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Even though heralded single-photon sources have been generated routinely through the spontaneous para-
metric down conversion, vacuum and multiple photon states are unavoidably involved. With machine-learning,
we report the experimental implementation of single-photon quantum state tomography by directly estimating
target parameters. Compared to the Hanbury Brown and Twiss (HBT) measurements only with clicked events
recorded, our neural network enhanced quantum state tomography characterizes the photon number distribu-
tion for all possible photon number states from the balanced homodyne detectors. By using the histogram-based
architecture, a direct parameter estimation on the negativity in Wigner’s quasi-probability phase space is demon-
strated. Such a fast, robust, and precise quantum state tomography provides us a crucial diagnostic toolbox for
the applications with single-photon Fock states and other non-Gaussisan quantum states.

I. INTRODUCTION

Quantum state tomography (QST) refers to the methodol-
ogy in reconstructing the unknown quantum state with the ac-
quired experimental data [1, 2]. The maximum likelihood esti-
mation (MLE) for QST finds the best-fitted probability distri-
bution by treating the whole density matrix as the target of es-
timation [3–5]. As long as a sufficient computational effort is
applied, MLE consistently yields a robust estimation, with the
effectiveness in estimation strongly depending on the quantity
of available data. Nowadays, QST has been successfully im-
plemented as a diagnostic toolbox both for many qubits (or
qudits) systems in higher dimensions and for continuous vari-
ables in infinite dimensions [6–11].

However, MLE suffers from the overestimation problem
as the required amount of measurements to reconstruct the
quantum state exponentially increases with the number of
involved modes. To overcome the overestimation problem
in MLE, several modified algorithms are proposed, such as
permutationally invariant tomography [12], quantum com-
pressed sensing [13], tensor networks [14, 15], generative
models [16], and restricted Boltzmann machine [17], by as-
suming some physical restrictions imposed upon the state in
question. Moreover, unavoidable coupling from the noisy en-
vironment makes the reconstructions on the density matrix
with state degradation embedded, resulting in dealing with a
non-sparse matrix in a larger Hilbert space.

With the power to find the best fit to arbitrarily compli-
cated solutions, machine-learning (ML) enhanced QST has
demonstrated its advantages in extracting complete informa-
tion about the quantum states [17–21]. Furthure more, instead
of using the reconstruction model in training a truncated den-
sity matrix, with ML one may directly generate the target pa-
rameters with a supervised characteristic model [22]. Such
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a characteristic model-based ML-QST can be easily installed
on edge devices such as FPGA, serving as an in-line diag-
nostic toolbox for all the possible applications. As an exam-
ple, this ML-QST has also been applied to the reconstruction
of Wigner current [23], demonstrating experimentally quan-
tum dynamics in phase space in great detail. Compared to
the time-consuming MLE, ML-QST paves the road toward a
real-time and online QST [23, 24].

With the benefits from the good properties of the Gaussian
states, including vacuum and squeezed states, a neural net-
work can directly analyze the raw data to obtain the first and
second moments of probability density function. By applying
the well-developed methods in pattern recognitions [25–28],
one can easily deal with various Gaussian states, producing
a single scan QST in speeding up data acquisition and data
processing [20]. Nevertheless, difficulties arise for such a rel-
atively simple prediction map when non-Gaussian states are
attacked. One may increase the number of neurons in dealing
with non-Gaussian states, however the training process tends
to cause overfitting problem.

In the family of non-Gaussian states, single-photon Fock
states play the core role as photonic qubits to carry quantum
information encoded [29]. Although the request for an on-
demand source of single photons has led to intense research
into developing truly deterministic single-photon states, her-
alded single-photon sources can be easily generated through
correlated pairs of photons, by detecting one photon (the
heralding photon). After the first experimental observation in
1970 [30], nowadays, creating correlated photon pairs from
spontaneous parametric downconversion (SPDC) has been
routinely demonstrated with χ(2) nonlinear crystals [31].

