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The nonclassical signature of a photon-phonon pair can be tested effectively by violating Cauchy-
Schwarz and Bell’s inequality, which can arise due to antibunching phenomena in coupled bosonic
systems. In this paper, we analyze the measurement criteria imposed on the second-order coherence
functions and investigate the quantum correlations leading to the suppression of multi-photon-
phonon excitation in a single optomechanical cavity upon driving it with two pumping fields. It
is also shown that the Cauchy-Schwarz violation can serve as an ideal precursor to demonstrate
stronger tests of locality related to Bell’s inequality. We consider weak driving and optomechanical
coupling coefficient parameters in the system that enables the unconventional nature of photon
(phonon) blockades while operating in the resonance of cavity detuning and mechanical frequency.
These findings are valuable for generating sub-Poissonian signals in optimal conditions and have
potential applications in hybrid systems for on-demand single photon (phonon) detection.

I. INTRODUCTION

In what sense does the quantum behavior of a pulse
of light become predominant was the central question
that kept the optics community busy from the middle
of the 20th century. Later, the issue was resolved by
the pioneering works of Glauber, Sudarshan, Mandel,
and others, where the coherence functions of quantized
electromagnetic fields are introduced to characterize dif-
ferent nonclassical effects such as antibunching, squeez-
ing, and non-locality [1]. In this context, the most well-
demonstrated examples include twin-beam generation
[2], four-wave mixing [3], parametric down-conversion [4],
resonance fluorescence [5], etc. The central argument for
the proposal of nonclassical demonstration is the phe-
nomena of anticorrelation in antibunching [6], which can
be easily measured by implementing a ubiquitous rela-
tion in mathematical physics and engineering called the
Cauchy-Schwarz (CS) inequality [7]. The CS inequality
provides a classical upper bound, which states that prod-
ucts of two arbitrary fluctuating vectors are bounded by
the squared expectation value of their cross-correlations
i.e. |⟨AB⟩| ≤

√
⟨A2⟩⟨B2⟩, where A and B are two ran-

dom variable observables and any two classical signals
always obey this fundamental relation. However, the an-
tibunching property of light can violate this inequality,
which is not accountable in classical optics [8]. Previ-
ously, the violation has been reported in a plethora of
optical systems and atomic ensembles [9–13], as well as
with matter-waves [6] and recently in magnon pairs [14].
The CS violation is also considered a major prediction of
the spontaneous Hawking radiation in sonic black holes
[15]. The implication of CS violation is two-fold, firstly, it
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depicts the stronger quantum correlations between mul-
timode bosonic systems which is absent in the classical
picture, and secondly, it implies the possibility of non-
local effects encountered in the Clauser-Horne-Shimony-
Holt (CHSH) framework [6, 8]. The CHSH inequality [16]
is a particular type of Bell inequality [17] that falsified
the idea of local realism advocated by Einstein, Podolsky,
and Rosen (EPR) in the hidden variable model [18]. Over
the past decades CHSH violation has been reported on
different platforms (optical, condensed matter, etc.)[19–
22] which involve correlations between measurements on
entangled particles that are usually represented by Bell
states. Violations of the CHSH inequality have utmost
importance in the current discourse of physical theories,
providing evidence for the non-local phenomenon encoun-
tered in quantum systems. On a fundamental level, it
is noteworthy to analyze CS and CHSH violations alto-
gether in micro and nanomechanical systems for future
quantum information and communication technologies.
Over the past decade, considerable efforts have

been devoted to exploring the nonlinear interaction of
nanoscale mechanical oscillators with optical cavities via
radiation pressure force of light, which gave birth to the
field of optomechanics (OM) [23]. Ground state cooling
[24], normal mode splitting [25], entanglement between
mirror and light [26], and squeezing of mechanical os-
cillators [27] showed breakthroughs, which brings OM a
considerable participant while investigating the nonlin-
ear quantum regime on a mesoscopic scale [28]. Thus,
antibunching properties primarily featured with photons
are now associated with phononic modes also [29]. In the
demonstration of antibunching, a weak Kerr-like nonlin-
earity (alternatively known as the unconventional block-
ades [30]) is essential for the resonant excitation of sin-
gle quanta, for this, several improvements of photon and
phonon blockades in OM platforms are proposed via two-
level systems [31], parametric amplification [32], spinning
resonator [33], PT symmetric effects [34], quadratic cou-

ar
X

iv
:2

40
5.

