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Abstract—This paper investigates the application of Quantum
Support Vector Machines (QSVMs) with an emphasis on the
computational advancements enabled by NVIDIA’s cuQuantum
SDK, especially leveraging the cuTensorNet library. We present a
simulation workflow that substantially diminishes computational
overhead, as evidenced by our experiments, from exponential to
quadratic cost. While state vector simulations become infeasible
for qubit counts over 50, our evaluation demonstrates that cuTen-
sorNet speeds up simulations to be completed within seconds
on the NVIDIA A100 GPU, even for qubit counts approaching
784. By employing multi-GPU processing with Message Passing
Interface (MPI), we document a marked decrease in computation
times, effectively demonstrating the strong linear speedup of
our approach for increasing data sizes. This enables QSVMs
to operate efficiently on High-Performance Computing (HPC)
systems, thereby opening a new window for researchers to explore
complex quantum algorithms that have not yet been investigated.
In accuracy assessments, our QSVM achieves up to 95% on
challenging classifications within the MNIST dataset for training
sets larger than 100 instances, surpassing the capabilities of
classical SVMs. These advancements position cuTensorNet within
the cuQuantum SDK as a pivotal tool for scaling quantum ma-
chine learning simulations and potentially signpost the seamless
integration of such computational strategies as pivotal within the
Quantum-HPC ecosystem.
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tion, Tensor Network, cuQuantum SDK, cuTensorNet
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I. INTRODUCTION

In the rapidly evolving landscape of artificial intelligence
(AI), machine learning algorithms stand out as pivotal com-
ponents driving advancements across a multitude of domains
[1]. These algorithms, distinguished into supervised and un-
supervised learning paradigms, harness the power of data to
uncover patterns or make predictions [2]. Supervised learn-
ing, in particular, leverages pre-labeled data to train models,
with the Support Vector Machine (SVM) being a cornerstone
technique in this category [3]. SVMs excel in classifying data
into distinct categories by finding an optimal hyperplane in
either the original or a higher-dimensional feature space [4].
However, the computational demands of SVMs, especially in
the context of large-scale “big data” applications [5[, pose
significant challenges in terms of both computational resources
and execution time.

Enter the realm of quantum computing, a burgeoning field
offering profound computational speedups over classical ap-
proaches for certain problem types. Among these, Quantum
Support Vector Machines (QSVMs) emerge as a promising
quantum-enhanced technique for machine learning [6], [7],
capable of drastically reducing the computational resources
required for SVMs. Leveraging quantum algorithms, QSVMs
achieve exponential speedups in both training and classifica-
tion tasks by performing calculations in parallel and employing
quantum-specific optimizations [6], [8[]—[/10].

However, in the current Noisy Intermediate-Scale Quantum
(NISQ) era [11]], the practical utility of quantum computers
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Figure 1. QSVM Simulator: Optimizes quantum kernel estimation and

learning, enhancing phase operation and objective evaluation, leading to swift
and precise classification outcomes.

is significantly constrained by their availability and imperfect
technological state. Challenges such as the fidelity of qubits,
the error rates of two-qubit gates, and the limited number of
available qubits present substantial hurdles [[12]]—[14]. Despite
the advent of several methodologies aimed at enhancing qubit
fidelity—such as Quantum Error Mitigation (QEM) [[15]], [[16]]
and Dynamical Decoupling (DD) [17], [[18]—these limitations
persist, impeding the realization of quantum advantage on
quantum computing platforms in the current NISQ era [19],
[20]. Consequently, the design and validation of quantum-
inspired algorithms, or hybrid classical-quantum algorithms,
are predominantly conducted through high-performance clas-
sical simulations [[10]], [21]]. Furthermore, quantum simulators
have shown considerable success in the near-term verification
of quantum algorithms on small qubit systems [22].

Within the scope of our research, we have engineered
an advanced tensor-network simulation framework, purpose-
built to expedite the development of QSVMs through the
integration of the cuTensorNet library underlying cuQuantum
SDK [23]]. This library is meticulously optimized for NVIDIA
GPUs and can facilitate QSVM algorithms, requiring noiseless
simulations for quantum kernel estimation as depicted in Fig.
[l A pre-computation mechanism is embedded within this
workflow, allowing for the reuse of quantum kernel values
in the QSVM’s complex learning stages, thereby bolstering
the efficacy of both the training and classification phases.

