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Abstract. In this article we define Odzijewicz, Berezin and Fedosov-type
quantization on compact smooth manifolds. The method is as follows. We
embed the smooth manifold of real dimension n into CPn (and in the Fedosov
quantization case embed into any real 2n dimensional symplectic manifold).
The pullback coherent states are defined in the usuall way. In the Odzijewicz-
type, Berezin-type quantization the Hilbert space of geometric quantization is
the pullback by the embedding of the Hilbert space of geometric quantization of
CPn. In the Berezin case, the operators that are quantized are those induced
from the ambient space. The Berezin-type quantization exhibited here is a
generalization of an earlier work of the author and Kohinoor Ghosh (where we
had needed totally real embedding). The Fedosov-type quantization is carried
out by restriction to the submanifold given by the embedding.

1. Introduction

Some quantum systems donot come from quantizing classical systems (which are
expected to have a symplectic structure) but there is a semi-classical limit of the
quantum system, spin being such a system ( [14]). We wish to include systems
which donot have symplectic structure (or group action) and study if they are a
semi-classical limit of some quantum system as ~ goes to zero. A Poisson structure
is needed but it is induced from another Poisson manifold where the manifold is
embedded, in this case CPn or Cn. The quantization is induced from CPn or Cn

(depending on whether we expect a finite or an infinite dimensional Hilbert space).
In this paper we will concentrate on embeddings into CPn.

The other motivation of the work is that sometimes the Hilbert space of the
problem turns out to be different from what the actual parameter space should
prescribe. The Hilbert space could be just be obtained from geometric quantization
of Cn, or CPn. Roughly speaking in these two cases the Hilbert space correspond
to multinomails. In some situations this could be at least a good approximation,
for example the Quantum Hall Effect (where polynomials suffice for lowest Landau
levels [16]).

In this paper we show Odzijewicz, Berezin and Fedosov-type quantizations on
smooth compact manifolds. The first two use coherent states in a very essential
way. The literature on coherent states is vast, see for instance a review by Ali,
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Gazeau, Antoine and Mueller [1], Gazeau and Monceau [9], proceedings by editors
Strasburger, Ali, Antoine, Gazeau, Odzijewicz [2]. After Berezin’s orginal work
[3], Berezin quantization has been generalized to many domains and manifolds, see
Englis [7] for an example.

We embed a compact smooth manifold into CPn (using Whitney embedding or
any other embedding) and pull back coherent states from CPn [4]. Role of CPn or
Cn can taken by other appropriate manifolds too. For instance, we can embed the
compact smooth manifold in a symplectic manifold of twice the dimension which
has a reproducing kernel Hilbert space (namely coherent states).

In [11] Odzijewicz studied the quantization of a Kähler manifold using coherent
state embedding and showed that the calculation of the Feynman path integral
is equivalent to finding the reproducing kernel function. We generalize this to
symplectic manifolds and even to smooth compact manifolds, as we can now talk
of reproducing kernel Hilbert spaces pulled back from CPn.

In [3] Berezin gave a way of defining a star product on the symbol of bounded
linear operators acting on a Hilbert space (with a reproducing kernel) on a Kähler
manifold under certain conditions. There is a parameter in the theory (namely
~) such that in the limit ~ → 0 the star product tends to usual product and the
commutator of the star product is proportional to the Poisson bracket upto first
order. This is called the correspondence principle.

In this paper we embed a compact smooth manifold into CPn and pull back the
reproducing kernel Hilbert space. Pullback coherent states give symbols of bounded
linear operators induced from those corresponding to CPn and it is trivial to see
that they satisfy the correspondence principle.

In this context we recall that in [4] Dey and Ghosh had considered pull back
coherent states and totally real submanifolds of CPn and defined pull back oper-
ators and their CPn-symbols and showed that they satisfied the correspondence
principle. In other words we had shown Berezin-type quantization of certain oper-
ators for manifolds which can be embedded in CPn as totally real submanifolds.
This was part of Ghosh’s thesis [10]. Our present work is a generalization of this,
as we donot need the condition totally real submanifolds. The condition of totally
real submanifolds can give topological obstructions. We have no conditions on the
smooth compact manifold.

