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Starting from a compact but general molecular Hamiltonian expressed in the bases of adiabatic electronic
states and position states of nuclei, we make careful consideration of nonadiabatic derivative coupling (NDC)
terms between adiabatic states. It is clarified that the conventional use of NDC terms evaluated for an
adiabatic electronic state in the textbook expression for the Fermi’s golden rule (FGR) rate implicitly invokes
an additional approximation that ignores non-orthogonality of adiabatic states at different geometries. Thus,
we derive a well-defined FGR rate expression based on a quasi-adiabatic approximation that explicitly uses
the adiabatic states and NDC terms evaluated at the minimum potential energy state of the initial adiabatic
states. We then clarify conditions and approximations leading to the modeling of all the nuclear degrees of
freedom as a set of harmonic oscillators, and then derive a closed form FGR rate expression while accounting
for the non-Condon effects due to momenta in NDC terms explicitly. The resulting rate expression includes
terms due to quadratic contribution of NDC terms and also their couplings to Franck-Condon modes. Model
calculations for the case where nuclear vibrations consist of both a sharp high frequency mode and a broad
Ohmic bath spectral density illustrate new features and implications of the rate expression.

I. INTRODUCTION

Advances in electronic structure calculation and quan-
tum dynamics methods over past decades have made it
possible to conduct first principles dynamics calculation
for many molecular systems.1–10 As yet, there remain sig-
nificant challenges for accurate quantum dynamics calcu-
lations of excited electronic states in general. One crucial
issue that has to be addressed carefully in this regard
is the fact that most quantum dynamics methods and
rate theories have been developed under the assumption
that diabatic electronic states with constant or simple
forms of electronic couplings between them can be iden-
tified. On the other hand, in reality, quantum chemistry
methods in general first seek for the calculation of adi-
abatic electronic states for fixed nuclei, although there
are new alternative approaches being developed. Thus,
dynamics methods and rate theories starting from adia-
batic states as little assumptions as possible have practi-
cal importance, especially considering the lack of perfect
and reliable transformation between adiabatic and dia-
batic states. To this end, how to handle and calculate
effects of nonadiabatic derivative coupling (NDC) terms
between adiabatic states remains a significant issue.
While consideration in an adiabatic basis does not

pose a problem for conducting nuclear quantum dynam-
ics within a single electronic state, extension of such
approach for electron-nuclear dynamics involving multi-
ple adiabatic states remains challenging, for which vari-
ous approximate methods1–8,11–22 have been developed.

a)Electronic mail: seogjoo.jang@qc.cuny.edu

Two important issues that have to be dealt with are
nonorthogonality of different adiabatic electronic states
for different values of nuclear coordinates and the com-
plicated nature of couplings between them. These is-
sues are also important for accurate modeling of excitons
formed in groups of molecules. Historically, Frenkel-type
exciton-bath model23–25 has been used successfully for
describing many experimental data. However, the dia-
batic states used to define local site excitation states in
these models are not always clearly defined.26 In addition,
to what extent and in what way NDC terms contribute
to the properties of excitons in many systems remains an
open issue.

In this work, we carefully consider NDC terms between
adiabatic electronic states and derive a Fermi’s golden
rule (FGR) rate expression for transition due to those
terms in simple cases. Such theories were developed
decades ago,27,28 but gained renewed interest recently
thanks to computational advances that allow direct eval-
uation of rate expressions. In particular, theories by Lin
and coworkers,28 which were generalized further by Shuai
and coworkers29–31 and also by others,32 have been imple-
mented successfully for various molecular systems. How-
ever, due to the subtlety of adiabatic electronic states,
which form a complete orthonormal basis only for a set of
fixed nuclear coordinates but are not orthogonal between
those of different values of nuclear coordinates, such FGR
rate expressions inevitably are based on additional as-
sumptions. This issue is clarified here starting from a
general formal expression33 for molecular Hamiltonian in
the adiabatic basis. We then provide closed form FGR
rate expressions within a quasiadiabatic approximation.

http://arxiv.org/abs/2405.02697v1
mailto:seogjoo.jang@qc.cuny.edu
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II. GENERAL FORMALISM

A. Molecular Hamiltonian and nonadiabatic terms in the

basis of adiabatic states

Consider a molecular Hamiltonian with Ne electrons
and Nu nuclei. For now, let us assume34 that there are
no other degrees of freedom involved. The corresponding
Hamiltonian in atomic units can be expressed as35

Ĥ = Ĥen + Ĥnu, (1)

where

Ĥen =

Ne
∑

µ=1

p̂2
µ

2
−

Ne
∑

µ=1

Nu
∑

c=1

Zce
2

|r̂µ − R̂c|2
+

1

2

Ne
∑

µ=1

∑

ν 6=µ

1

|r̂µ − r̂ν |
,

(2)

Ĥnu =

Nu
∑

c=1

P̂c

2Mc
+

1

2

Nu
∑

c=1

∑

c′ 6=c

ZcZc′

|R̂c − R̂c′ |
. (3)

In the above expressions, p̂µ and r̂µ are momentum and

position operators of an electron labeled with µ, and P̂c,
R̂c, Mc, and Zc are momentum operator, position oper-
ator, mass, and charge of a nucleus labeled with c.
Let us consider the adiabatic electronic Hamiltonian

Ĥen(R), which is the same as Eq. (2) except that the

nuclear position operator vector R̂ ≡ (R̂1, · · · , R̂Nu)
T in

Eq. (2) is replaced with corresponding vector parameter:
R ≡ (R1, · · · ,RNu)

T . Then, one can define the following
adiabatic electronic states and eigenvalues:

Ĥen(R)|ψe,j(R)〉 = Ee,j(R)|ψe,j(R)〉, (4)

where j collectively denotes the set of all quantum num-
bers that are necessary to completely specify the adia-
batic electronic states. Thus, the following completeness
relation holds in the electronic space:

1̂e,R =
∑

j

|ψe,j(R)〉〈ψe,j(R)|. (5)

In the above expression, the subscript R denotes that the
resolution is with respect to adiabatic electronic states
defined at R. This subscript is used to make it clear that
each component of the resolution is dependent on R even
though in principle the electronic identity operator itself
is independent of nuclear coordinates. In practice, due
to the approximations made for the adiabatic electronic
states and the truncation of the summation, the expan-
sion is not complete. Thus, such approximate summation
for Eq. (5) ends up being dependent upon R.
It is possible33 to decompose the molecular Hamilto-

nian Ĥ into adiabatic and nonadiabatic components em-
ploying Eq. (5). The resulting expression for the Hamil-
tonian is as follows:36

Ĥ = Ĥad +
1

2

3Nu
∑

α=1

(

P̂αF̂α + F̂αP̂α

)

+ Ŝ, (6)

where α denotes each one dimensional Cartesian com-
ponent and Ĥad is the adiabatic approximation for the
molecular Hamiltonian given by

Ĥad =

∫

dR
∑

k

|R〉|ψe,k(R)〉
{

−
3Nu
∑

α=1

~
2

2Mα

∂2

∂R2
α

+Uk(R)
}

〈ψe,k(R)|〈R|, (7)

with

Uk(R) = Ee,k(R) +
1

2

Nu
∑

c=1

∑

c′ 6=c

ZcZc′

|Rc −Rc′ |
. (8)