Our simulation of the QSVM algorithm, devised for parallel
execution using the Message Passing Interface (MPI), har-
nesses the formidable power of GPU acceleration, equipping
our QSVM simulator to efficiently manage vast data sets
with only a modest increment in memory requirements. Its
flexibility ensures its utility across various quantum machine
learning paradigms. Performance benchmarks of our simulator
demonstrate that it achieves significant speedups, often exceed-
ing tens of times, which are exponentially better than those
achieved by state-of-the-art methods using Qiskit on CPUs
[24]. Furthermore, it boasts scalability to multi-GPUs—a
testament to the proficiency achieved by the NVIDIA Quantum
Team—thereby affirming our simulator’s role as a potent and
scalable asset in the quantum machine learning arena and the
Quantum-HPC ecosystem [21]], [23].

This approach’s adeptness at handling up to 784 qubits

for QSVMs allows for a comprehensive scaling analysis,
shedding light on the quantum acceleration achieved in com-
parison to traditional classical solvers. These strides in QSVM
development signal a major progression towards practical
deployment, charting a path for the application of quantum-
enhanced methodologies to complex, real-world data classifi-
cation challenges within the Quantum-HPC Ecosystem [10],
[21], [25]-[27]. This paves the way for breakthroughs in
quantum computing’s applicability and marks a significant
contribution to the quantum information sciences.

II. BACKGROUND

In the research work by Rebentrost et. al. [6]], a quantum
algorithm is introduced that revolutionizes the computational
efficiency of SVMs for big data classification. This QSVM
leverages quantum mechanics to achieve logarithmic complex-
ity in terms of both the dimension of the vectors N (qubit
number) and the number of training examples M (data size).

Traditionally, SVM is formulated to identify a hyperplane
that maximizes the margin between two classes, described in
the primal form as:
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in - 1
iy I o

subject to
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where w is the normal to the hyperplane, b is the bias, x; are
the feature vectors, and y; are the class labels.

The quantum version utilizes the kernel method, mapping
the feature space to a higher-dimensional space to allow for
nonlinear classification. The kernel matrix K, with elements
K, = k(x;,x;), represents inner products in this space. The
quantum algorithm efficiently inverts this kernel matrix, a task
that is computationally intensive in classical SVM, especially
as M and N grow.

The quantum algorithm for matrix inversion, central to
QSVM, significantly reduces the runtime complexity to
O(log(NM)) [6]. This quantum routine for non-sparse matrix
exponentiation underpins the SVM’s optimization, facilitated
by the QML algorithm for linear equations, known as the HHL
algorithm, which solves A|z) = |b) for Hermitian matrix A.

The SVM’s dual optimization problem is given by:

M | M
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with constraints:

M
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The QSVM algorithm employs quantum routines to approx-
imate the solution vector «, defining the separating hyperplane
in the feature space, thus classifying new data points with
reduced computational complexity. This approach highlights



the potential of quantum computing to tackle large-scale ma-
chine learning problems, characteristic of big data challenges,
by utilizing quantum parallelism and efficient manipulation of
high-dimensional data.

