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We propose measurement-producing hierarchy emerging among correlated states by sequential subsystem
projective measurements. We start from symmetry-protected-topological (SPT) cluster states with a large sym-
metry and apply sequential subsystem projective measurements to them and find that generalized cluster SPT
states with a reduced symmetry appear in the subsystem of the unmeasured sites. That prescription finally
produces Greenberger-Home-Zeilinger states with long-range order in the subsystem composed of periodic
unmeasured sites of the original lattice. The symmetry-reduction hierarchical structure from a general large
symmetric SPT cluster state is clearly captured by the measurement update flow in the efficient algorithm of sta-
bilizer formalism. This approach is useful not only for the analytical search for the measured state but also for
numerical simulation with a large system size. We also numerically verify the symmetry-reduction hierarchy by
sequential subsystem projective measurements applied to large systems and large symmetric cluster SPT states.

I. INTRODUCTION

Quantum measurement applied to a quantum many-body
state leads to a change of the state, and sometimes the opera-
tion induces an exotic non-locally-correlated state due to the
backaction of quantum measurement. In this sense, quantum
measurement can be regarded as an important tool to operate
quantum many-body systems.

Recently, study in the interdisciplinary area of quantum
information and condensed matter physics is progressing
rapidly [1]. As a recent hot topic, the interplay of measure-
ments and quantum circuits on many-body systems induces
many interesting many-body dynamics and leads to interest-
ing non-trivial steady states depending on the setup of the
circuits acting on many-body systems. In particular, random
unitary circuits attract lots of attention. The systems exhibit
measurement-induced entanglement phase transitions, which
have been extensively studied these days [2–23]. As another
topic, measurement-only circuits with a suitable choice of
measurement operators and suitable application probabilities
generate unconventional phases of matter. Through projective
measurements without unitary evolution, various interesting
many-body steady states emerge such as symmetry-protected
topological (SPT) phases [24–26], topological orders [27–29],
and non-trivial thermal and critical phases [30–34].

Furthermore, by preparing some entangled state called re-
source state, the application of measurements with suitable
spatial patterns to that state produces a specific entangled
state in the subsystems of unmeasured sites. This process
can be applied to a quantum computation, which is called
measurement-based quantum computation (MBQC) [35–38].
Such a measurement approach to many-body states is applied
not only to carry out a quantum computation but also to ef-
ficiently produce interesting states of matter in condensed
matter physics. Recently, in that direction of study, “cat
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state” with long-range order (LRO), SPTs, topological or-
dered states, fractons, and non-Abelian topological ordered
states are efficiently prepared by some measurement proce-
dure applying to some proper entangled states [39–43]. More
recently, a transition to such a “cat state” through measure-
ments has been observed in a real experimental quantum de-
vice [44].

From the viewpoint of the current tendency of research ex-
plained above, we shall study the measurement-induced state
generation in many-body states by using suitable projective
measurements. We make a conjecture on that issue: From
an initial generalized cluster SPT state with large symmetry,
a sequential measurement to subsystems induces a series of
generalized cluster SPT states with a reduced set of symme-
tries. That is, we see measurement-reduction hierarchy. After
subsystem measurements of suitable times, the initial general-
ized cluster SPT state reaches a cat state (Greenberger-Home-
Zeilinger (GHZ) state) on a subsystem as the final state. This
flow of many-body states can be regarded as a generalization
of the methods to produce a cat state with LRO, which was
recently proposed in [39–42].

Furthermore, we find efficient feedback-unitary operation
for arbitrary projective measurements. Due to the introduc-
tion of that feedback unitary, we obtain genuine generalized
cluster SPT states and final GHZ state for any patterns of mea-
surement outcomes. This approach can be regarded as an ex-
tended method proposed in [42].

As a result, we show a rich hierarchical structure from large
symmetric SPTs by measurements. We expect that this ap-
proach can apply to various many-body quantum systems and
induce various correlated quantum many-body states. This
work gives concrete examples of the above phenomenon in-
cluding the numerical verification for the analytical observa-
tions.