In Eq. (6), F̂α represents the first derivative nonadiabatic
coupling term,

F̂α =

∫

dR
∑

k

∑

k′

|R〉|ψe,k(R)〉Fα,kk′ (R)〈ψe,k′ (R)|〈R|,

(9)
where

Fα,kk′ (R) =
~

iMα
〈ψe,k(R)|

(

∂

∂Rα
|ψe,k′(R)〉

)

. (10)

Note that P̂αF̂α in Eq. (6) contains part of the con-
ventional second derivative nonadiabatic coupling term.
The last term in Eq. (6) represents the remaining second
derivative coupling term,

Ŝ =

∫

dR
∑

k

∑

k′

|R〉|ψe,k(R)〉Skk′ (R)〈ψe,k′ (R)|〈R|,

(11)
where each component involves products of first deriva-
tive terms of states33 as follows:

Skk′ (R) =
1

2

3Nu
∑

α=1

∑

k′′

MαFα,kk′′ (R)Fα,k′′k′(R). (12)

Thus, Eq. (6) with above clarification shows that all
NDC terms can be determined once full information on
functional form of Eq. (10) is known.

B. Derivative coupling terms

From the condition that 〈ψe,k(R)|ψe,k′(R)〉 = δkk′ , it
is easy to show33 that

Fα,kk′ (R) = F ∗
α,k′k(R). (13)

Thus, F̂α defined by Eq. (9) is Hermitian. This also
means that the diagonal component Fα,kk(R) is always
real. Thus, if all the electronic eigenfunctions 〈r|ψe,j(R)〉
can be expressed as real-valued functions, Fα,kk(R) de-
fined as Eq. (10) is always zero. On the other hand, in
the presence of magnetic fields or for other cases where
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the adiabatic electronic eigenstate need to be complex
valued, it does not have to be zero.
For the case where k 6= k′ and for non-

degenerate Ee,k(R) and Ee,k′ (R), the Hellmann-
Feynman theorem37,38 can be used to obtain an alterna-
tive expression for Fα,kk′ (R), which is obtained by taking
the derivative of the following identity:

〈ψe,k(R)|Ĥe(R)|ψe,k′ (R)〉 = Ee,k(R)δkk′ . (14)

Thus, taking derivative of the above identity with respect
to Rα, we obtain

(

∂

∂Rα
〈ψe,k(R)|

)

Ĥe(R)|ψe,k′ (R)〉

+〈ψe,k(R)|
(

∂Ĥe(R)

∂Rα

)

|ψe,k′ (R)〉

+〈ψe,k(R)|Ĥe(R)

(

∂

∂Rα
|ψe,k′(R)〉

)

=
iMα

~
Fα,kk′ (R)(Ee,k(R)− Ee,k′ (R))

+〈ψe,k(R)|∂Ĥe(R)

∂Rα
|ψe,k′ (R)〉 = ∂Ee,k(R)

∂Rα
δkk′ ,(15)

where the fact that F ∗
α,k′k(R) = Fα,kk′ (R) has been used

in the second equality. Since we assumed that k 6= k′,
the righthand side of the above equation is zero. Thus,
given that Ee,k′ (R) 6= Ee,k(R), Eq. (15) results in the
following expression:

Fα,kk′ (R) =
i~

Mα

〈ψe,k(R)|(∂Ĥe(R)/∂Rα)|ψe,k′ (R)〉
Ee,k(R)− Ee,k′(R)

.

(16)
The above Hellmann-Feynman expression makes it easy
to evaluate off-diagonal derivative coupling between non-
degenerate states. Note that the above expression also
clarifies that the derivative coupling diverges between
two degenerate states unless the numerator also vanishes.
Such case of divergence is known as conical intersection,
for which a wealth of both theoretical and computational
studies are available now. However, in the present work,
we only consider cases where Fα,kk′ (R) remains finite
and relatively small. These cases become important for
nonradiative decay of near infrared and short wavelength
infrared dye molecules that demonstrate energy gap law
behavior and for dynamics in the excited state manifold
in regions far from conical intersections.

III. FERMI’S GOLDEN RULE RATE EXPRESSION

A. Hamiltonian in the subspace of two adiabatic

electronic states

Let us first consider the simplest case where a molecule
is isolated in gas phase, and the nonadiabatic transition
occurs due to derivative couplings that involve molecular

vibrations. In addition, let us assume that there are two
major adiabatic electronic states of our interest,39 which
are well separated from other adiabatic electronic states.
Denoting them as 1 and 2, the adiabatic Hamiltonians
for these states can be expressed as

Ĥad,k =

∫

dR|R〉|ψe,k(R)〉
{

−
3Nu
∑

α=1

~
2

2Mα

∂2

∂R2
α

+Uk(R)
}

〈ψe,k(R)|〈R|, k = 1, 2 (17)

We also assume that real valued eigenfunctions for
〈r|ψe,k(R)〉 can be identified. This is true for transi-
tions between singlet states in the absence of magnetic
field. Thus, Fα,11(R) = Fα,22(R) = 0 and S12(R) =
S21(R) = 0. As a result, the second derivative coupling
terms contribute only to diagonal adiabatic terms, and
we can define the zeroth order Hamiltonian as

Ĥ0 = Ĥ0,1 + Ĥ0,2, (18)

where, for k=1,2,

Ĥ0,k = Ĥad,k

+

∫

dR|R〉|ψe,k(R)〉Skk(R)〈ψe,k(R)|〈R|

=

∫

dR|R〉|ψe,k(R)〉
{

−
∑

α

~
2

2Mα

∂2

∂R2
α

+Uk(R) + Skk(R)
}

〈ψe,k(R)|〈R|. (19)

On the other hand, the first derivative coupling terms are
off-diagonal with respect to adiabatic states and consti-
tute the coupling Hamiltonian as follows:

Ĥc =
1

2

3Nu
∑

α=1

(

P̂αF̂α + F̂αP̂α

)

, (20)

where

F̂α =

∫

dR|R〉
(

Fα,12(R)|ψe,1(R)〉〈ψe,2(R)|

+Fα,21(R)|ψe,2(R)〉〈ψe,1(R)|
)

〈R|. (21)

Combining Eqs. (19) and (20), we obtain the following
expression for the effective total molecular Hamiltonian:

Ĥ = Ĥ0 + Ĥc. (22)

We assume that the molecule is initially in thermal
equilibrium in the adiabatic state 1. Thus, the initial
density operator at time t = 0 is given by

ρ̂(0) =
e−βĤ0,1

Tr
{

e−βĤ0,1

} . (23)
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Then, within the approximation of effective two elec-
tronic state Hamiltonian coupled by nonadiabatic cou-
pling given by Eq. (20), the density operator at time t
is

ρ̂(t) = e−iĤt/~ρ̂(0)eiĤt/~. (24)

With the above expression for the density operator and
the Hamiltonian given by Eq. (22), it seems straight-

forward to apply FGR employing Ĥc as a perturbation
term. However, it is important to note that the form of
the zeroth order Hamiltonian, Eq. (19), is not amenable
for straightforward application of FGR. This is due to
parametric dependence of the adiabatic electronic states,
which breaks orthogonality condition for different adia-
batic states for different nuclear coordinates. In other
words, even for k 6= k′, 〈ψk(R)|ψk′(R′)〉 6= 0 for R 6= R′,
as long as they have the same spin symmetry. On the
other hand, the textbook derivation of FGR relies on or-
thogonality of all the basis states with respect which the
initial and final states are constructed. In this sense, the
FGR rate expression27,28 for the nonadiabatic transition
amounts to using additional approximation.