02
89

6v
1 

 [
qu

an
t-

ph
] 

 5
 M

ay
 2

02
4

mailto:joyghos@kgpian.iitkgp.ac.in
mailto: kapil.debnath@abdn.ac.uk


2

(b)(a) Membrane

Ωc

Ωm

κ

γ

√𝟐𝛀𝒎

𝛀𝒄

-g + 𝛀𝒎

|𝟎𝟎⟩

|𝟏𝟎⟩ |𝟎𝟏⟩

|𝟏𝟏⟩

𝛀𝒎

√𝟐𝛀𝒄 𝛀𝒄

|𝟐𝟎⟩ |𝟎𝟐⟩

FIG. 1. (a) Schematic of a single cavity optomechanical sys-
tem consisting of a membrane in the middle architecture, un-
der two weak driving fields. The amplitude of the optical and
mechanical driving fields are Ωc and Ωm with corresponding
damping rates κ and γ. (b) Transition pathways of multiple
Fock states leading destructive interference, which is respon-
sible for the two-photon-phonon blockade.

pling [35, 36], etc. However, OM coupling itself resem-
bles a Kerr-like effect [37], which can cause a violation of
classical inequalities in a single photon-phonon-generated
Fock state. On a general ground, it is possible to exhibit
the CHSH violation along with the CS inequality viola-
tion in a single setup while addressing the effects of the
antibunching property.

In this paper, we report a complete theoretical analysis
of the CS/CHSH violation based on the strong nonclassi-
cal signature of the OM cavity, where the system is driven
by two weak pump fields. For this, the second-order co-
herence function designed for the quantum operators is
implemented to test the antibunching phenomena of op-
tical and mechanical modes simultaneously. From an-
alytical derivations, a single photon-phonon Fock state
is established via the multiple pathway destructive in-
terference [38], which can be generated upon resonant
driving of the system, reflecting the CS/CHSH violation
to a great extent. The sub-Poissonian statistics of the
photon-phonon field are extracted from the joint Fock-
space distribution, which holds fundamental importance
in quantum optics studies. Furthermore, the single parti-
cle occupancy probability has achieved maximum in this
system while operating in resonance conditions. This in-
dicates efficient antibunching phenomena certified for the
benefits of sensing and quantum control at a few photon-
phonon levels.

II. THEORETICAL FRAMEWORK

Consider a standard Fabry–Pérot system, consisting
of a laser-driven cavity, which causes coherent vibrations
in the movable membrane as shown in Fig.1(a). The
cavity frequency is assumed to be linearly coupled to the
displacement of the membrane via the radiation pressure
force of light. In addition to the optical driving force,
an extra weak pumping is provided to excite phonons
in the mechanical mode. The weak pumping field can

be implemented by using the piezoelectric effect or a dc
voltage signal [39]. The Hamiltonian of this system in
the rotating frame of driving frequency can be expressed
as (taking ℏ = 1)

H = ∆â†â+ ωmb̂
†b̂− gâ†â(b̂+ b̂†) + Ωcâ

†

+Ωmb̂
† + h.c (1)

Here, ∆ = ωc − ωL is the detuning between cavity fre-
quency (ωc) and driving laser frequency (ωL), â

†(â) are
the creation (annihilation) operators associated with the
optical field. The mechanical mode frequency is denoted

by ωm with respective operators b̂†(b̂) and g represents
the optomechanical coupling strength. The amplitude
of the weak mechanical pump (and laser drive) is ex-
pressed as Ωm (Ωc). The free part of the Hamiltonian
(without driving fields) in Eq.(1) has eigenvalues of the
form Enm = ∆n+ ωmm− g2n2/ωm (where n and m are
positive integers), which showcases the anharmonicity of
the energy spectrum in the cavity-membrane oscillator
system. By taking the cavity (κ) and mechanical dissi-
pation (γ) rates into account, the dynamical evolution of
the system can be described by the following Lindblad
master equation

∂tρ = −i[H, ρ] + κL(â)ρ+ (nth + 1)γL(b̂)ρ
+nthγL(b̂†)ρ (2)

where ρ is the density matrix and nth = 1/[exp
(

ℏωm

kBT

)
−1]

(where kB is the Boltzmann constant) is the thermal
phonon excitation number at temperature T , and the
Lindbladian is expressed as L(ô) = ôρô† − 1