Dey and Ghosh had also defined in [5] a Berezin-type quantization on even
dimensional compact manifolds (of real dimension 2d) by removing a set of measure
zero and embedding it into CP d. This was part of Ghosh’s thesis [10]. In this
article our approach is slightly different. We embed a d real dimensional manifold
into CP d.

In [8] Fedosov constructs a deformation quantization on symplectic manifolds.
We embed a smooth compact manifold of real dimension d into any symplectic
manifold of real dimension 2d by the Whitney embedding and induce the Fedosov
quantization on the submanifold. This is done simply by restriction to the embed-
ded submanifold.

All the quantizations depend on the embedding.

2. Review of Geometric Quantization and Coherent states on CPn

This review follows [3] and [10] closely.
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Let U0 ⊂ CPn given by U0 = {µ0 6= 0} where [µ0, ...., µn] are homogeneous
coordinates on CPn. Let (µ1, µ2, ...µn) be inhomogenous coordinates on U0 ≡ Cn

such that [1, µ1, µ2, ..., µn] ∈ U0.
The Fubini-Study form is given by ΩFS =

∑n
i,j=1 Ω

FS
ij dµi∧dµ̄j , where the Kähler

metric G and the Kähler form ΩFS are related by ΩFS(X,Y ) = G(IX, Y ).
The Poisson bracket of two functions t and s:

{t, s}FS =
∑n

i,j=1 Ω
ij
FS

(

∂t
∂µ̄j

∂s
∂µi

− ∂s
∂µ̄i

∂t
∂µj

)

where (ΩijFS) are the matrix coeffi-

cients of the inverse of the matrix (ΩFSij ) of the Fubini-Study form.

Let H⊗m be the m-th tensor product of the hyperplane section bundle H on
CPn. Recall that mΩFS is its curvature form and mΦFS is a local Kähler potential
where emΦFS(µ,µ̄) = (1+ |µ|2)m. Let {φi}Ni=1 be an orthonormal basis for the space
of holomorphic sections.

On U0 the sections of H⊗m are functions since the bundle is trivial when re-
stricted to U0. They can be identified with polynomials in {µi}ni=1 of degree at
most m.

Let ~ = 1
m be a parameter. Then {φi} depend on ~.

We define dV (µ) = |ΩnFS(µ)|U0 | = G(µ)Πni=1|dµi ∧ dµ̄i| = G(µ)|dµ ∧ dµ̄| =
|dµ∧dµ̄|

(1+|µ|2)n+1 to be a volume form on C
n, where G = det[gij |U0 ].

Then V =
∫

Cn dV =
∫

Cn

|dµ∧dµ̄|
(1+|µ|2)n+1 <∞.

Let (c(m))−1 =
∫

U0

1
(1+|ν|2)m dV (ν) =

∫

U0
e−mΦFS(ν,ν̄)dV (ν)

Let an innerproduct on the space of functions on U0 be defined as

〈f, g〉 = c(m)

∫

U0

f(ν)g(ν)

(1 + |ν|2)m dV (ν) = c(m)

∫

U0

f(ν)g(ν)e−mΦFS(ν,ν̄)dV (ν).

Also, D(q1,q2,...qn;q) = c(m)
∫

U0

|ν1|
2q1 ...|νn|

2qn

(1+|ν|2)m dV (ν), where q′is are all possible

positive integers such that q1 + ...+ qn = q; q = 0, ...,m.
Let Φ(q1,q2,...,qn;q)(µ) =

1√
D(q1,...,qn ;q)

µ
q1
1 ...µ

qn
n where q1+ ...+qn = q; q = 0, ...,m.

