On *n*-dimensional Niemytzki spaces.

Vitalij A. Chatyrko May 17, 2024

Abstract

In this paper we extend the construction of the Niemytzki plane to dimension $n \geq 3$ and explore some properties of the new spaces. Furthermore, we consider a poset of topologies on the closed n-dimensional Euclidean half-space similar to one from [AAK] which is related to the Niemytzki plane topology.

Keywords and Phrases: n-dimensional Niemytzki spaces 2000 AMS (MOS) Subj. Class.: Primary 54A10, 54D15

1 Introduction

The Niemytzki plane (cf. [SS, Example 82]) is a classical example of a topological space (like the square of the Sorgenfrey line (cf. [SS, Example 84])) which is Tychonoff but not normal. Besides that the Niemytzki plane is a separable, first-countable, perfect, realcompact, Cech-complete space which is neither countably paracompact nor weakly paracompact (cf. [E]). Recently it was proved that the Niemytzki plane is even κ -metrizable [BKP].

In this paper we extend the construction of the Niemytzki plane to dimension $n \geq 3$ and explore some properties of the new spaces. Furthermore, we consider a poset of topologies on the closed n-dimensional Euclidean half-space similar to one from [AAK] which is related to the Niemytzki plane topology.

For standard notions we refer to [E].

2 *n*-dimensional Niemytzki spaces and their properties

We generalize to dimension $n \geq 3$ the construction of Niemytzki plane (cf. [SS, Example 82]).

Construction 2.1 Consider subsets $P_n = \{ \overline{x} = (x_1, \dots, x_n) : x_i \in \mathbb{R}, x_n > 0 \}$ and $L_n = \{ \overline{x} = (x_1, \dots, x_n) : x_i \in \mathbb{R}, x_n = 0 \}$ of \mathbb{R}^n .

We generate a topology τ_N on $X_n = P_n \cup L_n$ as follows.

If $\overline{a} \in P_n$ then a local base of τ_N at \overline{a} consists of sets $B(\overline{a}, \epsilon) = \{\overline{x} \in R^n : |\overline{x} - \overline{a}| < \epsilon\}$, where $|\overline{x} - \overline{a}| = \sqrt{\sum_{i=1}^n (x_i - a_i)^2}$ and $0 < \epsilon < a_n$.

If $\overline{a} \in L_n$ then a local base of τ_N at \overline{a} consists of sets $\tilde{B}(\overline{a}, \epsilon) = {\overline{a}} \cup B(\overline{a(\epsilon)}, \epsilon)$, where $\overline{a(\epsilon)} = (a_1, \dots, a_{n-1}, \epsilon)$ and $0 < \epsilon$.

Note that the space (X_n, τ_N) is first-countable, the restriction of the topology τ_N onto P_n (resp. L_n) coincides with the Euclidean topology on P_n (resp. with the discrete topology on L_n), the subset P_n (resp. L_n) is open and dense (resp. closed and nowhere dense) in the space (X_n, τ_N) . In particular, the space (X_n, τ_N) is separable and perfect.

Denote the Euclidean topology on X_n by τ_E . It is evident that $\tau_E \subseteq \tau_N$. So the space (X_n, τ_N) is in particular completely Hausdorff, i. e. for any two points $a \neq b$ from X_n there exists a continuous function $f: (X_n, \tau_N) \to \mathbb{R}$ of (X_n, τ_N) to the real line such that $f(a) \neq f(b)$.

It is easy to see that for any $\overline{a} \in L_n$ the boundary $\operatorname{Bd}_N B(\overline{a}, \epsilon)$ of the set $\tilde{B}(\overline{a}, \epsilon)$ in the space (X_n, τ_N) is equal to $\operatorname{Bd}_E B(\overline{a(\epsilon)}, \epsilon) \setminus \{\overline{a}\}$, where $\operatorname{Bd}_E B(\overline{a(\epsilon)}, \epsilon)$ is the boundary of the set $B(\overline{a(\epsilon)}, \epsilon)$ in the space (X_n, τ_E) .