2{ô
†ô, ρ};

o = â, b̂ with {·} is the anticommutation operation.
From Eq.(2), the time-delayed second-order coherence
function for photons can be computed as, g2(τ) =
Tr[â†â†ââρ]/Tr[â†âρ]2, while in case of phonons, oper-

ator â is replaced by b̂. The function g2(τ) has several
properties from which the statistical nature of quanta is
distinguished from the classical signal, from which the
following inequalities are always satisfied, (i) g2ii(0) ≥ 1,

(ii) g2ii(τ) ≤ g2ii(0), and (iii) g2ij(0) ≤
√
g2ii(0)g

2
jj(0),

where i = â, b̂ and i ̸= j [40]. The first condition
describes the coherent nature of classical fields and its
violation indicates the sub-Poissonian statistics of pho-
tons (phonons), while the limit g2ii(0) → 0 corresponds
to the blockade phenomena in which only single quanta
can be excited corresponding to the optical or mechanical
mode. The violation of the second and third conditions
displays the effect of anticorrelation in antibunching, re-
sulting in CS inequality not satisfying. These violations
can be easily measurable by the output spectrum of an
OM cavity by using a Hanburry, Brown, and Twiss-type
experimental setup [41, 42]. The antibunching statis-
tics characterized by the second-order coherence function
are also linked to the Fano factor, from which mechan-
ical limit cycles can be identified and the possibility of
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FIG. 2. Steady-state second-order coherence function g2(0)
(in logarithmic scale) versus cavity detuning ∆/κ for two me-
chanical frequencies (ωm1 = 10κ and ωm2 = 20κ) showing an-
tibunching effect of photons (red) and phonons (blue) while
operating in resonance on both sides of the central linewidth.

phonon laser is also achievable [43]. Additionally, in the
case of Gaussian states, the classically forbidden values
of the coherence function are observed as a consequence
of optimized amplitude squeezing [44]. However, the an-
alytical expression of the second-order coherence func-
tion g2ii(τ) is not directly solvable from the master equa-
tion Eq.(2). To better understand the physical mecha-
nism, an alternative method is provided to breach the
classical inequalities and demonstrate the antibunching
phenomena in the present system. The analytical de-
scription of the temporal evolution (as well as in steady-
state) of the second-order coherence function can be cal-
culated by solving Schrödinger’s equation in the trun-
cated Fock space by assuming a weak driving condition
i.e. {Ωc,Ωm} ≪ {κ, γ}, where the possibility of multi-
particle excitation can be controlled by optimizing the
system parameters. Some important characterization pa-

rameters of this model are considered as, high mechanical
quality factor ωm/γm ≫ 1, the resolved-sideband regime
ωm > κ, and a weak OM coupling coefficient g < ωm.
Assuming the membrane has been cooled to the ground
state initially (nth ≈ 0), the weak driving field can be
treated as a perturbation, so the wavefunction (following
the rapid communication [38]) can be expressed in the
photon-phonon joint Fock space as

|ψ⟩ =
n+m≤2∑

n,m

Cnm |nm⟩ (3)

where Cnm is the amplitude of a particular state
|n⟩

⊗
|m⟩ (with n photons and m phonon numbers)

belonging to the wavefunction |ψ⟩ with occupation
probability |Cnm|2, such that |C00| ≫ |C10|,|C01| ≫
|C11|,|C20|,|C02| satisfies under weak-pumping. Consid-
ering dissipation factors of the cavity and membrane into
account, the effective Hamiltonian has the following non-

hermitian form written as, Heff = H−iκ/2â†â−iγ/2b̂†b̂.
Based on the Schrödinger’s equation i.e. i∂t |ψ⟩ =
Heff |ψ⟩, the dynamical evolution of the transition prob-
abilities Cnm are obtained as

i∂tC00 = ΩcC10 +ΩmC01 (4)

i∂tC10 = ∆′C10 + (−g +Ωm)C11 +ΩcC00

+
√
2ΩcC20 (5)

i∂tC01 = ω′
mC01 +ΩcC11 +ΩmC00 +

√
2ΩmC02 (6)

i∂tC11 = (∆′ + ω′
m)C11 + (−g +Ωm)C10 +ΩcC01(7)

i∂tC20 = 2∆′C20 +
√
2ΩcC10 (8)

i∂tC02 = 2ω′
mC02 +

√
2ΩmC01 (9)