III. SIMULATING QSVM USING CUQUANTUM SDK AND
CUTENSORNET

A. Introduction of cuQuantum SDK and cuTensorNet

As the fields of quantum computing and advanced numerical
simulations rapidly expand, NVIDIA has introduced cuQuan-
tumK [23]], a comprehensive software development kit (SDK),
to accelerate quantum circuit simulations with NVIDIA GPUs.
The cuQuantum SDK consists of optimized libraries such as
cuStateVec and cuTensorNet. cuStateVec is dedicated to state-
vector-based simulation methods, enabling substantial accel-
eration and efficient memory utilization. cuTensorNet, on the
other hand, deals with tensor-network-based simulation, where
a quantum circuit is represented as a tensor network (Fig[2). In
this formulation, the sequence of pairwise contractions plays
a role in computational cost as illustrated in Fig[3] The cuTen-
sorNet library provides advanced features for tensor network
contractions, including path optimization, approximate tensor
network simulation techniques, and multi-GPU multi-node
execution. These functionalities facilitate simulations at an
unprecedented scale with significant acceleration, empowering
researchers to delve into unexplored tensor network theories
and complex quantum algorithms. As the demand for more
sophisticated computational methods grows within the scien-
tific community, cuStateVec and cuTensorNet stand out for
their potential to accelerate research domains across quantum
physics, quantum chemistry, and quantum machine learning.
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Figure 2. Quantum Circuit Formulation of cuTensorNet

To boost the efficiency of tensor network computation,
cuTensorNet delivers modular and finely adjustable APIs, as
shown in Fig. [} tailored for optimizing the pairwise contrac-
tion path on the CPU and improving contraction performance
on the GPU. This optimization is essential for minimizing
both computation cost and memory footprint. The pathfinder
workflow is primarily structured in the following manner:

1) Simplification: This initial stage focuses on reducing the
complexity of the whole tensor network and eliminating redun-
dancies within the network. The implementation involves rank
simplification to minimize the number of tensors by removing
trivial tensor contractions from the network, resulting in a
smaller network for subsequent processing.
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Figure 3. Consider two contraction paths: The upper path results in a higher
computational cost

2) Division: After simplification, the tensor network under-
goes a recursive graph partitioning. This approach segments
the network into multiple sub-networks and forms a contrac-
tion tree. The binary tree defines the contraction path and can
be further optimized at the following stage.

3) Slicing and Reconfiguration: The slicing process selects
a subset of edges from a tensor network for explicit sum-
mation. This technique results in lower memory requirements
and allows parallel execution for each sliced contraction.
Reconfiguration considers several small subtrees within the
full contraction tree and attempts to reduce the contraction
cost of the subtrees. cuTensorNet implements dynamic slicing,
which interleaves slicing with reconfiguration.

cuTensorNet can efficiently find a contraction path with high
quality quickly [23].. This capability accelerates the exploration
of quantum mechanics underlying complex systems and quan-
tum machine learning models, particularly in the processing
and analysis of high-dimensional data.
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Figure 4. Building blocks of cuTensorNet

Consequently, cuQuantum itself represents a comprehensive
suite aimed at bolstering quantum computing simulations.
As part of NVIDIA’s broader initiative to support the quan-
tum computing ecosystem, cuQuantum provides a range of
tools and libraries engineered to optimize various facets of
quantum computing simulations, including the programming
model CUDA Quantum [23], (CUDA-Q) and frameworks
such as Qiskit [29]], Pennylane [30], and Cirq. [31]. The



introduction of cuQuantum marks a significant stride towards
bridging the theoretical potential of quantum computing with
the practical realities of today’s computational resources. By
offering a scalable and high-performance platform for quan-
tum simulations, cuQuantum not only democratizes access to
quantum computing research but also propels the field towards
achieving real-world quantum computing applications.

B. Pipeline of simulating QSVM algorithm

In Fig. [ffa), the depicted pipeline of a QSVM commences
with the initial quantum state preparation in a canonical
basis state |0). The number of qubits depends on input data
features, which can be adjusted using principal components
analysis (PCA) to evaluate QSVM with varying qubit counts.
A parameterized quantum circuit (QC) follows, designed to
map classical data onto a quantum feature space via tunable
gates, with the gate parameters refined throughout the training
process to facilitate effective data classification. This step,
shown in Fig. B[b), is counterpoised by the introduction of
the adjoint of the parameterized quantum circuit (QC'), which
ensures the reversion of ancillary qubits to their initial state,
maintaining the quantum state’s coherence for measurement.
Central to the QSVM'’s operation is the quantum entangle-
ment and interference within the high-dimensional feature
space, as visualized in the intertwined loops, where the data
classification is a result of the constructive and destructive
interference patterns that are encoded in the state’s amplitude
probabilities. The measurement stage yields classical outputs
indicative of the data’s class membership probabilities, signi-
fying the culmination of the QSVM process—from quantum
state preparation and transformation through to interference-
based processing and eventual classical information retrieval—
for enhanced machine learning efficacy. In this paper, we
use a parameterized quantum circuit based on Block-Encoded
State (BPS) wavefunctions [32], [33]]. This enables QSVM
to maintain high classification accuracy even with a greater
number of qubits. Worthy of note, our quantum circuit does not
decompose into small blocks; instead, we entangle each qubit
by adding CNOT gates with linear topology. Such nearest-
neighbor connectivity renders the QSVM circuit compatible
with near-term quantum hardware.