Moreover, $B(\overline{a(\epsilon)}, \epsilon)$ is the disjoint union of the sets $\operatorname{Bd}_N \tilde{B}(\overline{a}, t\epsilon)$, where 0 < t < 1. Note that for each $\overline{x} \in B(\overline{a(\epsilon)}, \epsilon)$ the point \overline{x} belongs to the only set $\operatorname{Bd}_N \tilde{B}(\overline{a}, t(\overline{x})\epsilon)$ with $t(\overline{x}) = (\sum_{i=1}^{n-1} (x_i - a_i)^2 + x_n^2)/(2\epsilon x_n)$.

Proposition 2.1 The space (X_n, τ_N) is Tychonoff.

Proof. Since $\tau_E \subseteq \tau_N$, it is enough to show that for any $\overline{a} \in L_n$ and any $\tilde{B}(\overline{a}, \epsilon)$ there exists a continuous function $f: (X_n, \tau_N) \to [0, 1]$ such that $f(\overline{a}) = 0$ and $f|_{\text{Bd}_N \tilde{B}(\overline{a}, \epsilon)} = 1$. In fact, set $f(\overline{x}) = 1$ for any $\overline{x} \in X_n \setminus \tilde{B}(\overline{a}, \epsilon)$, $f(\overline{a}) = 0$ and $f(\overline{x}) = t(\overline{x})$ for any $\overline{x} \in B(\overline{a(\epsilon)}, \epsilon)$. \square

It is easy to see that the set $X'_{m,n} = \{\overline{x} \in X_n : x_1 = \dots x_{n-m} = 0\}$, where $2 \leq m < n$, is a closed subset of (X_n, τ_N) , and the subspace $X'_{m,n}$ of (X_n, τ_N) is homeomorphic to the space (X_m, τ_N) . Since the space (X_2, τ_N) is the Niemytzki plane, the space (X_n, τ_N) is in particular neither normal, countably paracompact nor weakly paracompact (recall that these properties are hereditary with respect to closed subsets).

3 Topologies between the Euclidean and n-dimensional Niemytzki

In [AAK] Abuzaid, Alqahtani and Kalantan suggested by the use of technique from [H] a poset \mathcal{T} of topologies on the set X_2 such that the minimimal topology is τ_E and the maximal topology is τ_N . We will extend the construction to the sets $X_n, n \geq 3$.

Construction 3.1 Let A be a subset of L_n . We generate a topology $\tau(A)$ on $X_n = P_n \cup L_n$ as follows.

If $\overline{a} \in P_n$ then a local base of $\tau(A)$ at \overline{a} consists of sets $B(\overline{a}, \epsilon)$, where $0 < \epsilon < a_n$.

If $\overline{a} \in A$ then a local base of $\tau(A)$ at \overline{a} consists of sets $B(\overline{a}, \epsilon) \cap X_n$, where $0 < \epsilon$.

If $\overline{a} \in L_n \setminus A$ then a local base of $\tau(A)$ at \overline{a} consists of sets $\tilde{B}(\overline{a}, \epsilon)$, where $0 < \epsilon$.

It is evident that $\tau_E = \tau(L_n) \subseteq \tau(A) \subseteq \tau(\emptyset) = \tau_N$. Note also that for any $A, B \subseteq L_n$ we have $A \subseteq B$ iff $\tau(A) \supseteq \tau(B)$.

Note that the space $(X_n, \tau(A))$ is first-countable and separable, the restriction of the topology $\tau(A)$ onto $P_n \cup A$ (resp. $L_n \setminus A$) coincides with the Euclidean

topology on $P_n \cup A$ (resp. with the discrete topology on $L_n \setminus A$), the subset P_n (resp. L_n) is open and dense (resp. closed, even a zero set, and nowhere dense) in the space $(X_n, \tau(A))$.

Similarly to (X_n, τ_N) , one can prove that the space $(X_n, \tau(A))$ is Tychonoff. Recall (cf. [E]) that a space X is called *perfect* if every closed subset of X is a G_{δ} -set. It is easy to see the following.