with ∆′ = ∆ − iκ/2 and ω′
m = ωm − iγ/2. The first

equation of the probability amplitudes, i.e. Eq.(4) is al-
ways approximately satisfied, therefore we can consider
|C00|2 ≈ 1. The other transitions among the Fock states
of the system can invoke photon-phonon blockade based
on the quantum interference effect of multiple pathways
as shown in Fig.1(b). From the steady-state analysis,
the Eq.(5)-(9) is solved iteratively for Cnm and g2ii(0) is
computed as

g2aa(0) =
⟨â†â†ââ⟩
⟨â†â⟩2

=
2|C20|2

(|C10|2 + |C11|2 + 2|C20|2)2
(10)

g2bb(0) =
⟨b̂†b̂†b̂b̂⟩
⟨b̂†b̂⟩2

=
2|C02|2

(|C01|2 + |C11|2 + 2|C02|2)2
(11)

g2ab(0) =
⟨â†b̂†b̂â⟩
⟨â†â⟩⟨b̂†b̂⟩

=
|C11|2

(|C10|2 + |C11|2 + 2|C20|2)× (|C01|2 + |C11|2 + 2|C02|2)
(12)

III. RESULTS AND DISCUSSION

In this section, we determine the solutions of Eq.(10)-
(12) by solving Cnm from Eq.(5)-(9) and depict the re-

sponse of [g2ii(0)]i=a,b (in logarithmic scale) as a func-
tion of normalized cavity detuning (∆/κ) in Fig.2. For
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FIG. 3. Equal time-delayed second-order coherence function
log[g2(τ)] of photons (red) and phonons (blue) versus cavity
detuning ∆/κ for two mechanical frequencies ωm1 = 10κ and
ωm2 = 20κ, and the optomechanical coupling is set at g =
0.25κ.

the numerical simulation, the following resolved-sideband
parameters are taken, the driving field strengths are cho-
sen by considering weak pumping as Ωc/κ = 5 × 10−3

and Ωm/κ = 10−4, and the mechanical damping rate
is γ/κ = 0.01 with optomechanical coupling coefficient
g/κ = 0.25. The detuning of the cavity frequency (∆/κ)
is set for a wide range and the mechanical frequency
(ωm/κ) is varied accordingly to record the response of

the coherence function g2ii(0) for i = â, b̂. From Fig.2
violation of the first inequality (proposed earlier) can
be observed, showing a strong antibunching effect i.e.
log[g2ii(0)] < 0 for an exact condition of ∆ = −ωm.
For different settings of the mechanical frequency ωm/κ,
two dips of log[g2ii(0)] are obtained respectively, first at
the zeroth position of ∆ and second at ∆ = −ωm. For
demonstration purposes, ωm is arbitrarily taken as 10κ
and 20κ, following the good-cavity limit [45] in both
blue- and red-sideband operations. The sharp response
of the second-order coherence functions clearly shows
that single photon-phonon blockade simultaneously ex-
hibits in the system and the sub-Poissonian nature of
the excited states is revealed only in resonance condi-
tions. Also, by comparing the dips as log[g2aa(0)] ≈ −2.79
and log[g2bb(0)] ≈ −9.58 for ωm1 = 10κ, we observe
the phonon antibunching is much stronger than photons
when the resonance frequency matches for both sides of
the central linewidth i.e. ∆/κ > 0 and ∆/κ < 0. Al-
though for the central dip, ∆/κ = 0, the sub-Poissonian
light suppresses phonon excitation with dip values noted
as log[g2aa(0)] ≈ −4.60 and log[g2bb(0)] ≈ −1.83. Sim-
ilar responses are also recorded for an additional res-
onant frequency, chosen as ωm2 = 20κ. In this case,
the dip values are obtained as log[g2aa(0)] ≈ −1.59 and
log[g2bb(0)] ≈ −8.38, and at the central position the dip
values are log[g2aa(0)] ≈ −4.60 and log[g2bb(0)] ≈ −0.62.
It can be seen that the central dip of the cavity re-
sponse doesn’t change by shifting the mechanical fre-
quency, however, the additional dips of the system de-
crease while increasing the resonant frequency to much
higher values. This is because higher resonant frequen-
cies require stronger driving strengths to maintain the
quantum coherence of photons and phonons.