To characterize a single-photon Fock state, the common
method is based on the second-order correlation function,
g(2)(τ), i.e., Hanbury Brown and Twiss (HBT) interferome-
ter [32–34]. The standard test for single-photon sources is
a value of the second-order correlation function of the emit-
ted field below 1/2 at zero time delay, i.e., g(2)(0) < 1/2.
However, this criterion alone provides no information regard-
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ing the amplitude of the single-photon contribution for general
quantum states. In particular, a low-intensity light source al-
ways has a vacuum contribution in the quantum state of light,
cloaking actual single-photon projection [35, 36].

In addition to HBT measurements, nonclassical effects in
the single-photon Fock states can be demonstrated in phase
space [37], such as a negative value in the Wigner func-
tion [38]. Homodyne detection of the rotated quadratures
provides an experimental implementation for the reconstruc-
tion on the Wigner function in phase space, through the in-
verse Radon problem [39, 40]. Tomographic reconstruction
of the single-photon states has been experimentally realized
first with phase-randomized pulsed optical homodyne tomog-
raphy [41–43], then with continuous temporal-mode match-
ing [44], toward having real-time and complete temporal char-
acterization of a single photon [45]. The development on
homodyne tomography also provides a bridge between the
single-photon and squeezed-vacuum states [46–48], as well as
a methodology for various non-Gaussian states such as two-
photon Fock states and optical cat states [49, 50].

As the neural network predictor is often trained from some
specific and limited amount of data, in this work, we develop
the machine-learning enhanced single-photon Fock state to-
mography with the histogram-based architecture. Histogram-
based approaches are often used to reduce the computational
cost [51]. With an appropriately chosen bin-width for his-
togram, we demonstrate that the resulting quantum state re-
construction can still keep fidelity high. Further more, with
the capability of hybrid quantum-classical neural networks or
quantum neural network, the improvement in increase accu-
racy while reducing computational resources is also possible
with quantum machine-learning [52].

The paper is organized as follows: in Section II, we intro-
duce our experimental setup to perform the homodyne detec-
tions on heralded single-photon Fock states, generated from
SPDC process inside a bow-tie cavity. Then, the implementa-
tions of the histogram-based neural network are illustrated in
Section III. The comparisons on the predicted photon-number
distributions from MLE and neural network, also as a func-
tion of the SPDC pumping power, are given in Section IV.
Moreover, a direct parameter prediction on the negativity is
demonstrated, validating the feature extraction from our di-
rect parameter estimations. Finally, we summarize this work
with some perspectives in Section V.

II. EXPERIMENTAL SETUP OF OUR SINGLE PHOTON
QUANTUM STATE TOMOGRAPHY

The experimental setup for our heralded single-photon
source and the quantum state tomography is illustrated in
Fig. 1. Here, the main laser source is a continuous-wave (CW)
Nd:YAG laser at the wavelength of 1064 nm. This laser is split
into two parts via a beam splitter (BS): one serves as the local
oscillator (LO) beam for balanced homodyne detector (BHD);
while the other one serves as the pump field for the second
harmonic generator (SHG). The SHG provides the frequency
doubling at 532 nm, through a nonlinear crystal, i.e., periodi-

FIG. 1. (a) Our experimental setup to generate single-photon Fock
state and its quantum state tomography. (b) A simple schematic for
generating heralded single photon precess by spontaneous paramet-
ric down conversion (SPDC) process. Here, SHG refers to the sec-
ond harmonic generator; BHD: balanced homodyne detector; OSC:
oscilloscope; SNSPD: superconducting nanowire single photon de-
tector; FC: filter cavities; BS: beam splitter; PBS: polarizing beam
splitter.

FIG. 2. Measured data on the second-order correlation function,
g(2)(0), as a function of the recored heralding rate in kHz, with the
corresponding pump power labeled (on top) in mW.

cally poled Lithium Niobate (PPLN), inside a bow-tie cavity.
Then, the green light of SHG signal is injected into another
bow-tie cavity with a type-II PPLN crystal inside, in order to
perform the spontaneous parametric down conversion (SPDC)
process, which generates photon-pairs in two orthogonal po-
larizations. The full width at half maximum (FWHM) of our
SPDC cavity is 31.8 MHz and the free spectral range (FSR)
is 1.052 GHz. The output of orthogonal polarization beams,
denoted as signal |1⟩s and idler |1⟩i photons in Fig. 1(b), are
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FIG. 3. (a) The time sequence of recorded BHD raw quadrature data measured from the oscilloscope. Here, the SPDC pump power is 3 mW.
(b) The histogram of the corresponding probability density distribution, pi (i = 1 . . . N ). (c) With N = 50 inputs, a shallow neural network
is applied to generate directly the predicted probability for different photon numbers wn, with n = 0, 1, 2.