The rest of this paper is organized as follows. In Sec. II, we
explain generalized cluster spin models and their SPT ground
states. These states are target states in this work. In Sec. III,
before proposing our main conjecture, we explain the state
preparation scheme for general cluster SPT states by employ-
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ing a recently-proposed prescription on a quantum circuit. In
Sec. IV, we make our main conjecture in this work. There, we
first explain the most general conjecture on states emerging
as a result of sequential genuine projective measurements in
subsystems. Then, we show a few concrete examples by the
analytical calculation using the measurement update in the ef-
ficient algorithm of the stabilizer simulation. In Sec. V, we
explain feedback unitary, which plays an important role for
‘erasing’ glassy properties of emergent SPTs. That is, the
feedback unitary helps us to create clean hierarchical cluster
SPTs as well as final GHZ states. In Sec. VI, we show results
of the numerical simulation by using the efficient algorithm of
the stabilizer formalism [45, 46], and corroborate our conjec-
ture for large system sizes andlarge-symmetric cluster initial
states. Section VII is devoted to conclusion.

II. GENERALIZED CLUSTER MODEL

This work focuses on the evolution of the ground state by
local measurements, Hamiltonian of which is given by the fol-
lowing generalized cluster spin model [47–51],

Hgc(α) = −
L−1∑
j=0

Zj

[ α−1∏
ℓ=1

Xj+ℓ

]
Zj+α, (1)

where Zj , Xj are Pauli operators and α is an integer larger
than 2. Hereafter, we call the above site-label j initial site
label, as shown in Fig. 1 (a). We mostly employ periodic
boundary conditions, that is, the system is a ring composed
of L qubits.

The above α-cluster model has α-global symmetries gener-
ated by the following operators [52]:

GX,α
m =

L/α−1∏
ℓ=0

Xαℓ+m, (2)

where m = 0, 1, · · · , α − 1. For any even α, the ground
state is the unique gapped SPT state protected by the α-
global Z2 symmetries, (Z2)

α, corresponding to GX,α
m (m =

0, 1, · · · , α − 1). The most familiar example is α = 2 case,
the ground state of Hgc(2) is the cluster state protected by
Z2 × Z2 symmetry[53].

On the other hand for any odd α, the ground state ofHgc(α)
is doubly degenerate with spontaneous symmetry breaking
(SSB) [54] and each state is a cluster SPT state protected
by (Z2)

α−1 global symmetry, where the global symmetries
are defined in the same way as Eq. (2), but here with m =
0, 1, · · · , α − 2. The two-fold degenerate odd-α cluster SPT
states are to be distinguished by the sign of the parity op-
erator P ≡

∏L−1
j=0 Xj =

∏α−1
m=0G

X,α
m , which incorporates

GX,α
α−1. [An example is given in [25]]. For example for the

α = 3 (ZXXZ) model, the ground states are two distinct
orthogonal states, each of which corresponds to a cluster SPT
state protected by global Z2 × Z2 symmetry [54]. Here, we
comment that this system plays an important role in quantum
computation and quantum error correcting codes [25]. For the

specific α = 1 case, the model is nothing but the Ising model
without a transverse field and the ground states are doubly-
degenerate L-site GHZ states with distinct parity P = ±1.

III. STATE PREPARATION FOR GENERALIZED
CLUSTER SPT STATES

Before going to the main findings of this work, we discuss
methods of the state preparation for our target generalized α
cluster SPT states. Readers who are interested only in the
main results obtained in this work can skip to Sec. IV.