Next, the temporal evolution of the second-order
coherence function is measured by the relation,
[g2(τ)ii]i=a,b = ⟨̂i†(t)̂i†(t+τ )̂i(t+τ )̂i(t)⟩/⟨̂i†(t)̂i(t)⟩⟨̂i†(t+
τ )̂i(t+ τ)⟩, which depicts the joint probability of detect-
ing one photon (phonon) at time t = 0 and the next
emitted photon (phonon) at time t = τ [46]. The dy-
namics of g2ii(τ) for i = â, b is illustrated in Fig.3, clearly
showing the second inequality is also being violated i.e.
g2ii(τ) > g2ii(0) exhibits for finite time delay τ . There-
fore, it further reflects the sub-Poissonian statistics of
the classical fields while operating on both the resonant
frequencies that we have taken. Also, fluctuations of the
second-order coherence function at an initial time are
much lower than later instants of the transient stage,
which is nothing but showcasing the antibunching effect
of photons and phonons simultaneously occurring in this
system.

The last and most directly applicable CS inequality
proposed in the third condition reveals that the abso-
lute square of cross-correlation of the photon and phonon
fields is less than equal to the product of auto-correlations
of the individual fields. To demonstrate this effect, the
three functional forms of the coherence functions given
in Eq.(10)-(12) are plotted by varying normalized cav-
ity detuning (∆/κ) and OM coupling strength (g/κ) in
Fig.4. In addition, a dimensionless parameter is intro-
duced to check the degree of classical violation, defined
as ρ = g2ab(0)/

√
g2aa(0)g

2
bb(0) [14]. Note that, ρ > 1 indi-

cates the violation of CS inequality, signifying quantum-
ness in the OM system exhibiting strong photon-phonon
correlations. From Fig.4(a) and 4(b), the violation of
photon-phonon coherence functions can be observed with
OM coefficient variation up to the strong-coupling limit
g = 2κ, while the membrane frequency is set at ωm =
10κ. Fig.4(c) depicts the positive cross-correlation of
photon and phonon fields as a consequence of the strong
antibunching effect, suggesting that the two-mode state
|11⟩, represented in Fig.1(b) is occupied. Next, the CS
violation factor ρ is plotted in Fig.4(d), and we obtain
ρ ∼ 9.42, for g = 0.25κ and ∆ = ωm1 = 10κ. The
lower panel of Fig.4(e)-4(h) represents similar character-
istics of the coherence function obtained for the second
resonance frequency at ωm2 = 20κ. This demonstrates
a clear shift in the cavity detuning from ∆/κ = −10 to
∆/κ = −20 with the violation factor found as ρ ∼ 8.79.
It can be noted that the CS violation parameter is likely
to decrease with increasing the resonant frequency of the
vibrating membrane.

As the CS inequality violation is established, we are
set to validate the non-locality test of the antibunched
photon-phonon pair generated in the OM cavity. It is
expected that CHSH violation follows similar effects cor-
responding to the CS inequality. To confirm this, the
CHSH violation factor B is calculated (check the ap-
pendix for detailed calculation) and plotted in Fig.5,
predicting our claim where B > 2 is obtained again in
resonance conditions only. The operating frequency of
the mechanical system is set with the previous values i.e.
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relation in antibunching leading to the violation of Cauchy-Schwarz inequality.

ωm = 10κ and ωm = 20κ in Fig.5(a)-(b), and the CHSH
violation can be visualized in a wide range of OM coef-
ficients ranging to the strong-coupling g = 2κ. Further-
more, the maximum violation obtained is nearly equal
to 2

√
2, which is the upper limit of CHSH violation,

also known as Tsirelson’s bound. Lastly, a continuum
of mechanical frequencies along with the cavity detuning
is considered in Fig.5(c), where the CHSH violation can
be realized for the whole range of resonance frequencies
guaranteeing the genuine quantum nature of the photon-
phonon pair in this system. Now that the CS/CHSH
inequality violation is established, our claim of anticor-
relation in antibunching is properly tested revealing the
strong nonclassical character of optomechanical systems
under optimized conditions.

To explain the earlier results more intuitively, the
photon-phonon number distributions are calculated to il-
lustrate the nonclassical properties of the second-order
coherence functions. In Fig.6(a)-6(b), the steady-state

mean photon (phonon) numbers i.e. ⟨â†â⟩ (⟨b̂†b̂⟩) are
plotted as a function of normalized cavity detuning ∆/κ
for both the frequencies ωm = 10κ and 20κ. The re-
sults agree well with the previous calculations performed
on g2ii(0), where peaks of distributions are obtained in the
resonant frequencies only. It correctly predicts the clus-
tered population of photons and phonons at the position
∆ = −10κ and −20κ, respectively. Also, by comparing
with the previous analysis of g2ii(0) at zero detuning, the
average phonon numbers are observed negligibly smaller
than average photon numbers. Since the driving strength
provided is very low in the system, the mean photon
(phonon) numbers ⟨ni⟩ ≪ 1 as expected. The classical
limit breaks, when the average photon (phonon) num-
ber ⟨ni⟩i=a,b becomes significantly smaller, as [g2ii(0)] ≥