FIG. 4. Measured noise level in dBm of our balanced homodyne
detector (BHD). Here, the spectrum for dark noise is depicted in Red
color, up to 10 MHz. When the local oscillator is operated at 30 mW,
the spectrum of noise level is depicted in Blue color, illustrating a
maximum clearance of 18.6 dB, along with a 3 dB bandwidth up to
7.45 MHz.

separated by a polarization beam splitter (PBS).
To ensure the mode-matching in degenerate modes, the

idler photons from SPDC cavity is injected into a filter cavity
(FC) system with 6.5 MHz in bandwidth. This FC system is
composed of a triangle cavity and two Fabry–Pérot cavities.
The detection on idler photons is performed by a supercon-
ducting nanowire single photon detector (SNSPD). Finally,
the SNSPD triggers the BHD to record the signal photons. As
the Fock states are phase independent, we do not perform the
measurement on rotated quadratures. The extracted quadra-
ture data are obtained by integrating the temporal mode func-

tion on the experimental data, i.e.,

X̂i =

∫
∞
f(t)x̂i(t) dt,

with x̂i being the i-th measurement data from the BHD. Here,
the temporal mode function f(t) =

√
πγe−πγ|t−tc| is de-

scribed by the center time for a trigger event tc, with the decay
rate of SPDC, denoted as γ.

In Fig. 2, we report our measured data on the second-order
correlation function at zero time delay, g(2)(0), as a function
of the recored heralding rate from the detection on the herald-
ing idler photon into SNSPD. At the same time, the corre-
sponding pump power (in mW) into the SPDC cavity is also
depicted. One can see clearly that our single-photon source
demonstrates g(2)(0) < 1/2 when the pump power is smaller
than 10 mW, or with the heralding rate about 4,000 kHz (4
MHz).

In addition to the second-order correlation function, we
also perform the quantum state tomography for the heralded
single-photon state with homodyne detection scheme. In
Fig. 3(a), a typical time sequence of our noisy single-photon
source is demonstrated from our experimental raw data mea-
sured from the oscilloscope. Our BHD output is then inte-
grated after convolution with a double-decayed (two time-
constants) temporal mode function, along with a detection
correction treatment that assumes a detection efficiency of
92%, which is composed of the quantum efficiency of photo-
diodes (99%), homodyne visibility efficiency (96%), and the
circuit noise of homodyne detection (97%).

To make sure the measured noise level is not contaminated,
our homodyne detectors are designed with a high common
mode rejection ratio of more than 80 dB [53]. As shown in
Fig. 4, when the local oscillator is operated at 30 mW the
spectrum of noise level depicted in Blue color demonstrates
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a clearance of higher than 15 dB (with a maximum value of
18.6 dB). However, our BHD only supports a 3 dB bandwidth
up to 7.45 MHz.

In the following, by considering the limit in our BHD band-
width, we analyze the SPDC pump power up to 3 mW (or the
heralding rate lower than 2 MHz) on our single-photon Fock
state tomography with machine-learning. This operation con-
dition also reflects the scenario when the influence of vacuum
significantly enters into the actual single-photon projection,
denoted as the low-intensity limit.

III. HISTOGRAM-BASED MACHINE-LEARNING
ENHANCED QUANTUM STATE TOMOGRAPHY

Before introducing the histogram-based machine-learning
architecture, we conduct several tests on single-photon Fock
state tomography by applying our previously developed con-
volution neural network for quantum state tomography with
simulated raw quadrature data [20]. Here, more than 10,000
mock data set on noisy single-photon experiments are pre-
pared, including different percentages of single-photon and
vacuum states [41–45]. However, the inferred fidelity from
these testing data set is limited to 0.96 even the input dimen-
sions are up to 10, 000. One possible solution to improve the
fidelity is to apply advanced machine learning architectures or
to perform complex hyper parameter adjustments.