B. Fermi’s golden rule rate expression within a

quasi-adiabatic approximation

We here consider application of FGR for a simple and
generic approximation for both Ĥc and Ĥ0. Namely, we
use crude adiabatic states determined at the local min-
imum of the initial states while retaining all the nona-
diabatic coupling terms that are also evaluated at those
points. We refer this approximation as a quasi-adiabatic
approximation. More detailed description is provided be-
low.

1. General expression for an isolated molecule

For straightforward application of FGR, it is conve-
nient to define a complete electronic basis that is inde-
pendent of nuclear degrees of freedom. As such electronic
states, let us choose the adiabatic electronic states deter-
mined at the minimum energy nuclear coordinates of the
Ee,1(R), denoted as Rg

1. Thus, we define

|ψe,k〉 = |ψe,k(R
g
1)〉, k = 1, 2. (25)

We also assume that these states serve as good approx-
imations for adiabatic electronic states |ψk,e(R1)〉 near
the vicinity of R

g
1. Similarly, it is assumed that the

derivative coupling terms at Rg
1 also serve as a good ap-

proximation for those terms evaluated at nearby nuclear
coordinates. Thus, the diagonal terms of the Hamilto-

nian in Eq. (22) are approximated as33

Ĥ0 ≈
{

3Nu
∑

α=1

P̂ 2
α

2Mα
+ U1(R̂) + S11(R

g
1)
}

|ψe,1〉〈ψe,1|

+
{

3Nu
∑

α=1

P̂ 2
α

2Mα
+ U2(R̂) + S22(R

g
1)
}

|ψe,2〉〈ψe,2|,

(26)

and the coupling term in Eq. (22) is approximated as

Ĥc ≈
3Nu
∑

α=1

P̂α (Fα,12(R
g
1)|ψe,1〉〈ψe,2|

+F ∗
α,12(R

g
1)|ψe,2〉〈ψe,1|

)

, (27)

where Fα,12(R
g
1) is defined by Eq. (16) evaluated at Rg

1

for k = 1 and k′ = 2. In the above equation, the fact that
Fα,21(R

g
1) is the complex conjugate of Fα,12(R

g
1) has also

been used, and P̂α commutes with the electronic states
approximated within the crude adiabatic approximation.
We assume that the nuclear coordinate R is defined

in the Eckart frame40–43 with respect to R
g
1. In prin-

ciple, this can be identified as follows. First, R′ and
the minimum energy structure for state 1, R′g

1, can be
defined in any center-of-mass coordinate frame with re-
spect to which the molecule is static. Then, applying a
pseudo-rotation matrix that satisfies the second Eckart
condition41 with respect to R′g

1, a new coordinate frame
can be identified. The nuclear coordinate vectors in this
rotated frame are labeled as R and R

g
1. It is known

that identifying the pseudo-rotation matrix satisfying
the Eckart condition is nontrivial, but there are well-
established practical procedures.41–43

In the Eckart frame as described above, let us introduce
mass weighted coordinates R̃α =

√
MαRα and the corre-

sponding canonical momentum, P̃α = Pα/
√
Mα. Then,

Eq. (26) can be expressed as

Ĥ0 ≈
{

∑

α

ˆ̃P 2
α

2
+ U1(R̂) + S11(R̃

g
1)
}

|ψe,1〉〈ψe,1|

+
{

∑

α

ˆ̃P 2
α

2
+ U2(R̂) + S22(R̃

g
1)
}

|ψe,2〉〈ψe,2|.(28)

Similarly, Fα,12(R
g
1) in Eq. (27) can be expressed as

Fα,12(R
g
1) =

i~√
Mα

〈ψe,1|
(

∂Ĥe(R)/∂R̃α

)

|
R̃=R̃

g
1

|ψe,2〉
Ee,1(R

g
1)− Ee,2(R

g
1)

.

(29)
The potential energies in Eq. (28) are assumed to be

completely general. For the case they are well approx-
imated by quadratic functions, further simplification of
Eq. (28) is possible given that subtle assumptions con-
cerning Eckart frame are well justified. Appendix A de-
tails these issues and outlines the derivation of multimode
harmonic oscillator approximation for the nuclear degrees
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of freedom for each electronic state. The resulting expres-
sions can be combined into the following expressions for
the zeroth order Hamiltonian:

Ĥ0 ≈
{

E0
1 + Ĥb,1}|ψe,1〉〈ψe,1|

+
{

E0
2 + Ĥb,2

}

|ψe,2〉〈ψe,2|, (30)

where E0
k = Uk(R

g
k) + Skk(R

g
k) and

Ĥb,k =

Nv,k
∑

j=1

(

1

2
p̂2k,j +

ω2
k,j

2
q̂2k,j

)

. (31)

For the case where Nv,1 = Nv,2 = Nv, q1,j and q2,j can
be related by the Duschinsky rotation matrix J and a
displacement vector K as follows:

q2,j =

Nv
∑

k=1

Djkq1,k +Kj . (32)

Let us assume that the coupling Hamiltonian Ĥc is
independent of translation or rotation in the body fixed
frame corresponding to the minimum energy structure for
the electronic state 1, which is consistent with neglecting
the translation-rotation part of the nuclear Hamiltonian
in Eq. (A2). Then, Ĥc can be expressed only in terms
of those involving normal modes for the state 1. This
transformation is detailed in Appendix B, and the re-
sulting expression is as follows:

Ĥc =
∑

α

Nv,1
∑

j=1

Nv,1
∑

j′=1

L1,jαL1,j′αp̂1,j

×
{

F̃j′,12|ψe,1〉〈ψe,2|+ F̃j′,21|ψe,2〉〈ψe,1|
}

=

Nv,1
∑

j=1

p̂1,j

{

F̃j,12|ψe,1〉〈ψe,2|+ F̃ ∗
j,12|ψe,2〉〈ψe,1|

}

,

(33)

where

F̃j,12 = i~
〈ψe,1|

(

∂Ĥe(R)/∂q1,j|R=R
g
1

)

|ψe,2〉
Ee,1(R

g
1)− Ee,2(R

g
1)

. (34)

In the second equality of Eq. (33), the fact that
∑

α L1,jαL1,j′α = δjj′ has been used.