1 − 1/⟨ni⟩, indicates g2ii(0) < 1 [8]. This is called the
number-squeezing effect of the photon-phonon statisti-
cal mixture, which is quite visible in Fig.6(a)-6(b). The
number-squeezing parameter can be introduced in this
context, which is defined as, η2 = (⟨n2⟩ − ⟨n⟩2)/ntotal.
This is related to the auto- and cross-correlation for-
mula by η2 = 1+ (g2aa + g2bb − 2g2ab − ⟨n−⟩2)/⟨n+⟩, where
⟨n−⟩ = ⟨na⟩ − ⟨nb⟩ and ⟨n+⟩ = ⟨na⟩ + ⟨nb⟩ [47]. The
system is said to be number squeezed if η2 < 1, which
implies g2aa+ g

2
bb− 2g2ab−⟨n−⟩2 < 0. A number-balanced

state i.e. ⟨n−⟩ = 0 always gives symmetrical values of
g2aa = g2bb, therefore, the number-squeezing parameter
can be directly linked to the CS violation factor, given by
η2 = 1+2(1− ρ)g2aa/⟨n+⟩. This shows that the number-
squeezing of coherent fields (η2 < 1) is responsible for the
violation of CS inequality (ρ > 1), which can be treated
as equivalent to photon-phonon entanglement. Although
in the present scenario, the number state is not balanced
(g2aa ̸= g2bb), therefore the direct link between CS inequal-
ity and squeezing parameter cannot be established due to
the residual factor ⟨n−⟩2, but the physical mechanism of
CS violation and its connection to the number squeezing
can be interpreted by the following way.

Additionally, the deviations of the photon (phonon)
distribution from the standard Poissonian distribution
are calculated for the mean sample number, defined as

log[Pn/Pn] [48], where Pn = e−⟨â†â⟩⟨â†â⟩n/n! is the stan-
dard Poisson statistics. In the case of phonons, the sam-

ple mean of the distribution is replaced by ⟨b̂†b̂⟩, and
Pn is the photon (phonon) number distribution, which
can be found from the transition probabilities of Eq.(5)-
(9). If Pn < Pn, we say the number distribution fol-
lows sub-Poissonian statistics otherwise it is called super-
Poissonian in nature. For numerical representation, the
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FIG. 5. Clauser-Horne-Shimony-Holt inequality violation
with normalized cavity detuning and optomechanical coupling
coefficient for mechanical frequencies (a) ωm1 = 10κ and (b)
ωm2 = 20κ. (c) CHSH violation of a continuum of mechani-
cal frequencies with cavity detuning at fixed optomechanical
coupling g = 0.25κ.

number states are truncated to three in Fig.6(c)-6(d) for
both the resonant frequencies of the system and it is ob-
served the relative population located at ∆ = −10κ and
−20κ are highly suppressed for n ≥ 2. This confirms
that the photon (phonon) tends to exist singly, revealing
the sub-Poissonian statistics. Therefore it concludes our
demonstration of the antibunching effect deduced from
the statistics of the coherent fields incident on the OM
system.

IV. EXPERIMENTAL FEASIBILITY

This section presents some remarks on the experimen-
tal prospect of the nonclassical signatures based on the
photon-phonon antibunching effect in a membrane-in-
the-middle optomechanical setup. The resolved-sideband
parameters used in the theoretical investigation belong
to the experimentally accessible parameter regimes i.e.
ωm > κ > γ [49, 50], where we tweak the optome-
chanical coupling strength g < κ, as the single-photon
strong coupling is generally difficult to achieve. The
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FIG. 6. (a) and (b) Photon (phonon) number distribution
versus cavity detuning ∆/κ with red (blue) curves for me-
chanical frequencies ωm1 = 10κ and ωm2 = 20κ depicting
the number squeezing effect in resonance conditions. (c) and
(d) Relative deviation of the photon (phonon) distribution to
the standard Poissonian distribution with the sample mean
particle numbers computed at the respective resonance fre-
quencies.