As our goal is focusing on building a lightweight inference
system which can be embedded into quantum optics exper-
iments, working on raw quadrature data needs much more
computation efforts in dealing with complicated data sets. In-
stead, we construct histograms to reduce the input data size,
as well as the required computational cost.

To reconstruct the quantum state in our SPDC experiment,
the corresponding tomographic data is the recorded event
from our homodyne measurement, i.e.,

p(X) =

∞∑
n=0

wn
1

π1/22nn!
H2

n(X)e−X2

, (1)

with the Hermit polynomialHn(X). Here, we already expand
the probability probability distribution in Fock (photon num-
ber) basis, with X being the value of rotated quadrature and
wn being the photon number probability (weighting factor).
As the Fock states are independent to the quadrature phase,
we also apply the phase-average measurement [39–45] to our
homodyne data. Tomographic reconstruction here is to esti-
mate the photon number distributions wn from the measured
quadrature data X .

By checking all the experimental data, we first set the
quadrature value between -3.2 and +3.2 as our range. Then,
we divide this closed interval [−3.2, 3.2] in the quadrature into
50 sub-intervals (bins), see Fig. 3(b). The relative frequency
of the i-th bin is calculated by fi = Ni

N , with Ni denoting
the counts in the i-th bin and N being the total counts in the
quadrature axis. We want to remark that in our numerical ex-
periments N = 50 bins (sub-intervals) are enough to achieve
good results.

The relative frequency of i-th bin, fi, is used to estimate
the value of probability density defined on sampled quadrature
values X̂i.

fi
∆X

≃ pi(X̂i), i = 1 . . . N. (2)

Here, ∆X is the length of each bin and X̂i is a specific point
in i-th bin. With a uniform gird on X , the estimated value
of probability density, pi is illustrated in Fig. 3(b). After this
binning process, our tomographic problem now is transferred
to predict wn from the estimated value pi defined on the dis-
crete grid X̂i. When the number of input quadratures is large
enough, the relative frequency converges to the probability,
which enables a good approximated value of probability den-
sity pi. Otherwise, errors occur in the binning process.

In Fig. 3(c), the schematic of this histogram-based neural
network for single-photon Fock state QST is illustrated. Here,
we apply a shallow neural network for 50 inputs from the
histogram-based inputs, i.e., the estimated values of quadra-
ture probability density pi. Our learning task is to build a map
supporting multiple instance setting:

pi → wn. (3)

Then, the outputs can generate directly the predicted proba-
bility for different photon numbers wn.

To train our prediction map inferring different quantum
states from various tomographic data, we feed machine with
well prepared training data set

{
pki , w

k
n

}
. Here the index k

counts for different instances which describe specific quan-
tum states. In this learning task, we use 10,000 training data
set (k = 10, 000) and another 10,000 testing data with dif-
ferent weighting values of w0, w1, w2, i.e., vacuum, single-
photon, and two-photon Fock states, respectively. A uniform
distribution in [0, 1] is sampled. Further more, by considering
the low-intensity condition in our SPDC experiments, we let
w0+w1+w2 = 1 without other multi-photon events. With the
simulated data as the ground truth, our histogram-based neu-
ral network can ensure the average fidelity higher than 0.999
with 10,000 instances in testing data sets.

In our single-photon Fock state QST, we also remark that
the prediction map can be builded only with a shallow neu-
ral network, see Fig. 3(c). Additional hidden layers are not
needed here. We also perform the numerical test confirm-
ing that the neural network can maintain a good performance
without any introduction of nonlinear activation functions. In
the training process, we train 10 epochs such that the mean
squared loss of both training and testing data decreases to
10−7. The optimization process employs the Adam optimizer
with default hyper-parameter settings, including a learning
rate of 0.01.