C. Complexity of Quantum circuit simulation for QSVM

When executed on classical hardware such as CPUs and
GPUs, the simulation of the QSVM algorithm poses sig-
nificant computational challenges. Figure [6] elucidates these
challenges, indicating that the complexity scales exponentially
with the number of qubits as O(2") and quadratically with data
size as O(n?). Additionally, the complexity scales exponen-
tially with the number of qubits g, which encode the feature
space within the quantum circuit. This aspect underscores
the inherent computational intensity of simulating quantum
systems on classical infrastructure.

This scenario highlights the computational complexity ad-
vantages that QSVM offers in the realm of quantum machine
learning. The simulation demands, in terms of computation
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Figure 5. (a) The QSVM pipeline showcasing the quantum circuit transfor-
mation of input data into feature space quantum states. (b) A schematic of
the QSVM circuit.
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Figure 6. Computational complexity of QSVM simulation. The left graph
demonstrates that simulation time scales exponentially with the number of
qubits, as O(2™), while the right graph shows that the number of quantum
circuits required scales quadratically with data size, as O(n?).

time and memory size, grow exponentially with larger datasets
and a greater number of qubits, a limitation not encountered
when QSVM is run on quantum computers. As demonstrated
by Rebentrost et al. [6]], the complexity advantage of QSVM
can exhibit logarithmic scaling with respect to the product
of the number of features and the size of the training set,
denoted as O(log(NM)). However, in the NISQ era, the
verification of algorithms using traditional CPUs is inevitable.
Therefore, this section focuses on leveraging GPU acceleration
to address the computational bottlenecks encountered when
simulating QSVM with large-scale qubit sizes and processing
large datasets.

D. Simulating QSVM'’s Kernel Matrix

In this section, we will discuss three methods for simulating
a QSVM algorithm as follows. One method involves using a
CPU with opt-einsum to optimize the simulation of quantum
circuits on CPU devices. The other methods utilize cuStat-
eVector and cuTensorNet for simulating quantum circuits on



Algorithm 1: Get Kernel Matrix using opt-einsum

: Number of datal datasizel, Number of
data2 datasize2, Circuit einstein summation
expression exp, List of operands operands,
Index of datal and data2 combinations
indices, Contraction path path

1) Initialize kernel_matriz € Cdetasizelxdatasize2 wiep
all elements set to zero.
2) Set the current operand index ¢ to —1.
3) for iy,is € {1,...,indices} do
a) Update the operands index 4 <— ¢ + 1.
b) Compute amplitude

Input

amp < opt_einsum.contract(exp, operandsli], path).
c¢) Calculate and store kernel_matrixz[iy — 1][ia — 1] +

\/ amp.real” + amp.imag®.
end
4) Symmetrize kernel_matriz by adding its transpose
and an identity matrix: kernel_matriz <
kernel_matriz + kernel_matriz” + diag(¥ garasize1)-

return kernel_matriz

GPU devices, with acceleration provided by the cuQuantum
SDK.

1) Conventional Simulation of QSVM using CPU/opt-
einsum: Optimized Einsum (opt-einsum) significantly en-
hances the execution efficiency of einsum-like expressions
across various libraries by optimizing contraction orders and
employing specialized routines such as BLAS and cuBLAS.
Its compatibility with multiple backends, like NumPy, Dask,
PyTorch, and TensorFlow, makes it a versatile tool for tensor
operations on CPUs.