For the Hamiltonian terms Ĥ0 and Ĥc given by Eqs.
(30) and (33) respectively and for the following initial
density operator:

ρ̂1 = |ψe,1〉〈ψe,1|ρ̂b,1, (35)

with ρ̂b,1 = e−βĤb,1/T r{e−βĤb,1}, it is now straightfor-
ward to apply FGR44 and obtain the following rate ex-
pression:

kFGR =
2

~2
Re
∑

j,j′

F̃ ∗
j,12F̃j′,12

∫ ∞

0

dtei(E
0

2
−E0

1
)t/~Cjj′ (t),

(36)

where

Cjj′ (t) = Trb

{

eitĤb,2/~p̂1,je
−itĤb,1/~ρ̂b,1p̂1,j′

}

. (37)

2. Molecules in liquid or solid environments

For molecules in liquid or solid environments, transla-
tion, rotational, and vibrational modes of molecules are
in general coupled to those of environmental degrees of
freedom. On the other hand, since the total number of
degrees of freedom for the system plus environment is
virtually infinite, we can ignore its translation and ro-
tational motion. Thus, all degrees of freedom can be
viewed as vibrational. Let us denote the position vec-
tor for the environmental degrees of freedom collectively
as X. Then, following a procedure similar to obtaining
Eq. (26), one can obtain the following expressions for the
zeroth order Hamiltonian term:

Ĥ0 ≈
{

3Nu
∑

α=1

P̂ 2
α

2Mα
+
∑

ξ

P̂ 2
ξ

2mξ

+U1(R̂, X̂) + S11(R
g
1,X

g
1)
}

|ψe,1〉〈ψe,1|

+
{

3Nu
∑

α=1

P̂ 2
α

2Mα
+
∑

ξ

P̂ 2
ξ

2mξ

+U2(R̂, X̂) + S22(R
g
1,X

g
1)
}

|ψe,2〉〈ψe,2|,(38)

where P̂ξ is the momentum conjugate to the ξ component
of X and mξ is its mass. On the other hand, the cou-
pling Hamiltonian term in Eq. (22) can still be assumed
to depend only on the molecular vibrational degrees of
freedom directly as follows:

Ĥc ≈
3Nu
∑

α=1

P̂α (Fα,12(R
g
1,X

g
1)|ψe,1〉〈ψe,2|

+F ∗
α,12(R

g
1,X

g
1)|ψe,2〉〈ψe,1|

)

. (39)

Given that quadratic approximations for Uk(R̂, X̂) are
valid, one can expand the potential energy up to the sec-
ond order of displacements around R

g
k and X

g
k, and de-

termine normal modes in the extended space of molecular
and environmental degrees of freedom. In this case, the
apparent form of the Ĥ0 and Ĥc will be the same as Eqs.
(30) and (33), except that each normal mode in this case
is a linear combination of molecular and environmental
degrees of freedom.

3. Closed-form expression for linearly coupled harmonic

oscillator bath

Let us consider the simplest case of displaced harmonic
oscillator model, for which ωj,2 = ωj,1, q̂j,2 = q̂j,1 + dj ,
and p̂j,2 = p̂j,1. Without losing generality, we can drop



6

the subscript 1 for the Ĥb,1 and ρ̂b,1 and replace Ĥb,2 with

Ĥb + B̂ +
∑

j ω
2
jd

2
j/2. Thus, Ĥ0 in this can be expressed

as

Ĥ0 ≈
{

E1 + Ĥb

}

|ψe,1〉〈ψe,1|

+
{

E2 + Ĥb + B̂
}

|ψe,2〉〈ψe,2|, (40)

where E1 = E0
1 , E2 = E0

2 +
∑

j ω
2
jd

2
j/2, and

Ĥb =
∑

j

Ĥbj =
∑

j

~ωj

(

b̂†j b̂j +
1

2

)

, (41)

B̂ =
∑

j

B̂j =
∑

j

~ωjgj(b̂j + b̂†j). (42)

In the above expressions, b̂j and b̂†j are usual lowering
and raising operators defined as

b̂j =

√

ωj

2~
x̂j +

i
√

2~ωj

p̂j, (43)

b̂†j =

√

ωj

2~
x̂j −

i
√

2~ωj

p̂j, (44)

and gj =
√

2/(~ωj)(dj/ωj). Then, the rate expression,
Eq. (36), for the present case can be expressed as

kFGR =
2

~2
Re
∑

j,j′

F̃ ∗
j,12F̃j′,12

∫ ∞

0

dtei(E2−E1)t/~Cjj′ (t),

(45)
where

Cjj′ (t) = Trb

{

eit(Ĥb+B̂)/~p̂je
−itĤb/~ρ̂bp̂j′

}

. (46)

For the case where j 6= j′, the above bath correlation
function can be calculated as follows:

Cjj′ (t) = Trbj

{

eit(Ĥbj+B̂j)/~p̂je
−itĤbj/~ρ̂bj

}

×Trbj′
{

eit(Ĥbj′+B̂j′ )/~e−itĤbj′ /~ρ̂bj′ p̂j′
}

×
∏

j′′ 6=j,j′

Trbj′′
{

eit(Ĥbj′′+B̂j′′ )/~e−itĤbj′′/~ρ̂bj′′
}

=
~
√
ωjωj′

2gjgj′
Kj(t)Kj′ (t)e

−K(t)−iλt/~, (47)

where Eqs. (C8), (C14), or (C19) in Appendix C have
been used for each relevant vibrational mode, and the
bath correlation functions are defined as

Kj(t) = g2j

(

coth(
β~ωj

2
)(1− cos(ωjt))− i sin(ωjt)

)

,

(48)

K(t) =
∑

j

Kj(t). (49)

For the case where j = j′, Eq. (46) can be shown to be

Cjj(t) = Trbj

{

eit(Ĥbj+B̂j)/~p̂je
−itĤbj/~ρ̂bj p̂j

}

×
∏

j′ 6=j

Trbj′
{

eit(Ĥbj′+B̂j′ )/~e−itĤbj′ /~ρ̂bj′
}

=
~ωj

2

{

Kj(t)
2

g2j

+

(

coth(
β~ωj

2
) cos(ωjt) + i sin(ωjt)

)

}

×e−K(t)−iλt/~, (50)

where Eq. (C8) or (C25) has been used.

Employing the above expressions in Eq. (36), the FGR
rate can now be expressed as

kFGR =
1

~2

∫ ∞

−∞

dtei(E2−E1−λ)t/~−K(t)

×
{

F (t)F ∗(−t) +D(t)

}

=
1

~2

∫ ∞

−∞

dtei(E1−E2+λ)t/~−K∗(t)

×
{

F ∗(−t)F (t) +D(t)

}

, (51)

where

F (t) =
∑

j

(

~ωj

2

)1/2

F̃j,12gj

(

coth(
β~ωj

2
)(1− cos(ωjt))

−i sin(ωjt)
)

, (52)

F ∗(t) is complex conjugate of F (t), and

D(t) =
∑

j

~ωj

2
|F̃j,12|2

(

coth(
β~ωj

2
) cos(ωjt))+i sin(ωjt)

)

.

(53)
Note that the second line in Eq. (51) is obtained by either
taking complex conjugate of the integrand or replacing
t with −t of the first expression. Thus, K∗(t) = K(−t).
We provide this expression since this expression corre-
sponds to more conventional one and will be used for the
numerical calculation.