Proposition 3.1 If A is an open subset of $(L_n, (\tau_E)|_{L_n})$ then the space $(X_n, \tau(A))$ is perfect.

A subset A of the Euclidean space \mathbb{R}^n is a Bernstein set (cf. [O]) if both A and $\mathbb{R}^n \setminus A$ intersect every uncountable compact subspace F of \mathbb{R}^n . It is easy to see that if A is a Bernstein set then $\mathbb{R}^n \setminus A$ is also a Bernstein set. Moreover, the Bernstein sets are of the cardinality continuum and they do not contain uncountable compacta.

Remark 3.1 Let A be a Bernstein set of the space $(L_n, (\tau_E)|_{L_n})$. Then for any open subset O of $(L_n, (\tau_E)|_{L_n})$ containing A we have $L_n \setminus O$ is countable. This implies that the set $L_n \setminus A$ cannot be F_{σ} in the space $(L_n, \tau(A)|_{L_n})$. So the space $(L_n, \tau(A)|_{L_n})$ (and hence $(X_n, \tau(A))$) is not perfect.

Recall (cf. [Cha]) that a subset Y of a space X is called z-embedded in X if every zero set of Y is the trace on Y of some zero set of X.

Lemma 3.1 Let Y be a discrete subspace of cardinality continuum of a separable space X. Then Y is not z-embedded in X.

Proof. Let X be a separable space, Y be its discrete subspace of cardinality \mathfrak{c} , \mathcal{F} be the family of all continuous functions on the space X and Z_X be the family of all zero sets on X. Since X is separable, the cardinality of \mathcal{F} is at most \mathfrak{c} and hence the cardinality of Z_X is also at most \mathfrak{c} . Let Z_Y be the family of all zero sets on Y. It is easy to see that the cardinality of Z_Y is at least $2^{\mathfrak{c}} > \mathfrak{c}$. So Y is not z-embedded in X. \square

- **Lemma 3.2** (1) ([E, Exercise 5.2. C (b)]) No separable countably paracompact space contains a closed discrete subspace of cardinality continuum.
 - (2) No separable normal space contains a closed discrete subspace of cardinality continuum.

Proof. We will prove (2). Let X be a separable normal space and Y be its closed discrete subspace of cardinality \mathfrak{c} . By the Tietze extension theorem Y is z-embedded in X. We have a contradiction with Lemma 3.1. \square

Proposition 3.2 Let $B \subseteq L_n \setminus A$ be a closed uncountable subset of (X_n, τ_E) (equivalently, $(L_n, (\tau_E)|_{L_n})$), for example, B is homeomorphic to the Cantor set. Then the space $(X_n, \tau(A))$ is neither normal nor countably paracompact.

Proof. Since $(\tau_E)|_{L_n} \subseteq \tau(A)|_{L_n}$, the set B is a closed subset of $(L_n, \tau(A)|_{L_n})$ (and even $(X_n, \tau(A))$) of cardinality continuum. By the definition of the topology $\tau(A)$ each point of B is an open subset of $(L_n, \tau(A))_{L_n}$). So the set B is discrete. Recall that the space $(X_n, \tau(A))$ is separable. Then one can apply Lemma 3.2. \square

Corollary 3.1 If the space $(X_n, \tau(A))$ is normal (or countably paracompact) then $L_n \setminus A$ does not contain a closed uncountable subset of $(L_n, (\tau_E)|_{L_n})$.

As in [CH] one can pose the following general problem.

Problem 3.1 Let \mathcal{P} be a topological property such that the space (X_n, τ_E) possesses the property \mathcal{P} and the space (X_n, τ_N) does not.

For what $A \subseteq L_n$ does the space $(X_n, \tau(A))$ possess the property \mathcal{P} ?

Below we suggest some solutions to this problem.

Lemma 3.3 If $L_n \setminus A$ does not contain a closed uncountable subset of $(L_n, (\tau_E)|_{L_n})$ then the space $(X_n, \tau(A))$ is Lindelöf.