possible realization of the mechanical membrane is typi-
cally done by SiN nanoscale trampolines [51] or photonic
crystal nanobeam resonators [52] having high-quality fac-
tor ωm/γ > 106 and low thermal occupation numbers
nth ≪ 1 at cryogenic temperatures. For instance, the
choice of parameters in our scheme is taken accordingly
Ref.[53, 54], where the vibrational mode frequency of
ωm ≈ 400 MHz with damping rate γ ≈ 10−3 MHz and
the cavity linewidth κ ≈ 0.1 MHz is achieved. The max-
imum optomechanical coupling rate of g ≈ 0.05 MHz
range is observed with the ultrahigh Q toroid microcav-
ity [55]. The detection protocol deals with the measure-
ment of the photon-phonon sub-Poissonian field which
can be done by a Hanbury-Brown-Twiss-type experiment
[41, 42] for determining the second-order coherence func-
tion. Current experiments based on CS [52] and CHSH
[56] violation are reported in different OM platforms,
which can be combined in the current setup, satisfying
all requirements of realistic parameters for the demon-
stration of antibunching and related nonclassical effects.

V. SUMMARY

In summary, we have investigated the antibunching
effect in a multifield-driven optomechanical cavity that
leads to violating Cauchy-Schwarz and CHSH inequality
together. The unconventional photon (phonon) blockade
effectively manifests in the current system while operat-
ing in the resonance condition between the optical cavity
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detuning and the mechanical membranes’ vibrating fre-
quency. Generation of these highly nonclassical states
doesn’t require a single-photon-strong coupling, and the
chosen parameters and techniques involved in our pro-
tocol are fully feasible under the current experimental
conditions. Overall, the physical mechanism of the pro-
posed theory largely depends on the number-squeezing of
coherent fields and its connection to the classical viola-
tion of the general properties of second-order coherence
functions. Moreover, these results can be generalized to
a wide range of hybrid systems leading to a valid test of
quantumness with currently available technology.

Appendix A: CHSH violation

In the appendix. we perform the CHSH test on the
multifield-driven optomechanical cavity, which put for-
ward the CS inequality violation as a precursor to check
stronger verification of non-locality. Protocols similar to
the other quantum optical systems are considered for
this, where the field intensity measurement of the two

modes â and b̂ upon mixing with local oscillators (LO)
are done in four detectors resulting in two outcomes per
measurement. In the current scenario, the two modes
correspond to one optical and another mechanical mode.
However, the measurement of the mechanical mode is
considered difficult to implement, therefore, the phononic
state can be suitably mapped to a photonic state by an
optomechanical parametric process [57] that converts the

antibunched photon-phonon pair into an output mode of
photon-photon pair. To implement this, first, the mem-
brane has to be cool down near the quantum ground state
of motion. The OM cavity is tuned corresponding to
the stoke’s sideband, which generates the photon-phonon
pair upon spontaneous parametric down-conversion. In
this case, the interaction Hamiltonian is described by

Hint = −Gâ†b̂† + h.c, where G is the effective OM cou-
pling strength depends upon intracavity photon number
and single-photon coupling strength g. Next, the laser
detuning is changed to the red sideband to stimulate the
anti-stoke process that initiates the state transfer mech-
anism from the phononic to the photonic mode. This
mapping can be realized by the interaction Hamiltonian

Hint = −Gâ†b̂ + h.c. Now the resulting output fields
that are generated from the optomechanical parametric
interactions can be analyzed via photodetector intensities
given by, ⟨IA+

⟩, ⟨IA−⟩, ⟨IB+
⟩, and ⟨IB−⟩ with adjustable

polarization angles θ and ϕ of the LO. The expectations
of the intensity correlations is measured followed by a
beam-splitter transformation of the original modes given
as (

A+

A−

)
=

(
cos θ sin θ
− sin θ cos θ

)(
a
b

)
(A1)(

B+

B−

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
a
b

)
(A2)

Finally, the four correlated pairs of the field intensity
measurements i.e. ⟨IA+

IB+
⟩, ⟨IA+

IB−⟩, ⟨IA−IB+
⟩ and

⟨IA−IB−⟩ are done using a Mach-Zehnder interferometer
and the following CHSH parameter is estimated

E(θ, ϕ) =
⟨IA+IB+⟩+ ⟨IA−IB−⟩ − ⟨IA+IB−⟩ − ⟨IA−IB+⟩
⟨IA+IB+⟩+ ⟨IA−IB−⟩+ ⟨IA+IB−⟩+ ⟨IA−IB+⟩

=
⟨(IA+ − IA−)(IB+ − IB−)⟩
⟨(IA+

+ IA−)(IB+
+ IB−)⟩

=
⟨: (A†

+A+ −A†
−A−)(B

†
+B+ −B†

−B−) :⟩
⟨: (A†

+A+ +A†
−A−)(B

†
+B+ +B†

−B−) :⟩
(⟨::⟩ ≡ normal ordering of operators) (A3)