Defining the following two spectral densities,

J (ω) = π~
∑

j

ω2
j δ(ω − ωj)g

2
j , (54)

JD(ω) = π
∑

j

ωj

2
δ(ω − ωj)|F̃j,12|2, (55)

which are both in the units of energy, the correlation



7

functions, K(t) and D(t), can be expressed as

K(t) =
1

π~

∫ ∞

0

dω
J (ω)

ω2

(

coth(
β~ω

2
)(1 − cos(ωt))

−i sin(ωt)
)

≡ KR(t)− iKI(t), (56)

D(t) =
~

π

∫ ∞

0

dωJD(ω)
(

coth(
β~ω

2
) cos(ωt)

+i sin(ωt)
)

= DR(t) + iDI(t). (57)

Note that F̃j,12 is purely imaginary if all the adiabatic
electronic wave functions in Eq. (34) are real valued.
Thus, assuming this, let us also introduce the following
spectral density:

JF (ω) = −iπ
∑

j

(

~ωj

2

)1/2

ωjδ(ω − ωj)F̃j,12gj , (58)

which can be assumed to be real-valued and is in the
units of energy. Then,

F (t) =
i

π

∫ ∞

0

dω
JF (ω)

ω

(

coth(
β~ω

2
)(1 − cos(ωt))

−i sin(ωt)
)

≡ iFI(t) + FR(t). (59)

The spectral density JF (ω) represents the sum of cou-
plings between displacements and derivative couplings
and are not necessarily positive unlike J (ω) and JD(ω).
However, it is still bounded in its magnitude as follows:

|JF (ω)| ≤
1

2
(J (ω) + JD(ω)) . (60)

IV. MODEL CALCULATIONS

We here consider models of spectral densities given by
sums of Ohmic and a single high frequency mode as fol-
lows:

J (ω) = πλl
ω

ωc
e−ω/ωc + πλhωhδ(ω − ωh), (61)

JD(ω) = πDl
ω

ωc
e−ω/ωc + πDhωhδ(ω − ωh), (62)

JF (ω) = πFl
ω

ωc
e−ω/ωc + πFhωhδ(ω − ωh). (63)

In above model spectral densities, λl and λh are compo-
nents of reorganization energies due to the low frequency
Ohmic part and the isolated high frequency parts. Dl and
Dh represent squared magnitudes of NDC terms, whereas
Fl and Fh correspond to sums of couplings between NDC
and Franck-Condon terms for each mode. These four pa-
rameters are all defined in the units of energy. Alterna-
tively, these can be expressed in terms of dimensionless

TABLE I. Relationship between parameters defining bath
spectral densities.

λl λh Dl Dh Fl Fh

η~ωc sh~ωh ηD~ωc sD~ωh ηF ~ωc sF ~ωh

parameters, η, sh, ηD
, s

D
, η

F
, and s

F
, as indicated in

Table I.

As a sufficient condition for meeting the criterion of Eq.
(60), we assume that |Fl| ≤ Dl/2 and |Fh| ≤ Dh/2. For
the spectral density of Eq. (61), the real and imaginary
parts of K(t), as defined through the last line of Eq. (56),
can be expressed as

KR(t) =
1

π~

∫ ∞

0

dω
J (ω)

ω2
coth

(

β~ω

2

)

(1− cos(ωt))

≈ λl
~ωc

{

1

2
ln(1 + τ20 ) + ln(1 + τ21 ) + ln(1 + τ22 )

2(1 + 5θ/2)

θ

∫ τ5/2

0

dτ ′ tan−1(τ ′)

}

+
λh
~ωh

coth

(

β~ωh

2

)

(1− cos(ωht)) , (64)

KI(t) =
1

π~

∫ ∞

0

dω
J (ω)

ω2
sin(ωt)

=
λl
~ωc

tan−1(τ0) +
λh
~ωh

sin(ωht), (65)

where θ = β~ωc and τn = ωct/(1 + nθ). The second
equality in Eq. (64) is based on an approximation for
coth(β~ω/2). On the other hand, the real and imaginary
parts of D(t), which are defined by the last line of Eq.
(57), are expressed as

DR(t) =
~

π

∫ ∞

0

dωJD(ω) coth

(

β~ω

2

)

cos(ωt)

≈ ~ωcDl

{

1− τ20
(1 + τ20 )

2
+

2

(1 + θ)2
1− τ21

(1 + τ21 )
2

+
2

(1 + 2θ)2
1− τ22

(1 + τ22 )
2

+
2

θ(1 + 5θ/2)

1

(1 + τ25/2)

}

+~ωhDh coth

(

β~ωh

2

)

cos(ωht), (66)

DI(t) =
~

π

∫ ∞

0

dωJD(ω) sin(ωt)

= ~ωcDl
2τ0

(1 + τ20 )
2
+ ~ωhDh sin(ωht). (67)

Finally, the real and imaginary parts of F (t), which are
defined by the last line of Eq. (59), have the following



8

TABLE II. Table of some of model parameters for spectral
densities.

Case kBT/(~ωc) η ηD ωh/ωc sh sD

I 1 2 1 0 0
II 1 1 1 5 0.2 0.2
III 0.5 1 1 0 0
IV 0.5 1 0.5 2.5 0.2 0.2

expressions:

FR(t) = Fl
τ0

(1 + τ20 )
+ Fh sin(ωht), (68)

FI(t) ≈ Fl

(

τ20
(1 + τ20 )

+
2

(1 + θ)

τ21
(1 + τ21 )

+
2

(1 + 2θ)

τ22
(1 + τ22 )

+
1

θ
ln(1 + τ25/2)

)

+Fh coth

(

β~ωh

2

)

(1− cos(ωht)) . (69)

For numerical calculations, we have considered four
cases as listed in Table II.
Figure 1 shows results for Case I of Table II, for which

there is no high frequency component of the spectral den-
sities (thus λ = λl) and the temperature is high enough
for the bath to be viewed as being almost classical. Rates
calculated by Eq. (51) for η

F
= 0 and 1 are shown. As a

reference, rate calculated according to the following Con-
don approximation is also shown.

kCon. =
1

~2
DR(0)

∫ ∞

−∞

dtei(E1−E2+λ)t/~−K∗(t), (70)

which employs the NDC terms at t = 0 for the calcu-
lation of an effective coupling. This choice of reference
rate remains the same for the figures that follow. When
compared to this approximation, it is clear that the con-
tribution of JD(ω) enhances the rate preferentially for
larger values of E1 − E2. The resulting shape of the
rate vs. energy becomes slightly more asymmetric, but
it appears that the whole behavior can still be modeled
reasonably well by a Condon-type rate expression if an
effective modification of J (ω) can be made. Comparison
of the result for η

F
= 0.5 with that for η

F
= 0 shows

that the former enhances the rate for only large value of
E1−E2. On the other hand, for E1−E2 ≈ λ, interesting
crossing appears between the two rates.
Figure 2 provides results for Case II of Table II, for

which the energy of the high frequency vibrational mode
is much larger than thermal energy and the cutoff fre-
quency of the Ohmic bath. As yet, due to the dominance
of the low frequency Ohmic bath, the effects of the high
frequency vibrational mode are relatively minor in this
case. Thus, the results are qualitatively similar to those
for Fig. 1.
Calculation results for the same Case II of Table II but

now with finite value of sF are presented in Fig. 3. Note
that the result is independent of the overall sign of JF (ω).

-4 -2 0 2 4 6 8 10 12 14 16
(E

1
-E

2
+λ)/λ
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-5
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-2

-1

0

1

L
n 

[κ
]

η
F
=0

η
F
=1

Con. (t=0)

FIG. 1. Natural logarithms of scaled rates κ =
√

kBTλ/πkFGR (in the units where kB = ~ = ωc = 1) for
Case I with sF = 0. Two different cases of ηF = 0 and 1 are
compared with a reference result of a Condon approximation
that employs only the value of DR(0) for the same Case I.
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FIG. 2. Natural logarithms of scaled rates κ =
√

kBTλ/πkFGR (in the units where kB = ~ = ωc = 1) for
Case II with sF = 0. Two different cases of ηF = 0 and 1 are
compared with a reference result of a Condon approximation
that employs only the value of DR(0) for the same Case II.