Proof. Let α be an open cover of the space $(X_n, \tau(A))$. Since $\tau(A)|_A = (\tau_E)|_A$, there exists a countable subfamily α_1 of α and open set O of (L_n, τ_E)

such that $A \subseteq O \subseteq \cup \alpha_1$. Let us note that $B = L_n \setminus O \subseteq L_n \setminus A$ is a closed subset of (L_n, τ_E) . By assumption B is countable. So there exists a countable subfamily α_2 of α such that $B \subseteq \cup \alpha_2$. Put $C = X_n \setminus ((\cup \alpha_1) \cup (\cup \alpha_2))$. Since $C \subseteq P_n$ there exists a countable subfamily α_3 such that $C \subseteq \cup \alpha_3$. Let us observe that the subfamily $\alpha_1 \cup \alpha_2 \cup \alpha_3$ of α is countable and it covers X_n . So the space $(X_n, \tau(A))$ is Lindelöf. \square

Theorem 3.1 The following are equivalent.

- (i) The space $(X_n, \tau(A))$ is Lindelöf.
- (ii) The space $(X_n, \tau(A))$ is paracompact.
- (iii) The space $(X_n, \tau(A))$ is countably paracompact.
- (iv) The space $(X_n, \tau(A))$ is normal.
- (v) The set $L_n \setminus A$ does not contain a closed uncountable subset $(L_n, (\tau_E)|_{L_n})$.

Proof. (i) => (ii) ([E, Theorem 5.1.2]). (ii) => (iii) (by definition).

 $(ii) => (iv) \; ([\mathtt{E}, \, \mathtt{Theorem} \; 5.1.5]). \; (iii) (\; \mathtt{or} \; (iv)) => (v) \; (\mathtt{Corollary} \; 3.1). \; (v) => (v) \; (\mathsf{E}, \, \mathsf{Theorem} \; 5.1.5]).$

(i) Lemma 3.3. \square

Corollary 3.2 Let $B \subseteq L_n \setminus A$ be a closed uncountable subset of $(L_n, (\tau_E)|_{L_n})$, for example, B is homeomorphic to the Cantor set. Then the space $(X_n, \tau(A))$ is not Lindelöf.

Remark 3.2 Corollary 3.2 implies that [AAK, Theorem 2.8 and Theorem 2.9] do not hold.

Corollary 3.3 Let A be a Bernstein set of the space $(L_n, (\tau_E)|_{L_n})$. Then the space $(X_n, \tau(A))$ is Lindelöf.

Proposition 3.3 (for n = 2 see [AAK, Theorem 2.3]) The following are equivalent.

- (i) The set $L_n \setminus A$ is countable.
- (ii) The space $(X_n, \tau(A))$ is second-countable.
- (iii) The space $(X_n, \tau(A))$ is metrizable.

Proof. (i) => (ii). Let $L_n \setminus A = \{\overline{b_1}, \overline{b_2}, \dots\}$, \mathcal{B} be a countable base for the space (X_n, τ_E) and \mathcal{B}_i be a countable local base of the space $(X_n, \tau(A))$ at the point $\overline{b_i}$, $i = 1, 2, \dots$ Then the family $\mathcal{B} \cup \bigcup_{i=1}^{\infty} \mathcal{B}_i$ is a countable base for the space $(X_n, \tau(A))$.

- (ii) => (iii). Since the space $(X_n, \tau(A))$ is Tychonoff and has a countable base, it is metrizable.
- (iii) => (i). Since the space $(X_n, \tau(A))$ is separable and metrizable then its subspace $(L_n \setminus A, \tau(A)|_{L_n \setminus A})$ is the same. But the space $(L_n \setminus A, \tau(A)|_{L_n \setminus A})$ is discrete. So the set $L_n \setminus A$ has to be countable. \square

The following corollary is evident.

Corollary 3.4 The space $(X_n, \tau(A))$ is hereditarary Lindelöf iff the set $L_n \setminus A$ is countable.