To ensure a fair comparison between CPU and GPU per-
formance, we utilize the opt-einsum package, which provides
optimized tensor computation on CPUs similar to the cuQuan-
tum SDK available for NVIDIA GPUs. The detailed algorithm
for simulating the QSVM on CPUs, aimed at equalizing the
computational environment to the extent possible, is described
in Algorithm 1.

2) Simulation of QSVM using cuStateVector: Furthermore,
we implement the simulation using the NVIDIA cuQuantum
framework, replacing Algorithm 1 with calls to the cuStat-
eVec library to accelerate state vector simulation on GPUs,
described in Algorithm 2. The advantage of using cuStateVec
includes a speedup of the simulation time by leveraging GPU
capabilities and enabling multi-GPU processing with MPI
for distributed computing. The effectiveness of cuStateVec in
enhancing quantum-circuit-simulation efficiency is evidenced
in Lykov et al’s research work using cuStateVec and the
cuQuantum SDK [22].

3) Simulation of QSVM using culensorNet: However,
even with opt-einsum facilitating CPU acceleration and
cuStateVector enabling GPU acceleration, challenges
persist due to the complexity of encoding the number of
qubits O(2") and the size of the data O(n?). To surmount

Algorithm 2: Get Kernel Matrix using statevector
simulator

Input : Number of datal datasizel, Number of data2
datasize2, List of quantum circuits circuits,
Index of datal and data2 combinations
indices, statevector simulator simulator

1) Initialize kernel_matriz € Cdatasizelxdatasize2 yieh
all elements set to zero.
2) Set the current operand index ¢ to —1.
3) for iy,iz € {1,...,indices} do
a) Update the circuits index ¢ <— ¢ + 1.
b) Save circuits[i] statevector.
c) Set transpile(circuits[i], simulator).
d) Run simulator and save result result.
e) Compute amplitude amp < result.get_statevector().
f) Calculate and store kernel_matrixz[iy — 1][ia — 1] +
(v/amp.real® 4+ amp.imag?).

end

4) Symmetrize kernel_matriz by adding its transpose
and an identity matrix: kernel_matriz <
kernel_matriz + kernel_matriz” + diag(¥ garasize1)-

return kernel_matriz

Algorithm 3: Get Kernel Matrix using cuTensorNet
with Network Context

Input : Number of datal datasizel, Number of
data2 datasize2, Circuit einstein summation
expression exp, List of operands operands,
Index of datal and data2 combinations
indices, network options options

1) Initialize kernel_matriz € Cdetasizelxdatasize2 yivh
all elements set to zero.
2) Set the current operand index ¢ to —1.
3) Initialize the network with given options to prepare for
contraction operations.
4) for i1,is € {1,..., indices} do
a) Update the operand index i < ¢ + 1.
b) Reset the network to its initial state before each
contraction.
c¢) Prepare the operands for contraction based on 3.
d) Compute amplitude amp +
Contract within the network(exp, operands|i], options).
e) Calculate and store kernel_matrix[iy — 1][ia — 1] +
\/amp.real2 + amp.imag®.

end

5) Symmetrize kernel_matriz by adding its transpose
and an identity matrix: kernel_matriz <
kernel_matriz + kernel_matriz” + diag(¥ garasize1)-

return kernel_matriz

these challenges, we present an innovative approach using the
cuTensorNet library for QSVM simulation. In the creation
of the tensor network representation, we seamlessly integrate
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Figure 7. Comparative visualization of quantum kernel matrices and their computation speedups. (a), (b), and (c) illustrate the quantum kernel matrices
generated from state vector simulation, tensor network simulation, and tensor network simulation with path reuse strategies, respectively. (d) and (e) feature
the parity plots for quantum kernel assessments comparing the outputs of state vector simulations with tensor network and tensor network with path reuse
algorithms, demonstrating high concordance. (f) quantifies the performance enhancement attributable to path reuse in tensor network simulations, showcasing

significant temporal reductions across an array of dataset sizes.