On the other hand, the relative sign of the Ohmic bath
and the high frequency vibrational component makes dif-
ference because different relative signs result in different
net contribution to JF (ω). For larger value of E1 − E2,
the case with s

F
= 0.2 results in larger rate compared to

the case with s
F
= −0.2. However for small or moder-

ately negative values of E1 −E2, opposite situations can
occur, which can be due to subtle interplay of oscillatory
nature of integrands.
Figure 4 shows results for Case III of Table II, for which

there is no high frequency component of the spectral den-
sities (thus λ = λl) but the temperature is low compared
to the width of the Ohmic spectral density. As a result,
clear asymmetry can be seen even for the approximate
result with Condon approximation, Eq. (70), indicating
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FIG. 3. Natural logarithms of scaled rates κ =
√

kBTλ/πkFGR (in the units where kB = ~ = ωc = 1) for
Case II with ηF = 1. Two different cases of sF = 0.2 and
−0.2 are compared with a reference result of a Condon ap-
proximation that employs only the value of DR(0) for the
same Case II.
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FIG. 4. Natural logarithms of scaled rates κ =
√

kBTλ/πkFGR (in the units where kB = ~ = ωc = 1) for
Case III with sF = 0. Two different cases of ηF = 0 and 0.5
are compared with a reference result of a Condon approxima-
tion that employs only the value of DR(0) for the same Case
III.

that the bath has significant quantum mechanical char-
acter. Since there is no high frequency vibrational mode
in this case, resulting rates have similar trends as in Fig.
1.
Figure 5 provides results for Case IV of Table II, for

which there is a contribution of a high frequency vibra-
tional mode to both J (ω) and JD(ω). The energy quan-
tum of the high frequency vibrational mode relative to
the thermal energy is the same as Case II, and the re-
sulting rate even for the Condon approximation exhibits
a slight oscillatory pattern. It is seen that the contribu-
tion of the low frequency Ohmic bath to JD(ω) causes
significant shift of the rate, when compared to that of
Condon approximation, and also makes the vibrational
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η
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FIG. 5. Natural logarithms of scaled rates κ =
√

kBTλ/πkFGR (in the units where kB = ~ = ωc = 1) for
Case IV with sF = 0. Two different cases of ηF = 0 and 0.5
are compared with a reference result of a Condon approxima-
tion that employs only the value of DR(0) for the same Case
IV.

progression more pronounced in the normal region (nega-
tive values of E1−E2+λ). On the other hand, additional
contribution of the low frequency Ohmic bath to JF (ω)
does not seem to bring significant changes. Even for large
values of E1 − E2, the enhancement of the rate due to
the finite value of η

F
is rather minor.

Finally, results for Case IV of Table II but now in
the presence of contributions of both the low frequency
Ohmic bath and the high frequency vibrational mode to
JF (ω) are shown in Fig. 6. The effects of the high fre-
quency component and its relative sign are shown to have
significant effects. The results for positive value of s

F
are

shown to enhance the rate consistently for large value of
E1 − E2, but there are two regions where the negative
value of s

F
produce higher rates. Overall, the rates are

shown to be sensitive to both magnitude and sign of s
F

for values of E1 − E2 comparable to λ. These results
indicate the importance of accurate and detailed char-
acterization of the nature of NDC terms to vibrational
modes for quantitative modeling of rates.

V. CONCLUSION

Starting from a general expression for the molecular
Hamiltonian in the adiabatic electronic states and nu-
clear position states, we have considered NDC terms
carefully and clarified issues that make straightforward
application of FGR for nonadiabatic transitions difficult.
We then derived a general expression for the FGR rate
under a quasiadiabatic approximation, which employs
crude adiabatic electronic states determined at the mini-
mum of the initial adiabatic electronic state. For the case
where all the nuclear dynamics are modeled as displaced
harmonic oscillators, we then derived an explicit expres-
sion for the FGR rate. The resulting rate expression,
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FIG. 6. Natural logarithms of scaled rates κ =
√

kBTλ/πkFGR (in the units where kB = ~ = ωc = 1) for
Case IV with ηF = 0.5. Two different cases of sF = 0.2
and −0.2 are compared with a reference result of a Condon
approximation that employs only the value of DR(0) for the
same Case IV.

Eq. (51), explicitly accounts for non-Condon effects due
to momentum terms, and thus can be used for more ac-
curate calculation of nonradiative rates beyond Condon
approximation.

We have conducted model calculations for cases where
the spectral density consists of a low frequency Ohmic
bath (with an exponential cutoff) and a single high fre-
quency vibrational mode. Results of calculation for sets
of parameters in Table II, with additional choice of pa-
rameters for J

F
(ω), demonstrate nontrivial non-Condon

effects due to NDC terms. For the bath spectral density
consisting only of the Ohmic bath, effects of NDC terms
do not seem to result in significant qualitative changes in
the dependence of the rate on the energy gap. It is likely
that the general behavior can still be captured well by
an effective Condon-like rate expression.

On the other hand, with additional contribution of a
high frequency vibrational mode, the non-Condon contri-
bution of the NDC term and its detailed manner of cou-
pling (including relative sign) with the Franck-Condon
modes and the value of the energy have intricate con-
tributions to the rate. Nonetheless, there is consistent
enhancement of rate due to NDC terms for significantly
larger energy gap between the donor and acceptor in gen-
eral.

Results of the present paper offer new insights into rate
processes due NDC terms such as nonradiative decay of
near infrared and short-wave infrared dye molecules45,46

that follow the energy gap law.47,48 A recent work49

demonstrated the importance of NDC terms projected
onto all vibrational frequencies of molecules, but the de-
tailed contribution of non-Condon effects has not been
clarified yet. New theoretical expressions and model cal-
culations provided here will help determine such effects
quantitatively along with additional computational data

needed to characterize all the relevant spectral densities.
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Appendix A: Normal mode representation and harmonic

approximation

Expanding the potential energy U1(R), which appears

in Eq. (28), around R̃
g
1 with respect to R̃− R̃

g
1 up to the

second order and diagonalizing the resulting Hessian ma-
trix, one can determine all of normal vibrational modes
and frequencies, q1,j and ω1,j with j = 1, · · · , Nv,1, where
Nv,1 is the total number of normal mode vibrations for
the vibrational motion around R

g
1 in the electronic state

1. The transformation from Cartesian coordinates to
these normal modes are defined as follows:

q1,j =
∑

α

L1,jα(R̃α − R̃g
1,α)

=
∑

α

L1,jα

√

Mα(Rα −Rg
1,α), j = 1, · · · , Nv,1.(A1)

Then, assuming that all the vibrational modes have small
enough amplitudes such that quadratic approximation of
the potential energy remains reliable and that an Eckart
frame that fully decouples the rotational and vibrational
degrees of freedom can be found, the nuclear Hamiltonian
operator in Eq. (28) can be approximated as

∑

α

ˆ̃P 2
α

2
+ U1(R̂) ≈ Ĥ1,tr−rot

+

Nv,1
∑

j=1

(

1

2
p̂21,j +

ω2
1,j

2
q̂21,j

)

+ U1(R
g
1), (A2)

where p̂1,j is the canonical momentum operator for q̂1,j
and Ĥ1,tr−rot represents the translation of the center-of-
mass and rotational motion around R

g
1. For the cal-

culation of the FGR rate for electronic transition from
isolated molecule, it is reasonable to assume that this
can be neglected considering the disparity between typi-
cal electronic transition energies and nuclear translation-
rotation energies.
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In a similar manner, the potential energy U2(R) in
Eq. (28) can be expanded around its minimum energy
structure position R

g
2. However, in such expansion, it

is important to recognize first that R is already defined
in the Eckart frame with respect to R

g
1, which does not

in general satisfy the second Eckart condition41 for R
g
2.