Let $\overline{a} \in L_n \setminus A$. It is easy to see that any sequence of points $\{\overline{x_i}\}_{i=1}^{\infty}$ in $\operatorname{Bd}_E B(\overline{a(\epsilon)}, \epsilon) \setminus \{\overline{a}\}$ converging to \overline{a} in the Euclidean topology τ_E is discrete in the space $(X_n, \tau(A))$. This implies the following proposition.

Proposition 3.4 (for n = 2 see [AAK, Theorem 2.6]) The space $(X_n, \tau(A))$ is locally compact iff $A = L_n$ i. e. $\tau(A) = \tau_E$.

4 Subspaces of $(X_n, \tau(A))$

Observe that the restriction of the topology $\tau(A)$ on the set L_n can be considered as a modification of the Euclidean topology on the set L_n in the sense of Bing [B] and Hanner [Han], see [E, Example 5.1.22] for the general construction.

Note that the space $(L_n, (\tau_E)|_{L_n})$ is homeomorphic to the Euclidean space \mathbb{R}^{n-1} , $(\tau_E)|_{L_n} \subseteq \tau(A)|_{L_n}$, $(\tau_E)|_A = \tau(A)|_A$, the set A is closed in the space $(L_n, \tau(A)|_{L_n})$ and the subspace $L_n \setminus A$ of $(L_n, \tau(A)|_{L_n})$ is discrete.

Thus from [E, Problem 5.5.2] we get the following two propositions.

Proposition 4.1 For any subset A of L_n the space $(L_n, \tau(A)|_{L_n})$ is hereditarily collectionwise normal.

Proposition 4.2 A subset A of L_n is a G_{δ} -set in the space $(L_n, \tau_E|_{L_n})$ (equivalently, in (X_n, τ_E) iff the space $(L_n, \tau(A)|_{L_n})$ is metrizable.

Proposition 4.1, the inequalities

 $\dim A \leq \dim(L_n, \tau(A)|_{L_n}) \leq \operatorname{Ind}(L_n, \tau(A)|_{L_n})$ (apply [E, Theorem 7.1.8 and Theorem 7.2.8]),

 $\dim A \leq \operatorname{ind}(L_n, \tau(A)|_{L_n}) \leq \operatorname{Ind}(L_n, \tau(A)|_{L_n})$ (apply [E, Theorem 7.1.1 and Theorem 7.1.2]),

and Ind $(L_n, \tau(A)|_{L_n}) \leq \dim A$ (apply [AN, Lemma 4.6, p.11]) imply

Corollary 4.1 For any subset A of L_n we have

$$\operatorname{ind}(L_n, \tau(A)|_{L_n}) = \operatorname{Ind}(L_n, \tau(A)|_{L_n}) = \dim(L_n, \tau(A)|_{L_n}) = \dim A.$$

The following lemma is evident.

Lemma 4.1 Let X be a space and $Z \subseteq Y \subseteq X$. If Z is z-embedded in Y and Y is z-embedded in X then Z is z-embedded in X.

Proposition 4.3 (i) Let B be a subset of $L_n \setminus A$ of cardinality continuum. Then B is not z-embedded in $(X_n, \tau(A))$.

(ii) Let $B \subseteq L_n \setminus A$ be a closed uncountable subset of $(L_n, (\tau_E)|_{L_n})$, for example, B is homeomorphic to the Cantor set. Then the subset L_n of $(X_n, \tau(A))$ is not z-embedded in $(X_n, \tau(A))$.

Proof. (i) Observe that the subspace $(B, \tau(A)|_B)$ of the space $(X_n, \tau(A))$ is discrete and has the cardinality continuum. Since $(X_n, \tau(A))$ is separable, by Lemma 3.1 the set B is not z-embedded in $(X_n, \tau(A))$.