It is easy to check that {Φ(q1,...,qn;q)} are orthonormal in Cn with respect to the

inner product defined as above and are restriction of a basis for sections of H⊗m

to U0. The span of these form a Hilbert space with the above inner product.
Definition: The Rawnsley-type coherent states [14], [15] are given on U0 by ψµ

reading as follows:

ψµ(ν) :=
∑

q1+q2+...+qn=q;q=0,1,...,mΦ(q1,q2,...,qn;q)(µ)Φ(q1,q2,...,qn;q)(ν).

In short hand notation ψµ :=
∑

I ΦI(µ)ΦI where the multi-index I = (q1, ..., qn; q)
runs over the set q1 + ...+ qn = q; q = 0, ...,m.

This is a reproducing kernel in the sense below.

Proposition 2.1. Reproducing kernel property. If Ψ is any other section, then
〈ψµ,Ψ〉 = Ψ(µ). In particular, 〈ψµ, ψν〉 = ψν(µ).

Proposition 2.2. Resolution of identity property:

c(m)

∫

U0

〈Ψ1, ψµ〉 〈ψµ,Ψ2〉 e−mΦFS(µ,µ̄)dV (µ) = 〈Ψ1,Ψ2〉 .

In particular,



4 RUKMINI DEY

c(m)

∫

U0

〈ψν , ψµ〉 〈ψµ, ψν〉 e−mΦFS(µ,µ̄)dV (µ) = 〈ψν , ψν〉 .

The proofs of these are easy and can be found for instance in [5]. It is in general
true of Rawnsley type coherent states.

3. A reproducing kernel Hilbert space on a compact smooth manifolds

and coherent states

In this section we construct a reproducing kernel Hilbert space and coherent
states on a compact smooth manifolds by emedding it into CP d. This generalizes
a result in [4]. We proceed similar to [4], but we donot need the “totally real”
condition. We use the Whitney embedding of any compact smooth manifold. Any
other smooth embedding will also work.

Let Md be a compact smooth manifold of real dimension d. Let ǫ : M → R2d

be any embedding (for instance Whitney embedding). Let i : R2d → CP d be the
inclusion such that R2d is identified with U0 ⊂ CP d and χ = i ◦ ǫ. It is clear that
χ : M → CP d is an embedding and that ǫ : M → ǫ(M) is a diffeomorphism. Let
Σ = ǫ(M).

Let Hm be the sections of H⊗m with norm denoted for short as ||s||CPd .
Let Ψ(q1,q2,...,qn;q)(µ) =

1√
D(q1 ,...,qn;q)

µ
q1
1 ...µ

qn
n where q1+ ...+ qn = q; q = 0, ...,m

be an orthonormal basis for it as mentioned in the previous section.
Let H1m = i∗(Hm) be the pullback Hilbert space on Σ = ǫ(M). The norm on

H1m is given by ||s̃||Σ = mins∈Hm{||s||CPd : s̃ = s ◦ i}.
Let H2m = χ∗(Hm) be the pullback Hilbert space on M . Thus if s̃ ∈ H2m, it is

of the form s̃ = s ◦ χ. The norm on H2m is given by ||s̃||M = mins∈Hm{||s||CPd :
s̃ = s ◦ χ}.

Let ǫ−1 : Σ →M be the inverse of ǫ on Σ.
One can show that ||s̃||M = ||ǫ−1∗s̃||Σ. This is because

||s̃||M = mins∈Hm{||s||CPd : s̃ = s ◦ ǫ}
= {||s||CPd : s = s̃ ◦ ǫ−1}

Proposition 3.1. H1m and H2m are Hilbert spaces in the respective norms.

Proof. For proof see for instance [12]. �

Let ηI be an orthonormal basis for H2m.
Definition:

The Rawnsley-type coherent states onM are defined locally as ψp =
∑l

k=1 ηIk(p)ηIk
where p ∈M .

As before they are overcomplete, have reproducing kernel property, resolution of
identity property.