This has the following two consequences:

1. It is not guaranteed that the nuclear Hamiltonian
defined in the electronic state |ψe,2〉 in Eq. (28)
can be decomposed into translation-rotation and
vibrational parts as in Eq. (A2).

2. Purely vibrational displacement from R
g
1 may bear

some rotational component around R
g
2.

At the moment, complete resolution of the above two is-
sues seems not possible in general. While these issues
may be mitigated by adopting curvilinear internal co-
ordinates, whether it results in actual advantage is not
clear.50 Thus, we use Cartesian coordinates and invoke
additional assumptions here. First, we assume that the
non-uniqueness41,43 in the choice of the Eckart frame for
R

g
1 can be utilized such that R

g
2 is maximally aligned

with R
g
1. This will minimize the coupling term between

the rotation and vibration parts for the displacement
around R

g
2, which we assume to be small enough and can

thus can be ignored. Similarly, we assume that the pro-
jection of pure vibrational components around R

g
1 onto

rotational part around R
g
2 can be discarded.

With approximations and assumptions as noted above,
which can always be tested for a given molecular system,
we can expand U2(R) with respect to R̃ − R̃

g
2 around

R̃
g
2 and identify the normal mode and frequency, q2,j

and ω2,j , for j = 1, · · · , Nv,2, where Nv,2 is the total
number of normal mode vibrations for the vibrational
motion around R

g
2. These are related to mass-weighted

cartesian coordinates in the best Eckart frame, as noted
above, by the following transformation,

q2,j =
∑

α

L2,jα(R̃α − R̃g
2,α)

=
∑

α

L2,jα

√

Mα(Rα −Rg
2,α), j = 1, · · · , Nv,2.

(A3)

Thus, we can make the following approximation:

∑

α

ˆ̃P 2
α

2
+ U2(R̂) ≈ Ĥ2,tr−rot

+

Nv,2
∑

j=1

(

1

2
p̂22,j +

ω2
2,j

2
q̂22,j

)

+ U2(R
g
2). (A4)

In the above expression, Ĥ2,tr−rot represents the transla-
tion of the center-of-mass and rotational motion around
R

g
2, which is assumed to be negligible for the calculation

of the electronic transition rate.

Appendix B: Expression for the coupling Hamiltonian with

respect to normal mode coordinates

Let us consider the following matrix element:

〈R|
∑

α

Fα,12(R
g
1)|ψe,1〉〈ψe,2|P̂α|ψ〉

∑

α

Fα,12(R
g
1)|ψe,1〉〈ψe,2|〈R|P̂α|ψ〉

=
∑

α

Fα,12(R
g
1)|ψe,1〉〈ψe,2|

~

i

∂

∂Rα
〈R|ψ〉. (B1)

We assume that all the translation and rotational degrees
of freedom are frozen. Then,

∂

∂Rα
=

Nv,1
∑

j=1

∂q1,j
∂Rα

∂

∂q1,j

=

Nv,1
∑

j=1

L1,jα

√

Mα
∂

∂q1,j
. (B2)

Therefore,

~

i

∂

∂Rα
〈R|ψ〉 =

Nv,1
∑

j=1

L1,jα

√

Mα
~

i

∂

∂q1,j
〈R|ψ〉

=

Nv,1
∑

j=1

L1,jα

√

Mα〈R|p̂1,j|ψ〉. (B3)

Similarly, Fα,12(R
g
1) defined by Eq. (29) can be expressed

in terms of F̃j,12 given by Eq. (34) as follows:

Fα,12(R
g
1) =

1√
Mα

Nv,1
∑

j′=1

L1,αj′ F̃j′,12. (B4)

As a result, we find that

〈R|
∑

α

Fα,12(R
g
1)|ψe,1〉〈ψe,2|P̂α|ψ〉

= 〈R|
∑

α

Nv,1
∑

j=1

Nv,2
∑

j′=1

|ψe,1〉〈ψe,2|p̂1,jF̃j′,12|ψ〉. (B5)

Since the above identity holds for an arbitrary vector
R, which does not have any translation and rotational
degree, and for any state |ψ〉, this proves the first equality
of Eq. (33).

Appendix C: Calculation of bath correlation functions

Consider the following harmonic oscillator bath Hamil-
tonian and a bath term linear in position:

Ĥb = ~ω(b̂†b̂ +
1

2
), (C1)

B̂ = ~ωg(b̂+ b̂†). (C2)
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For the equilibrium density ρ̂b = e−βĤb/T r
{

e−βĤb

}

, let

us first consider the following well-known time correlation
function:

C(t) = Trb

{

eit(Ĥb+B̂)/~e−itĤb/~ρ̂b

}

. (C3)

Then, using 1 = e−ŜeŜ with Ŝ = g(b̂† − b̂),

C(t) = Trb

{

e−ŜeŜeit(Ĥb+B̂)/~e−ŜeŜe−itĤb/~ρ̂b

}

= Trb

{

e−ŜeitĤb/~eŜe−itĤb/~ρ̂b

}

e−itλ/~

= Trb

{

e−ŜeŜ(t)ρ̂b

}

e−itλ/~, (C4)

where λ = ~ωg2 and

Ŝ(t) = eitĤb/~Ŝe−itĤb/~ = g(b̂†eiωt − b̂e−iωt). (C5)

The trace in Eq. (C4) can be evaluated as follows:

Trb

{

e−ŜeŜ(t)ρ̂b

}

= Trb

{

e−Ŝ+Ŝ(t)ρ̂b

}

e−[Ŝ,Ŝ(t)]/2

= Trb

{

egb̂(1−e−iωt)−gb̂†(1−eiωt)ρ̂b

}

eig
2 sin(ωt)

= Trb

{

egb̂(1−e−iωt)e−gb̂†(1−eiωt)ρ̂b

}

×eg2|(1−e−iωt)|2/2+ig2 sin(ωt)

= e−g2|1−e−iωt|2/(1−e−β~ω)eg
2|1−e−iωt|2/2eig

2 sin(ωt)

= e−Kg(t), (C6)

where

Kg(t) = g2[coth(
β~ω

2
)(1− cos(ωt))− i sin(ωt)] (C7)

Therefore,

C(t) = e−Kg(t)−iλt/~. (C8)

Now, consider the following time correlation function:

C(1)
p (t) = Trb

{

eit(Ĥb+B̂)/~p̂e−itĤb/~ρ̂b

}

. (C9)