(ii) Note that B is a closed discrete subset of the space $(L_n, \tau(A)|_{L_n})$ (and also $(X_n, \tau(A))$ of cardinality continuum. Hence by (i) the set B is not z-embedded in $(X_n, \tau(A))$. Recall (see Proposition 4.1) that the space $(L_n, \tau(A)|_{L_n})$ is normal. So the set B is z-embedded in $(L_n, \tau(A)|_{L_n})$. If we assume that the closed subset L_n of $(X_n, \tau(A))$ is z-embedded in $(X_n, \tau(A))$ we will get a contradiction with Lemma 4.1. \square

Corollary 4.2 If the subset L_n of $(X_n, \tau(A))$ is z-embedded in $(X_n, \tau(A))$ then the set $L_n \setminus A$ does not contain a closed uncountable subset of $(L_n, (\tau_E)|_{L_n})$,

A subspace Y of a space X is C^* -embedded in X (cf. [Cha]) if every bounded continuous function on Y can be extended to a bounded continuous function on X.

Theorem 4.1 The following are equivalent.

- (i) The space $(X_n, \tau(A))$ is normal.
- (ii) The subset L_n of $(X_n, \tau(A))$ is C^* -embedded in $(X_n, \tau(A))$.
- (iii) The subset L_n of $(X_n, \tau(A))$ is z-embedded in $(X_n, \tau(A))$.

Proof. (i) => (ii) ([E, Theorem 2.1.8]). (ii) => (iii) (by definition) (iii) => (i) (Corollary 4.2 and Theorem 3.1). \Box

Below βX is the Stone-Cech compactification of a space X.

Note that the family of all continuous functions on $\beta(L_n, (\tau_N)|_{L_n})$ has cardinality $\geq 2^{\mathfrak{c}}$ and the family of all continuous functions on $\operatorname{Cl}_{\beta(X_n,\tau_N)}L_n$ has cardinality $\leq \mathfrak{c}$. Hence $\beta(L_n, (\tau_N)|_{L_n})$ is not homeomorphic to $\operatorname{Cl}_{\beta(X_n,\tau_N)}L_n$. But if the space $(X_n, \tau(A))$ is normal then $\beta(L_n, (\tau_N)|_{L_n})$ is homeomorphic to $\operatorname{Cl}_{\beta(X_n,\tau_N)}L_n$ ([E, Corollary 3.6.8]).

One can pose the following problem

Problem 4.1 Describe $\beta(X_n, \tau(A))$ and $\beta(L_n, \tau(A)|_{L_n})$ for different A.

Remark 4.1 The countable sum theorems for closed sets (the case, dim, [E, Theorem 7.2.1]) and zero sets (the case Ind₀, [Cha, Theorem 13.8]) of a normal space imply the equalities ind $(X_n, \tau(A)) = \operatorname{Ind}(X_n, \tau(A)) = \dim(X_n, \tau(A)) = n$ for any A for which the space $(X_n, \tau(A))$ is normal.

References

- [AN] J.M. Aarts, T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993.
- [AAK] D. Abuzaid, M. Alqahtani, L. Kalantan, New topologies between the usual and Niemytzki, Applied General Topology, no. 1 (2020) 71-76.
- [BKP] W. Bielas, A. Kucharski, S. Plewik, The Niemytzki plane is κ -metrizable, Math. Bohem. 146 (2021), no. 4, 457-469.
- [B] R.H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186
- [Cha] M. G. Charalambous, Dimension Theory: A Selection of Theorems and Counterexamples, Springer International, Cham, 2019
- [CH] V. A. Chatyrko, Y. Hattori, A poset of topologies on the set of real numbers, Comment. Math. Univ. Carolin. 54, 2 (2013) 189-196.
- [E] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [Han] O. Hanner, Solid spaces and absolute retracts, Ark. för Mat. 1 (1951), 375–382
- [H] Y. Hattori, Order and topological structures of poset of the formal balls on metric spaces, Mem.Fac.Sci.Eng. Shimane Univ. Ser. B Math. Sci., 43 (2010) 13 - 26.

- [O] J. C. Oxtoby, Measure and category, Springer-Verlag, New York Helderberg Berlin, 1971
- [SS] L. A. Steen, J. A. Seebach, Jr. Counterexamples in topology, Springer-Verlag, New York, 1978

(V.A. Chatyrko)

Department of Mathematics, Linkoping University, 581 83 Linkoping, Sweden. vitalij.tjatyrko@liu.se