4. Odzijewicz-type quantization on compact smooth manifolds

4.1. Review of Odzijewicz quantization on CPn. The Odzijewicz quantization
goes through verbatim as in his paper [11] when one takes the Kähler manifold to
be CPn.

Take M to be holomorphic sections of H⊗m where H is the hyperplane section
bundle and m is a large positive integer.
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In this case M is sufficiently ample and the coherent state embedding is given
by
µ ∈ CPn 7→ ψµ ∈ CP (M).
We will henceforth use Odzijewicz’s notation – and write ψµ(·) = K0(µ̄, ·) on U0.
Let [1, w1, ..., wn] be coordinates on U0 ⊂ CPn.
We need to solve the Monge-Ampere equation (2.22) in [11] given by (when

(−i)nω
K is positive)

det[
∂2logρ(w)

∂wj∂w̄k
] = C(−1)

n(n+1)
2

1

n!
ρ(w)K0(w̄,w),

Here C > 0 when (−i)nω
K0

is positive and C < 0 when (−i)nω
K00

is positive.

We take ρ(w) = 1
(1+|w|2)N = exp(−N(log(1 + |w|2)). We know from previous

section K(w̄, w) = (1 + |w|2)m.
Left hand side of the Monger-Ampere equation is −N

(1+|w|2)n+1 .

−N
(1 + |w|2)n+1

= C(−1)n(n+1)/2 1

n!

1

(1 + |w|2)N−m
.

Then N = n + m + 1 and C = ±Nn! depending on whether (−1)
n(n+1)

2 +1 is

positive or negative (i.e. (−i)nω
K is positive or negative).

One can thus have a coherent state embedding w ∈ CPn 7→ K(w̄, ·) ∈ CP (M)
One can define path integral as in (2.28) [11] and show that it is related to the pull
back metric on CPn of the Fubini-Study metric on CP (M).

We have from (2.30)

dCPn(z1, z2) =
√
2(1− |a0β(z1, z2)|)

1
2 .

where by (2.20) a0β(v̄, w) =
K0β(v̄,w)

K0β(v̄,v)
1
2K0β(w̄,w)

1
2
, where v ∈ U0, w ∈ Uβ, β = 0, ..., n.

Note: Equation (2.29) in [11] originates from the pullback of the Fubini-Study
metric on CP (M) to M.

4.2. Induced Odzijewicz-type quantization on compact smooth mani-

folds. Let M be a compact smooth manfiold of real dimension d. Let n = d

and U0 be the open subset of CPn as mentioned in section 2. We know as a topo-
logical space U0 ≡ R2d. Let ǫ : M 7→ U0 ⊂ CPn be an embedding (for example
Whitney emebdding).

Let p, q ∈M and v = ǫ(p) and z = ǫ(q). Then v, z ∈ U0 ⊂ CPn.
We can define the transition probability between p, q on M to be

A(p, q) ≡ a00(v̄, z) =
K00(v̄, z)

K00(z̄, z)1/2K00(v̄, v))1/2
.

where a00 is the transition amplitude of points in U0.
Once again it is easy to show that

dM (p, q) = dCPn(z1, z2) =
√
2(1− |a00(z1, z2)|)

1
2 ,

where z1 = ǫ(p), z2 = ǫ(q).
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5. Induced Berezin-type quantization on compact smooth manifolds

Let M be a compact smooth manifold.
Let χ :M 7→ CPn as in section 3.
Let us continue on CPn and recall the Berezin quantization on it.
Notation: As in [3], we denote by Lm(µ, µ̄) = 〈ψµ, ψµ〉 = ψµ(µ), Lm(µ, ν̄) =

〈ψµ, ψν〉 = ψν(µ).

Let Â be a bounded linear operator acting on H. Then, as in [3], one can define
a symbol of the operator as

A(ν, µ̄) =

〈

ψν , Âψµ,
〉

〈ψν , ψµ〉
.