Following a procedure similar to Eq. (C4), we find that

C(1)
p (t) = Trb

{

e−ŜeŜeit(Ĥb+B̂)/~e−ŜeŜ p̂e−itĤb/~ρ̂b

}

= Trb

{

e−ŜeitĤb/~eŜp̂e−itĤb/~ρ̂b

}

e−itλ/~

= Trb

{

e−ŜeŜ(t)p̂(t)ρ̂b

}

e−itλ/~. (C10)

Note that p̂(t) is proportional to Ŝ(t) as follows:

p̂(t) =

√

~ω

2
i
(

b̂†eiωt − be−iωt
)

=

√

~ω

2

i

g
Ŝ(t) (C11)

Therefore, the trace operation in Eq. (C10) can be ex-
pressed as

Trb

{

e−ŜeŜ(t)p̂(t)ρ̂b

}

=

√

~ω

2

i

g

∂

∂α
Trb

{

e−ŜeαŜ(t)ρ̂b

} ∣

∣

∣

α=1
. (C12)

Following a procedure similar to obtaining Eq. (C6), we
can calculate the trace in the above expression as follows:

Trb

{

e−ŜeαŜ(t)ρ̂b

}

= Trb

{

e−Ŝ+αŜ(t)ρ̂b

}

e−α[Ŝ,Ŝ(t)]/2

= Trb

{

egb̂(1−αe−iωt)−gb̂†(1−αeiωt)ρ̂b

}

eiαg
2 sin(ωt)

= Trb

{

egb̂(1−αe−iωt)e−gb̂†(1−αeiωt)ρ̂b

}

×eg2|(1−αe−iωt)|2/2+iαg2 sin(ωt)

= e−g2|1−αe−iωt|2/(1−e−β~ω)eg
2|1−αe−iωt|2/2eiαg

2 sin(ωt)

= e−g2[coth(β~ω/2){(1+α2)−2α cos(ωt)}/2−iα sin(ωt)]. (C13)

Therefore,

C(1)
p (t) = e−iλt/~

√

~ω

2

i

g

× ∂

∂α
e−g2[coth(β~ω/2){(1+α2)−2α cos(ωt)}/2−iα sin(ωt)]

∣

∣

∣

α=1

=

√

~ω

2

1

ig
Kg(t)e

−Kg(t)−iλt/~. (C14)

Second, let us consider the following time correlation
function:

C(2)
p (t) = Trb

{

p̂eit(Ĥb+B̂)/~e−itĤb/~ρ̂b

}

. (C15)

Following a procedure similar to Eq. (C4), we find that

C(2)
p (t) = Trb

{

p̂e−ŜeŜeit(Ĥb+B̂)/~e−ŜeŜe−itĤb/~ρ̂b

}

= Trb

{

p̂e−ŜeitĤb/~eŜe−itĤb/~ρ̂b

}

e−itλ/~

= Trb

{

p̂e−ŜeŜ(t)ρ̂b

}

e−itλ/~. (C16)

Employing Eq. (C11) for t = 0, we find that the trace in
the last line of the above equation can be expressed as

Trb

{

p̂e−ŜeŜ(t)ρ̂b

}

= −
√

~ω

2

i

g

∂

∂α
Trb

{

e−αŜeŜ(t)ρ̂b

} ∣

∣

∣

α=1
. (C17)

The trace in the above expression can be calculated in a
way similar to Eq. (C13) as follows:

Trb

{

e−αŜeŜ(t)ρ̂b

}

= Trb

{

e−αŜ+Ŝ(t)ρ̂b

}

e−α[Ŝ,Ŝ(t)]/2

= Trb

{

egb̂(α−e−iωt)−gb̂†(α−eiωt)ρ̂b

}

eiαg
2 sin(ωt)

= Trb

{

egb̂(α−e−iωt)e−gb̂†(α−eiωt)ρ̂b

}

×eg2|(α−e−iωt)|2/2+iαg2 sin(ωt)

= e−g2|α−e−iωt|2/(1−e−β~ω)eg
2|α−e−iωt|2/2eiαg

2 sin(ωt)

= e−g2[coth(β~ω/2){(α2+1)−2α cos(ωt)}/2−iα sin(ωt)].(C18)
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Therefore,

C(2)
p (t) = −e−iλt/~

√

~ω

2

i

g

× ∂

∂α
e−g2[coth(β~ω/2){(α2+1)−2α cos(ωt)}/2−iα sin(ωt)]

∣

∣

∣

α=1

=

√

~ω

2

i

g
Kg(t)e

−Kg(t)−iλt/~. (C19)

Finally, let us consider the following momentum corre-
lation function:

Cpp(t) = Trb

{

eit(Ĥb+B̂)/~p̂e−itĤb/~ρ̂bp̂
}

= Trb

{

p̂eit(Ĥb+B̂)/~p̂e−itĤb/~ρ̂b

}

. (C20)

Following a procedure similar to Eq. (C4), we find that

Cpp(t) = Trb

{

p̂e−ŜeŜeit(Ĥb+B̂)/~e−ŜeŜ p̂e−itĤb/~ρ̂b

}

= Trb

{

p̂e−ŜeitĤb/~eŜ p̂e−itĤb/~ρ̂b

}

e−itλ/~

= Trb

{

p̂e−ŜeŜ(t)p̂(t)ρ̂b

}

e−itλ/~. (C21)

In the above expression, the trace can be expressed as

Trb

{

p̂e−ŜeŜ(t)p̂(t)ρ̂b

}

=
~ω

2g2
∂2

∂α1∂α2
Trb

{

e−α1Ŝeα2Ŝ(t)ρ̂b

}∣

∣

∣

α1=α2=1
.(C22)

Following a procedure similar to Eqs. (C13) and (C18),
the trace in the above expression can be calculated as
follows:

Trb

{

e−α1Ŝeα2Ŝ(t)ρ̂b

}

= Trb

{

e−α1Ŝ+α2Ŝ(t)ρ̂b

}

e−α1α2[Ŝ,Ŝ(t)]/2

= Trb

{

e−gb̂(α1−α2e
−iωt)+gb̂†(α1−α2e

iωt)ρ̂b

}

eiα1α2g
2 sin(ωt)

= Trb

{

e−gb̂(α1−α2e
−iωt)egb̂

†(α1−α2e
iωt)ρ̂b

}

×eg2|(α1−α2e
−iωt)|2/2+iα1α2g

2 sin(ωt)

= e−g2|α1−α2e
−iωt|2/(1−e−β~ω)eg

2|α1−α2e
−iωt|2/2eiα1α2g

2 sin(ωt)

= e−g2[coth(β~ω/2){(α2

1
+α2

2
−2α1α2 cos(ωt)}/2−iα1α2 sin(ωt)]

(C23)

Taking partial derivatives of the above expression with
respect to α1 and α2, we find that

∂2

∂α1∂α2
Trb

{

e−α1Ŝeα2Ŝ(t)ρ̂b

}

∣

∣

∣

∣

α1=α2=1

=

{

g2
(

coth(
β~ω

2
) cos(ωt) + i sin(ωt)

)

+Kg(t)
2

}

e−Kg(t),

(C24)

whereKg(t) is defined by Eq. (C7). Employing the above
expression in Eq. (C22) and then using Eq. (C21), we
obtain the following expression:

Cpp(t) =
~ω

2g2

{

g2
(

coth(
β~ω

2
) cos(ωt) + i sin(ωt)

)

+Kg(t)
2
}

e−Kg(t)−itλ/~. (C25)
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