Generalized α cluster SPT states under consideration can
be prepared from a simpler state by using the combination of
sequential controlled-Z gates (CZ gates), which is sometimes
called cluster entangler [35, 40] and defined by

UCZ ≡
L−1∏
j=0

CZj,j+1, (3)

where CZj,j+1 represents CZ gate for nearest neighbor sites,
j and (j + 1). More generally, various cluster SPT states are
to be generated by the pivot transformation [55]. The pivot
transformation by hjk is defined as

Up
k = exp

(
i
π

4

∑
j

hkj

)
, (4)

where hkj are given by hkj = ZjXj+1 · · ·Xj+k−1Zj+k with
k > 0. In general, the pivot transformation induces the fol-
lowing formula, which we shall use in the following analysis:

Up
k0
hkjU

p†
k0

= h2k0−k
j+k−k0

. (5)

Even α case: We denote a general even-α cluster SPT state
as |CSe(α)⟩, which is the unique ground state state of the
HamiltonianHgc(α). First, the α = 2 cluster SPT state can be
created from the +X product state (the unique state) denoted
by |+⟩⊗L [35, 40] as

|CSe(2)⟩ = UCZ |+⟩⊗L. (6)

Based on the state |CSe(α)⟩, the application of the pivot
transformation Up

r+2 to it creates a general α = 2r+2 (r ∈ N)
even-α cluster SPT state as

|CSe(α)⟩ = Up
r+2|CSe(2)⟩. (7)

This comes from the fact that the HamiltonianHgc(2) is trans-
formed by the conjugation of the pivot transformation Up

r+2 as
Up
r+2Hgc(2)U

p†
r+2 = Hgc(2 + 2r). (Please note that Hgc(2)

and Up
2 commute with each other.) By this transformation,

the ground state |CSe(2)⟩ is transformed into |CSe(2 + 2r)⟩.
Please note that the uniqueness of the ground state is pre-
served in this transformation.

In this way, we can prepare any even-α cluster SPT state
from the simple product state.
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FIG. 1. (a) Set up of the one-dimensional many-qubit system with periodic boundary conditions. One unit cell includes α-different subsystem
sites, 0, 1, · · · , (α− 1). The red sites are included in the subsystem (sys)0, the dark blue ones in the subsystem (sys)1, and the green ones in
the subsystem (sys)α−1. The label j denotes the original site label. The label j is represented by j = αℓ + k, where ℓ is the unit cell label
and k is the subsystem label. (b) Rule for labeling site after one measurement step. Here, we show α = 4 example. Three measurement steps
are considered. The unmeasured sites are relabeled in novel consequent order at each measurement step, the representation is denoted by jms

with ms. The renumbering of unmeasured sites after a measurement is used for the site-definitions of effective Hamiltonian and stabilizer
generators, and the order parameters such as STO and SG. The rule of site labeling is shown in Appendix.C.

Odd-α case: Next, let us discuss the preparation of a general
odd-α cluster SPT state. Note that the ground state is two-
fold degenerate in this case [52, 54]. In this work, we mostly
focus on one of the degenerate ground states, an eigenstate of
the parity P =

∏L−1
j=0 Xj , which is a logical operator from

the quantum information point of view. We start from one
of the GHZ ground states of the quantum Ising Hamiltonian
HZZ = −

∑
j ZjZj+1, i.e., the ground state with even parity

P = +1 such as |GHZ+⟩ = 1√
2
(| ↑⟩⊗L + | ↓⟩⊗L). From the

state |GHZ+⟩, application of the pivot transformation Up
r+1

creates a general α = 2r + 1 (r ∈ N) cluster SPT state as

|CSo(α)⟩ = Up
r+1|GHZ+⟩. (8)

It is straightforward to show that the resultant state |CSo(α)⟩
has positive parity P = +1.

Here, we remark that the pivot transformation for arbitrary
k can be implemented by a combination of quantum gates on
the quantum circuit. Therefore, by using the cluster entangler
and the pivot transformation, we can prepare any even and

odd-α cluster SPT states from the two kinds of states |+⟩⊗L

and |GHZ+⟩, respectively.