Qiskit and cuQuantum’s built-in CircuitToEinsum object.
Initially, Qiskit is used to construct a QuantumKernel cir-
cuit, which is then transformed into "expression’ and ’operand’
components by CircuitToEinsum. Due to the identical
topological structure of the quantum circuit, the same ’expres-
sion’ component can be reused for subsequent pairs of data.
Meanwhile, the *operand’ is updated with parameters from the
previously created operand. This approach rapidly transitions
data pairs into tensor networks and preserves computational
efficiency. The derivation of the kernel matrix—a pivotal
component of the SVM—exploits a consistent ’path’ to greatly
minimize the repetition of contraction order calculations. The
detailed algorithm is described in Algorithm 3. This technique
not only leverages the computational strength of GPUs but
also ensures path reusability, resulting in a considerable ac-
celeration of the simulation process and a dramatic reduction
in computational complexity. We will demonstrate those im-
provements in the next section.

IV. PERFORMANCE AND BENCHMARKING OF QSVM
WITH CUTENSORNET

A. OSVM Simulation and cuTensorNet-Accelerated QSVM
(cuTN-QSVM)

In the outlined simulation workflow, Fig. [T] and [3] illustrate
the sequence from the initial input of data to the generation
of a quantum circuit for the purpose of encoding. Subsequent
steps involve the use of optimized compilation to compute and
simulate the quantum circuits, leading to the extraction of a
quantum kernel matrix. This matrix is then applied to develop
a support vector classifier (SVC).

However, in typical CPU-based workflows, bottlenecks
arise in the progression from the construction of quantum
circuits to the calculation of the quantum kernel matrix,
where the complexity of simulating the QSVM algorithm
scales exponentially with the number of qubits, O(2"), and
quadratically with data size, O(n?). To alleviate these bot-
tlenecks, we incorporate the cuQuantum SDK into QSVM
workflow, employing a method of assigned parameters for the
formulation of QSVM'’s quantum circuits. We then maintain
a consistent “expression’ for the simulation of these circuits.
Ultimately, we apply a ’path reuse’ strategy within the tensor
network to compute the quantum kernel matrix. This suite of



strategies significantly mitigates the computational complexity
associated with processing large datasets, reducing it from
O(n?) to O(1) for pathfinding and substantially enhancing
throughput over traditional CPU computations. Importantly,
as depicted in Fig. [7} the expressions and paths used in the
cuTensorNet during the QSVM simulation process remain
unchanged compared to those in CPU and cuStateVector,
ensuring that no accuracy is compromised for the sake of
expedience. In addition to the path reuse strategy, cuTensorNet
offers concurrent execution for tensor network contraction.
This technique allows the continued contractions on the GPU
asynchronously when tensors are already on the device, thus
enhancing computational efficiency by continuing operations
without delay. The pronounced speedup achieved through
the implementation of path reuse within the cuTensorNet
framework is detailed in Fig[7(g), where we report a fiftyfold
increase in speed compared to conditions without path reuse.
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Figure 8. Workflow optimization for QSVM simulation through architectural
enhancements, integrating Qiskit/Cirq with cuQuantum SDK. This transition
from circuit building to tensor network conversion and kernel matrix compu-
tation reduces computational time complexity, leveraging GPU acceleration
and multi-GPU strategies.

In the comprehensive workflow outlined in Fig. [8] the input
data initiates the construction of a quantum circuit, seam-
lessly integrated with Qiskit/Cirq. The process advances by
converting quantum circuits into tensor networks represented
as CuPy arrays, enabling the utilization of in-place operations
to efficiently update content for the same operands. Key to
enhancing computational efficiency within this framework is
the strategic deployment of direct conversion from data to
operand, alongside expression reuse for optimizing computa-
tional pathways. This step is crucial in minimizing redundancy
and ensuring the streamlined execution of the workflow. As
the process proceeds, CuPy’s capabilities are harnessed to
accelerate the computation of the kernel matrix, culminating
in the application of the SVC. Moreover, cuTensorNet, as part
of the cuQuantum SDK, incorporates advanced strategies such
as path reuse and non-blocking operations across multi-GPU
configurations.