Measurement of the first outcome is

A†
+A+ +A†

−A− =
(
â† b̂†

)( cos θ sin θ
− sin θ cos θ

)
×
(

cos θ sin θ
− sin θ cos θ

)T (
â†

b̂†

)
= â†â+ b̂†b̂

Similarly, for the second measurement

B†
+B+ +B†

−B− =
(
â† b̂†

)(cosϕ − sinϕ
sinϕ cosϕ

)
×
(
cosϕ − sinϕ
sinϕ cosϕ

)T (
â†

b̂†

)
= â†â+ b̂†b̂

The denominator of E(θ, ϕ) is computed as

⟨: (A†
+A+ +A†

−A−)(B
†
+B+ +B†

−B−) :⟩ = ⟨: (â†â+ b̂†b̂)2 :⟩
= ⟨â†2â2⟩+ ⟨b̂†2b̂2⟩+ 2⟨â†b̂†b̂â⟩

For the third measurement

A†
+A+ −A†

−A− =
(
â† b̂†

)(cos θ sin θ
sin θ − cos θ

)
×
(

cos θ sin θ
− sin θ cos θ

)(
â†

b̂†

)
= (â†â− b̂†b̂) cos 2θ + (â†b̂+ b̂†â) sin 2θ
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Finally, the last measurement is

B†
+B+ −B†

−B− =
(
â† b̂†

)( cosϕ − sinϕ
− sinϕ − cosϕ

)
×
(
cosϕ − sinϕ
sinϕ cosϕ

)(
â†

b̂†

)
= (â†â− b̂†b̂) cos 2ϕ− (â†b̂+ b̂†â) sin 2ϕ

The numerator of E(θ, ϕ) is computed as

⟨: (A†
+A+ −A†

−A−)(B
†
+B+ −B†

−B−) :⟩

=
〈
: [(â†â− b̂†b̂) cos 2θ + (â†b̂+ b̂†â) sin 2θ]

×[(â†â− b̂†b̂) cos 2ϕ− (â†b̂+ b̂†â) sin 2ϕ] :
〉

Therefore, Eq.(A3) is simplified as

E(θ, ϕ) =
1

⟨â†2â2⟩+ ⟨b̂†2b̂2⟩+ 2⟨â†b̂†b̂â⟩
×
[
⟨(â†â− b̂†b̂)2⟩ cos 2θ cos 2ϕ− ⟨(â†b̂+ b̂†â)2⟩ × sin 2θ sin 2ϕ

−⟨â†â− b̂†b̂⟩⟨â†b̂+ b̂†â⟩ cos 2θ sin 2ϕ+ ⟨â†b̂+ b̂†â⟩⟨â†â− b̂†b̂⟩ sin 2θ cos 2ϕ
]

(A4)

The CHSH inequality can be tested by violating the
following expression which falsifies the idea of local real-
ism, given as

B = |E(θ, ϕ) + E(θ′, ϕ′) + E(θ′, ϕ)− E(θ, ϕ′)| ≤ 2

(A5)

with the maximum violation can be obtained by the stan-
dard choice of polarization angles chosen as θ = 0, ϕ =
π/8, θ′ = π/4, ϕ′ = 3π/8. In terms of the original OM

modes Eq.(A5) can be rewritten as

B =
√
2

∣∣∣∣∣ ⟨â†2â2⟩+ ⟨b̂†2b̂2⟩ − ⟨â†2b̂2⟩ − ⟨b̂†2â2⟩ − 4⟨â†b̂†b̂â⟩
⟨â†2â2⟩+ ⟨b̂†2b̂2⟩+ 2⟨â†b̂†b̂â⟩

∣∣∣∣∣
(A6)

It is now straightforward to calculate the CHSH violation
factor B by replacing the expectation values of the oper-

ators â and b̂ with the transition probabilities obtained
from Eq.(5)-(9). The final expression of B is given by

B =
1√
2

∣∣∣∣∣2|C20|2 + 2|C02|2 − 4|C20||C20| − 4|C11|2

|C20|2 + |C02|2 + |C11|2

∣∣∣∣∣
(A7)
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