One can show that one can recover the operator from the symbol by a formula
[3].

Let Â1, Â2 be two such operators and let Â1 ◦ Â2 be their composition.
Then the symbol of Â1 ◦ Â2 will be given by the star product defined as in [3]:

(A1 ∗A2)(µ, µ̄)

= c(m)

∫

U0

A1(µ, ν̄)A2(ν, µ̄)
Lm(µ, ν̄)Lm(ν, µ̄)

Lm(µ, µ̄)Lm(ν, ν̄)
Lm(ν, ν̄)e−mΦ̃(ν,ν̄)dV (ν),

where recall 1
c(m) =

∫

U0
e−mΦFS(ν,ν̄)dV (ν).

This is the symbol of Â1 ◦ Â2.

One can show the following is the reproducing kernel [5], [10].

Proposition 5.1. ψµ(ν) = (1 + µ̄ · ν)m.

Theorem 5.2 (Berezin). Let µ ∈ Cn.
The star product satisfies the correspondence principle:
1. limm→∞(A1 ⋆ A2)(µ, µ̄) = A1(µ, µ̄)A2(µ, µ̄),
2. limm→∞m(A1 ⋆ A2 −A2 ⋆ A1)(µ, µ̄) = i{A1, A2}FS(µ, µ̄).

See [3], [5] for proof.

5.1. Induced operators and correspondence principle. Let Â be a bounded
linear operator from Hm to itself. Now we turn to M .

Let B̂ = χ∗(Â) be a bounded linear operator from H2m = χ∗(Hm) to itself. It

is defined by χ∗(Â)(χ∗(s)) = χ∗(Âs). Given B̂, Â is not unique. Suppose we have

B̂ = χ∗(Â1) = χ∗(Â2). Let Â be the one of lowest norm i.e. if B̂ = χ∗(Â) = χ∗(Â1),

then ||Â1|| ≥ ||Â||.
Definition: Let B :M ×M → C be the symbol of B̂ in the coherent states ψp,

i.e. B(p, p) =
〈ψp,B̂(ψp)〉M
〈ψp,ψp〉M

and B(p, q) =
〈ψp,B̂(ψq)〉M
〈ψp,ψq〉M

.

Here the norm is defined as in section 3.

Proposition 5.3. B(p, q) =
〈sχ(p),Â(sχ(q))〉CPd

〈sχ(p),sχ(q)〉CPd
= A(χ(p), χ(q)), where B̂ = χ∗(Â)

and Â is the one of lowest norm over all Ĉ such that B̂ = χ∗(Ĉ).
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Proof. ψp = χ∗(sχ(p)), where sχ(p) =
∑l

k=1 ΦIk(χ(p))ΦIk is the coherent state in
Hm. This is because ηIk = χ∗(ΦIk).

B(p, q) =
B̂(ψq)(p)
ψq(p)

=
Â(sχ(q))(χ(p))

sχ(q)(χ(p))
=

〈sχ(p),Â(sχ(q))〉CPd

〈sχ(p),sχ(q)〉CPd
. �

Definition:

Let B1 and B2 be symbols of B̂1 and B̂2 bounded linear operators on H2m. Then
B1 ∗B2 is the symbol of B̂1 ◦ B̂2, [3].

One sees that B̂1 ◦ B̂2 = χ∗(Â1 ◦ Â2), where we can take Â1 ◦ Â2 is the one of
the least norm.

Then, B1 ∗ B2 = A1 ∗ A2 where the second one is CP d star product. Let
{B1, B2}FS(p, p) = {A1, A2}FS(χ(p), χ(p)).
Theorem 5.4. The star product on the symbol of bounded linear operators on H2m

satisfies the correspondence principle:
(1) limm→∞(B1 ∗B1)(p, p) = B1(p, p)B2(p, p).
(2) limm→∞m(B1 ∗B2 −B2 ∗B1)(p, p) = i{B1, B2}FS(p, p).