IV. SEQUENTIAL SUBSYSTEM MEASUREMENTS FOR A
GENERAL CLUSTER SPT STATE

In this section, we shall give a qualitative discussion on
states emerging through sequential subsystem measurements
starting from cluster SPT states, the ground states of Hgc(α)
for various α’s. Then, we show two concrete examples in
small systems by using the analytically tractable update meth-
ods in the efficient algorithm of stabilizer formalism. Further-
more, by making use of suitable feedback unitary incorporat-
ing information of outcomes [42], we show that the ‘hierar-
chical structure’ of the resultant states appears for any mea-
surement outcomes. (The details will be discussed in the sub-
sequent section.) There, entanglement, topological properties,
and symmetries exhibit interesting behavior under sequential
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local measurements. This is one of the main findings of this
study.

A. General conjecture

General conjecture for even-α case: We first consider a gen-
eral even-α case. The α cluster SPT pure state |CSe(α)⟩ is
defined on the ring with length L = αN , where L is the total
number of sites with periodic boundary conditions and N is
the number of unit cells. As shown in Fig. 1 (a), the site label j
is the initial site label, j = 0, 1, · · ·L− 1, and we introduce α
subsystems, which have L/α lattice sites. Here, sites in each
α subsystem are numbered as (sys)k = {j = αℓ + k|ℓ =
0, · · · , L/α − 1} for k = 0, 1, · · · , α − 1, where ℓ numbers
unit cells and k labels internal sites (corresponding to the sub-
system label) in a unit cell. These schematics are also shown
in Fig.1 (a).

We consider to perform a sequence of one-layer projective
measurements acting on all sites in the subsystem (sys)k. The
one-layer projective measurement operator is given by

P k
β⃗k =

∏
j∈(sys)k

1 + βjXj

2
(9)

where β⃗k = {β0+k, βα+k, · · · , βα(L/α−1)+k} is a set of mea-
surement outcomes defined on the subsystem (sys)k corre-
sponding to the eigenvalue of Xj with βj = ±1.

We firstly apply the measurement P 0
β⃗0

, that is, measure all
of the sites of the subsystem (sys)0. Here, we regard it as
the first measurement step represented by ms = 1, where we
introduce a label ms denoting the number of measurement
steps. Then, the initial state changes as follows,

P 0
β⃗0 |CSe(α)⟩ ∝ |CSg

o (α− 1)⟩ ⊗ |β⃗0
x⟩(sys)0 . (10)

Here, |CSg
o (α− 1)⟩ is a glassy (α− 1) cluster SPT state with

a parity P0 ≡
∏

j∈(all)−(sys)0
Xj = 1 through non-trivial

correlations between outcomes (please see the comments be-
low Eq. (19)), where (all)− (sys)0 denotes the set of all sites
except the measured sites in (sys)0 (the label (all) denotes
the set of all initial sites, the number of which is L). In addi-
tion, the fact P0 ≡

∏
j∈(all)−(sys)0

Xj = 1 gives an insight
into finding a feedback unitary discussed in Sec. V. The glassy
state |CSg

o (α− 1)⟩ residing on the entire unmeasured sites is
one of the two-fold degenerate ground state of the following
effective Hamiltonian given as

Heff(0) = −
L−L/α−1∑

j1=0

βn0(j1)Zj1

[ α−2∏
ℓ=1

Xj1+ℓ

]
Zj1+α−1,

(11)

where the unmeasured sites after the first step measurement
are renumbered in order, and we denote them by j1 as ex-
plicitly shown in Fig.1 (b) and for the labeling-rule between
the initial site label j and j1 is given in Appendix C. On

the RHS of Eq. (11), the site label of outcome n0[j1] de-
notes the measured site in the support of original operator
ZX · · ·XZ (stabilizer) to which the site j1 belongs. The
labeling-rule is given in Appendix C. In terms of the sta-
bilizer formalism [45, 56], the representation of the set of
the stabilizer generator for the glassy state |CSg

o (α − 1)⟩ is
given by Sα−1 = [gα−1

0 , gα−1
1 , · · · , gα−1

L−L/α−1, P0], where

gα−1
j1 = βn0(j1)Zj1

[∏α−2
ℓ=1 Xj1+ℓ

]
Zj1+α−1. On the other

hand, the state |β⃗x⟩(sys)0 is a X-directed product state on
the subsystem (sys)0, where the directions depend on the set
of outcomes β⃗0. Herein, we see that the one-layer projec-
tive measurement P 0

