occupy the energy levels.
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