IV. RESULTS AND DISCUSSIONS

To verify the validity of our histogram-based QST, first we
compare directly with the measured probability density in the
quadrature (X) from homodyne tomography data. As shown
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FIG. 5. (a) The measured probability density in the quadrature (X)
from homodyne tomography data, with SPDC pump power at 3
mW. (b) The corresponding Wigner distribution function in the phase
space. Here, the fitting curve for the probability density (in Yellow
color) is fitted by Eq. (4) with η = 0.631.

FIG. 6. The predicted probability distribution generated from our
histogram-based QST from the same measured homodyne tomogra-
phy data shown in Fig. 5(a), with SPDC pump power at 3 mW. Here,
we have w0 = 0.363, w1 = 0.606, and w2 = 0.027, corresponding
to vacuum, single-photon, and two-photon Fock states, respectively.

in Fig. 5(a), with the SPDC pump power at 3 mW, the recorded
homodyne data illustrates clearly a non-Gaussian probability
distribution. By assuming the light field has the form:

|ψ⟩ = (1− η)|0⟩+ η|1⟩,

as a noisy single-photon state |1⟩ coupled to the vacuum |0⟩,
with the weighting factor η [41]. The corresponding probabil-
ity distribution function has the form

P (X; η) =

√
2

π
[1− η(1− 4X2)]e−2X2

, (4)

which gives the best fitting curve depicted in Yellow color, see
Fig. 5(a), with η = 0.631.

With the Wigner-transform, W[Ô](x, p) =
∫∞
−∞ dy O(x−

y
2 , x+

y
2 ) e

i
ℏpy for a single-mode operator given in coordinate

representation ⟨x − y|Ô|x + y⟩ = O(x − y, x + y) [54, 55],
in Fig. 5(b) we show the corresponding Wigner distribution
function in the phase space. A dip in the origin can be

clearly seen, representing the negativity in the Wigner’s quasi-
probability distribution as a signature of single-photon Fock
states.

In Fig. 6, with the same measured homodyne tomography
data shown in Fig. 5(a), i.e., the SPDC pump power at 3 mW,
we show the predicted probability distribution generated from
our histogram-based QST. Here, in addition to vacuum state
|0⟩ and single-photon Fock state |1⟩, we also take possible
two-photon Fock state |n = 2⟩ into consideration. The re-
sulting photon number distribution gives w0 = 0.363, w1 =
0.606, and w2 = 0.027, corresponding to vacuum, single-
photon, and two-photon Fock states, respectively. The dis-
crepancy between the direct fitting and our histogram-based
QST, see Fig. 5(a) and Fig.6, comes from the small portion in
the two-photon Fock states.

As a benchmark, in Fig. 7 we also apply MLE method to
verify the experimental data at different SPDC pump power.
Here, both MLE and neural network generate a tiny value
for the three-photon Fock state, i.e., w3 < 10−13, confirm-
ing that at most only up to w2 (corresponding to two-photon
Fock states) is non-negligible. With an increment in the
SPDC pump power, the coefficient w1 for single-photon Fock
states increases; while the coefficientw0 for vacuum states de-
creases. As shown in Fig. 7, both two approaches exhibit an
almost the same curve, thereby indicating the equivalence and
accuracy of these two estimations. To our surprise, at the same
time our SPDC process inside a cavity also produces a small
portion of two-photon Fock states, i.e., the average value of
w2 = 0.044 [41].

To avoid the overfitting problem in applying machine learn-
ing, we start with the simplest single-layer shallow neural net-
work (only with 50 neurons). As we do not apply any com-
plicated structures, the only factor changes the shallow neural
network is the input size, which depends on how many dis-
crete points are taken for the quadrature probability density.
For the tests, we have increased the input size to 75 and 100,
but the resulting fidelity both generate 0.999 without showing
significant improvements.

We want to remark that using a finer discretization also re-
quests the increment in the number of input quadrature points.
In other words, more data needs to be obtained in the exper-
iment, which reduces the overall tomographic reconstruction
efficiency due to the speed of data collection. In our single-
photon experiment, even though we only collected 8, 000
quadrature points, our current setting can achieve the target,
which is also verified with the maximum likelihood estima-
tion. As a comparison, we also apply the CNN architecture
developed for squeezed states [20], to our single-photon ex-
periments. However, the resulting fidelity can only achieve
0.95 due to the intrinsic overfitting problem by applying Gaus-
sian states to map non-Gaussian Fock states.