β⃗
for the α cluster SPT state produces the

(α−1)(odd) cluster SPT state with P0 = +1 appearing on the
unmeasured sites. We also comment that the outcome factors
β’s in the effective Hamiltonian Heff(0) can be eliminated by
introducing a feedback unitary as it is discussed in Sec.V.

We can easily expect that by employing the above ma-
nipulation in a sequential manner, we obtain a series of
glassy cluster SPT states with reduced symmetries defined
on the unmeasured sites. That is, as the second step (ms =
2), we further apply another one-layer projective measure-
ment P 1

β⃗1
to the above state to obtain outcomes β⃗1 =

(β1
1 , β

1
α+1, · · · , β1

α(L/α−1)+1) on (sys)1, and then

P 1
β⃗1 |CSg

o (α− 1)⟩ ⊗ |β⃗x⟩(sys)0
∝ |CSg

e (α− 2)⟩ ⊗ |β⃗0
x⟩(sys)0 |β⃗

1
x⟩(sys)1 , (12)

where |CSg
e (α − 2)⟩ is a glassy (α − 2) cluster SPT state.

The state can be regarded as the unique ground state of the
effective Hamiltonian defined on the remaining unmeasured
all sites, given as

Heff(1) =

−
L−2L/α−1∑

j2=0

βn0[j1[(j2)−1]]βn1(j2)Zj2

[ α−3∏
ℓ=1

Xj2+ℓ

]
Zj2+α−2,

(13)

where the unmeasured sites after the second step measurement
are again labeled in order as j2 = j2[j] shown in Fig. 1 (b),
(its inverse denotes j = (j2)−1) and the label of outcomes
n1(j2) is defined as in the previous case, see Appendix C,
showing their labeling-rules. Here, we see that after the mea-
surement P 1

β⃗1
, the (α− 1)-cluster SPT state is turned into the

(α − 2)(odd) cluster SPT state appearing on the unmeasured
sites. This indicates reduction hierarchy: the reduced sym-
metric glassy cluster SPT state appears on the unmeasured
sites. This procedure results in inducing further small sym-
metric cluster SPT states on the unmeasured sites, and finally,
after the (α−1)-times one-layer measurements (ms = α−1)
for each subsystem up to (sys)α−2, the final measured state
comes to be(α−2∏

k=0

P k
β⃗k

)
|CSe(α)⟩ ∝ |GHZg

+⟩(sys)α−1

α−2⊗
k=0

|β⃗k
x⟩(sys)k .

(14)
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FIG. 2. Schematic circuit picture for α = 4 and N = 3 cases: (a) Sequential measurements applied to initial α = 4 cluster SPT state. The
three different measurement layers on different subsystems are applied. After each measurement step, the reduced cluster SPT states appears
on the unmeasured sites and finally, after (α − 1) = 3 measurement steps, the glassy GHZ state is produced on the unmeasured subsystem
(sys)3. (b) Measurement and feedback unitary prescription corresponding to LOCC. The red dotted blocks and diamond makers represent
feedback unitaries. The line colors in the circuit represent each subsystem, where the red, dark blue, green, and right blue are (sys)0, (sys)1,
(sys)2 and (sys)3, respectively. The right blue lines are the unmeasured sites at the final stage. Here, we observe the clean GHZ state with
LRO on the subsystem (sys)3.