Proof. This follows from the fact that A1 ∗A2 satisfy the correspondence principle,
see Theorem 5.2 (Berezin). �

6. Induced Fedosov-type quantization on compact smooth manifolds

Let M be a compact smooth manifold of real dimension d. Let ǫ1 : M 7→ R2d

is an embedding (say, Whitney embedding). Let N be a symplectic manifold of
dimension 2d such that N \N0 ≡ R2d where N0 is a lower dimensional skeleton [6].
Thus there is an embedding ǫ :M 7→ N \N0.

Let X = ǫ(M).
In this section let us recall the Fedosov deformation quantization [8] on N and

induce the same on X .
Let x, y ∈ X . Since ǫ is an embedding there exists a special chart V in N such

that if x = (x1, ..., x2d) then in V ∩ X , xd+1 = xd+2 = ... = x2d = 0. Similarly,
let y = (y1, ..., y2d) and there is a special chart W in N such that in W ∩ X ,
yd+1 = yd+2 = ... = y2d = 0.

Thus on X = ǫ(M) the local expression for a ∈W ∩X in [8] (2.4) is

a =
∑

hkak,i1...ip,j1...jq(x)y
i1 ...yipdxj1 ∧ .... ∧ dxjq

where i1, ..., ip ∈ {1, ...., d} and j1, ..., jp ∈ {1, ...., d}. Let b ∈W ∩X . Then a ◦ b is
the composition defined on X . Since defintions of δ and δ∗ is local, one can define
it on X . We also have δ2 = δ∗2 = 0 and for monomials δδ∗ + δ∗δ = (p+ q)id on X
as in Lemma (2.2). Once again since the definitions are local, we can define on X ,

δ−1 = δ∗

p+q for p+ q > 0 and δ−1 = 0 for p+ q = 0 and a = δδ−1a+ δ−1δa + a00.

All definitions and notations are the same as in [8].
Let ω be the symplectic form on N . The symplectic form restricts to a 2-form

τ = ω|X on X . A symplectic connection ∂ is defined in Definition (2.3) in [8]. In a
Darboux chart U ⊂ N one has Γijk = ωimΓmjk where Γmjk are Christofel symbols and
Γijk are completely symmetric with respect to the indices i, j, k. Even though τ

maynot be symplectic we can define the restriction of ∂ to X . On the special chart
V in a Darboux neighbourhood of x ∈ X , i.e. on U∩V , where xd+1 = ... = x2d = 0,
we can define as in [8] (2.9), ∂a = dxi ∧ ∂ia where i = 1, ..., d. (2.10) also holds at
x ∈ U ∩ V ⊂ X . One can restrict γ to X and define Da accordingly. Lemma (2.4)
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is local and holds verbatim. Ω also restricts to X and lemma (2.6) holds since the
proof is local. Construction of the abelian connection carries through.

In [8] Fedosov has defined WD ⊂W constsing of flat connections Da = 0.
We can show that non-trivial flat sections exists on X i.e. WD restricted to X

is not empty. This is because Fedosov iteratively constructs the section a ∈WD by
its symbol a0 = σ(a):

a = a0 + ∂ia0y
i +

1

2
∂i∂ja0y

iyj +
1

6
∂i∂j∂ka0y

iyjyk − 1

24
Rijklω

lm∂ma0y
iyjyk + ....,

and each of there terms restrict to X . One can take a0 to be non identically zero
on X . So WD is non-empty.

Then we can show an equivalent theorem to theorem (3.3) on X since the proof
is local. Thus σ :WD 7→ Z is invertible on X as well.

On X we can define for a, b ∈ Z a ∗ b = σ(σ−1(a) ◦ σ−1(b)).
This will satisfy all conditions (i) − (iii) formulated in the introduction of [8]

with all quantities restricted to X . For instance (iii) reads as

[a, b] ≡ a ∗ b − b ∗ a = −ih{a0, b0}|X + ....
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