These approaches significantly reduce the computational
overhead from a conventional complexity of O(2") to a
more scalable O(n?), thereby enhancing the practicality of
executing extensive QSVM simulations with improved pro-

cessing times and efficiency in resource utilization. Fig. ]
illustrates that quantum simulation on the NVIDIA A100 GPU
using cuStateVector becomes practically infeasible for more
than 50 qubits. However, by employing cuTensorNet, single-
contraction simulations can be completed within 0.2 seconds,
even with up to 784 qubits. Additionally, Fig. O] shows that
the path reuse strategy can further enhance the speed, offering
more than tenfold acceleration when increasing the number of
qubits in the QSVM algorithm.

In the GPU-accelerated workflow utilizing cuTensorNet, as
delineated in Fig. [§] we are able to expand the feature size
(number of qubits) and scale up the data volume for our
QSVM algorithm. The evaluation of accuracy resulting from
these augmentations will be discussed in the following part,
while an in-depth assessment of resource management will be
presented in the subsequent section.
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B. Accuracy Benchmarking

In our study’s accuracy benchmarking, we observed that
the trained QSVM demonstrates an improvement in accuracy
with increasing dataset sizes shown in Fig. Additionally,
there tends to be a positive correlation between the number of
qubits and accuracy; a larger quantity of qubits typically yields
higher accuracy. In the specific case under consideration, the
optimized configuration entailed an algorithm using 128 qubits
on a sample set of 100. This experiment also indicates that
the accuracy sharply declines beyond roughly 200 qubits,
attributed to the off-diagonal kernel matrix elements approach-
ing zero. Under optimized parameters, the QSVM achieved
test and training accuracies of 94% and 100%, respectively,
outperforming the traditional SVM, which achieved accuracies
of 90% in testing and 95% in training with a comparable
amount of data. These empirical results underscore the en-
hanced capability of QSVM over traditional SVMs as data
volume increases, especially in big data analytics applications,
a finding that is corroborated by the work of Chen et al. [|10].

Furthermore, in Fig. we extend our evaluation to larger
data sizes, focusing on the MNIST dataset, particularly on
digits 0 and 9, which are inherently challenging to distinguish.
Our analysis reveals that with a limited training dataset size
(i.e., 10 instances), the accuracy hovers near 50%. However, as
the volume of training data surpasses 100 instances, the accu-
racy significantly increases to approximately 95%, surpassing
the performance of the optimal classical SVM.
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Figure 11. The relationship between dataset size and accuracy for a 128-qubit

QSVM algorithm, compared to the optimal classical model.

C. Simulation with Single CPU and GPU

In this section, we compare the performance of a CPU and a
GPU, as illustrated in Fig@ To ensure a fair comparison, we
employed Opt-Einsum for the contraction process on a single
AMD EPYC 7J13 CPU, contrasting this with a single NVIDIA
A100 GPU using cuTensorNet for the contraction process,
with path reuse implemented. The detailed pseudocodes are
discussed in Section Moreover, it was necessary to
synchronize the contraction paths in Opt-Einsum with those
of cuTensorNet to ensure consistency. As depicted in Figl[T2]
the speedup provided by the GPU relative to the CPU becomes
more pronounced as the number of simulated qubits increases.

Consequently, for large-scale qubit simulations, GPUs demon-
strate enhanced scalability and promise substantial benefits for
future advanced qubit algorithms in simulation and emulation.
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Figure 12. Benchmark QSVM circuit simulation time using a single CPU
and a single GPU.

V. DISTRIBUTED SIMULATION AND RESOURCE
ESTIMATION IN HPC

In the final section of our study, a multi-GPU instance was
utilized to expand the QSVM model to accommodate a dataset
comprising 1,000 data points of 28x28 MNIST images. The
implementation of multi-GPU resources to enhance quantum
circuit simulation via cuStateVector is thoroughly detailed
in the research conducted by Shaydulin et al. [34]. Our
emphasis lies on leveraging the data from these experiments
to rigorously assess both the computational costs and the
temporal demands inherent in simulating the QSVM algorithm
within a multi-GPU processing framework.