In addition to the photon number probability estimation,
our histogram-based neural network can also predict di-
rectly the target parameters, without the reconstruction on
the full quantum state. Here, we focus on the negativity
in the Wigner’s quasi-probability distribution, which mani-
fests the most non-classical signature of single-photon Fock
states. Analytically, the value in the origin of Wigner function
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FIG. 7. Photon number distributions (w0, w1, and w2) versus differ-
ent SPDC pump power, compared with two different methods: max-
imum likelihood estimation (MLE) in ‘circles’ and our histogram-
based neural network in ‘squares’. For the histogram-based neural
network, the input bin number is N = 50.

FIG. 8. Negativity in the Wigner function, W (0, 0), versus dif-
ferent SPDC pump power, compared with two different methods:
maximum likelihood estimation (MLE) in ‘squares’ and and our
histogram-based neural network in ‘squares’. For MLE, W (0, 0)
is calculated after the reconstruction on the quantum state; while
the neural network directly estimates W (0, 0) by Eq. (5) form the
quadrature histogram.

W (0, 0) has the form

W (0, 0) =
1

π

2∑
n=0

(−1)nwnLn(0), (5)

with the Laguerre polynomial Ln(x) [38]. In Fig. 8, we il-
lustrate the powerful feature in our histogram-based neural
network by directly infer the negativity in the Wigner func-
tion, W (0, 0), versus different SPDC pump power. Here, we
also compare the results generated from two different meth-
ods: MLE-QST and our histogram-based neural network. It is
noted that in MLE, W (0, 0) is calculated after the reconstruc-

tion on the quantum state. Nevertheless, our neural network
directly estimates W (0, 0) directly by using Eq. (5) form the
quadrature histogram. As one can see, again, our ML parame-
ter estimation gives almost the same results as that from MLE.

By considering SPDC experiments in the low-intensity
limit, the condition to have a negative value in W (0, 0) hap-
pens at w1 = 0.5, corresponding to our SPDC pump power
at 0.8 mW. As shown in Fig. 8, our histogram-based neural
network, also confirmed by MLE, precisely estimate the neg-
ativity happens when the SPDC pump power exceeds 0.8 mW.

Last but not least, due to the perfect agreement between the
results from MLE method and our histogram-based QST, we
choose 50 bins as a good estimation. Unlike MLE method
relying on the iteration algorithm, we can have a reusable pre-
diction map from our neural network. This lightweight feature
makes it easier to install such an inference function on edge
devices like FPGA. Most of time-consuming task in our ap-
proach is the pre-processing, i.e., the histogram binning pro-
cess, which takes bout 0.01 seconds. However, it only takes
about 3 msec to subsequently go through such a tiny 50 × 3
network for inference. The total time consumed is about 0.01
+ 0.003 seconds.

V. CONCLUSION

In summary, we develop a neural network enhanced single-
photon Fock state tomography and apply it to the heralding
single-photon source from spontaneous parametric down con-
version (SPDC) process experimentally. Instead of tackling
on the raw quadrature data, which needs a lot of computational
cost but infers a limited fidelity up to 0.96, our histogram-
based quantum state tomography (QST) keeps the fidelity as
high as 0.999. Moreover, target parameters, such as the pho-
ton number distribution and the negativity in Wigner function,
can be directly predicted, without dealing with the density ma-
trix in a higher dimensional Hilbert space.

Through the validation with the experimentally measured
data acquired from the balanced homodyne detectors, per-
fect agreement to the results obtained by maximum likeli-
hood estimation (MLE) is also clearly demonstrated. Our
machine-learning enhanced QST can be easily installed on
edge devices such as FPGA as an in-line diagnostic toolbox
for all the possible applications with single photons. More-
over, this fast and easy-to-install methodology helps us with
a better understanding on quantum optics experiments with
non-Gaussian states, such as two-photon Fock state tomog-
raphy [49], photon-added squeezed states [50], tomographic
test of Bell’s inequality [56], and the reconstruction of non-
classicality [57].
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