In our computational environment, each GPU within a node
is interconnected using the high-bandwidth NVLink network,
optimizing intra-node communication. Inter-node data transfer
mandates that information from the GPU be first relayed
to the CPU, then onward to the target node, a process
that requires careful selection of a communication protocol
sensitive to the GPU’s positional context. The MPI offers
built-in capabilities for such operations, which are enabled by
setting the M PI_GPU_SUPPORT_ENABLED environ-
ment variable. By harnessing these integrated technological
benefits, we have successfully actualized the accelerated com-
putational outcomes for managing large-scale qubit systems
and extensive datasets, as illustrated in Fig[I3] Comparative
analysis indicates that our performance metrics are on par
with distributed simulation results documented in the existing
scientific corpus, as cited in Bayraktar et. al.’s and Lykov et.
al.’s work [22], [23].

A. Benchmarking cuQuantum Multi-GPU with MPI

Fig. illustrates the execution time required for quantum
simulations in relation to the number of qubits. The data
compares the performance of a single A100 GPU to systems
utilizing 2, 4 and 8 GPUs in conjunction with MPI and within
a single NVIDIA DGX node. It is evident from the results
that the incorporation of multi-GPUs significantly decreases
computation time, highlighting the strong linear speedup of



cuTenserNet with MPI. The trend indicates a substantial re-
duction in execution time as the number of GPUs is increased,
affirming the efficacy of multi-GPU setups in handling large
datasets.
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Figure 13. Strong scaling of the QSVM simulation is observed for 1,000 data
points across 1, 2, 4, and 8 GPUs, demonstrating linear speedup.

B. Large Dataset Processing with Multi-GPU instance

Figure [I4] presents a comparative analysis of computational
time across different configurations, ranging from a single
GPU (A100, 80GB) to 2, 4, and 8 multi-GPU arrangements
using MPI for processing datasets of various sizes. The results
distinctly highlight the superior efficiency and scalability of
multi-GPU systems, especially when managing large-scale
datasets. A notable reduction in processing time is observed
with the integration of an 8-GPU setup, underscoring the
considerable advantages of parallel computing for large-scale
data analysis. In Figure [[4] experimental data (solid line)
from 40 to 1,000 data points is extrapolated to estimate the
processing time for 10,000 data points, corresponding to nearly
50 million circuits (dashed line). The projection indicates
that an eight-GPU system could achieve linear acceleration,
reducing a week-long processing task using the simulated
QSVM to approximately one day (blue line).
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Figure 14. Execution time for quantum simulations against qubit count
for a single A100 GPU and MPI-based 2, 4 and 8 multi-GPU setups. The
performance enhancement with additional GPUs is evident, underscoring the
benefits of parallelized computation.

VI. CONCLUSION

This paper has presented a comprehensive study on the
application and efficacy of cuTN-QSVMs in conjunction with
NVIDIA’s cuQuantum SDK. Our findings have consistently
shown that by integrating cuTensorNet within our computa-
tional workflow, we have been able to significantly decrease
the computational complexity involved in simulating QSVM
algorithms, especially when working with large qubit counts.
Through rigorous performance benchmarking, our approach
has demonstrated not only enhanced simulation speeds and
efficiency but also scalability across multi-GPU platforms.
Additionally, we have observed substantial improvements in
accuracy with increasing data set sizes, underlining the po-
tential of quantum computing methods in tackling complex,
large-scale data challenges. The integration of cuTensorNet
and MPI-based multi-GPU systems reveals a path forward
for quantum computing that offers practical advantages for
both current research and future applications, bridging the
gap between quantum hardware and classical computing re-
sources. This points towards a promising direction for high-
performance quantum simulations within the Quantum-HPC
ecosystem. Furthermore, we utilized cuTN-QSVM to classify
bone cell images captured by synchrotron transmission X-ray
microscopy (TXM) at the BLOIB1 beamline of the Taiwan
Light Source (TLS) in Hsinchu, Taiwan. Bone cell image
data possess a high-dimensional feature space but limited
data quantity. Traditional machine learning struggles with
classifying such data, but QSVM overcomes this, showcasing
its advantages. Due to page limit, the classification results of
bone cells will be elaborated in the conference.
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