We see the above α-period long-range-ordered state as the
‘glassy GHZ state’ with Pα−2 ≡

∏
j∈(all)−

∑α−2
k=0 (sys)k

Xj =

1 denoted by |GHZg
+⟩(sys)α−1

defined on the subsystem
(sys)α−1. We used the terminology ‘glassy GHZ state’
in the above as the orientation of spin at each unmeasured
site varies depending on the outcomes but there still exists
long-range entanglement in the resultant subsystem such as
1√
2
(| ↑↑↓ · · · ⟩+ | ↓↓↑ · · · ⟩). The concrete schematic picture

of this approach is shown in Fig. 2 (a).

General conjecture for odd α case: Similarly for the general
odd α case, we can apply the same procedure with the even
α case. We start from one of the α-cluster SPT states with
P = +1, defined on L = αN , where L is the total number of
site with periodic boundary conditions and N is the number
of unit cells. Then, we first apply the one-layer projective
measurement operator P 0

β⃗0
to the initial state (ms = 1). The

resultant state is obtained as follows,

P 0
β⃗0 |CSo(α)⟩ ∝ |CSg

e (α− 1)⟩ ⊗ |β⃗0
x⟩(sys)0 , (15)

where |CSg
e (α − 1)⟩ is a glassy (α − 1)(even) cluster SPT

state corresponding to the unique ground state of the effective

Hamiltonian defined on the remaining unmeasured all sites,

Heff
e (0) = −

∑
j1

βn0(j1)Zj1

[ α−2∏
ℓ=1

Xj1+ℓ

]
Zj1+α−1,

(16)

where the unmeasured sites after the first step measurement
are again labeled in order as j1 previously explained in Fig. 1
(b) and Appendix C, and also the label of the outcome factor
n0[j1] is defined as already explained.

Then, we apply the second-step projective measurement
operator P 1

β⃗1
to the former one (ms = 2),

P 1
β⃗1 |CSg

e (α− 1)⟩ ⊗ |β⃗0
x⟩(sys)0

∝ |CSg
o (α− 2)⟩ ⊗ |β⃗0

x⟩(sys)0 |β⃗
1
x⟩(sys)1 , (17)

where |CSg
o (α−2)⟩ is a glassy (α−2)(odd) cluster SPT state

with the positive parity, P1 = +1.
We repeat this prescription. After the (α− 1)-times projec-

tive one-layer measurements (ms = α − 1), the final state is
the same as that of even α case,(α−2∏

k=0

P k
β⃗k

)
|CSo(α)⟩ ∝ |GHZg

+⟩(sys)α−1

α−2⊗
k=0

|β⃗k
x⟩(sys)k .

(18)
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Consequently for any initial α-cluster SPT state, suitable
(α− 1)-layer projective measurements induce α-period LRO
exhibited by the glassy GHZ state.

B. Concrete example I : α = 4 case in a small system

In this subsection, we examine and verify the above pre-
scription by analytical methods for small-size systems with
small α using the handwritten update procedure of a set of sta-
bilizer generators in the efficient numerical algorithm [45, 46].
Readers interested only in the verification of our conjecture
for a large system size and large α case can skip to Sec.VI.
The basic transformation of the set of stabilizer generators and
update procedure are explained in Appendices A and B. Ob-
servation of the stabilizer generators gives us lots of insight
into the change of the system under projective measurements.

First, as an example of even α system, we consider L =
αN with N = 3. In the stabilizer formalism, the initial α =
4 cluster SPT state is characterized by a set of 12 stabilizer
generators denoted by Sα=4(ms = 0), which are given by

Sα=4(ms = 0) = [g40 , · · · , g411],

where g4j is j-th stabilizer generator given by g4j =
ZjXj+1Xj+2Xj+3Zj+4 (note that j is the initial site label).

Let us apply P 0
β⃗0

, then we obtain a updated set of stabilizer
generators,

Sα=4(ms = 0)
P 0

β⃗0

−−→ Sα=4(ms = 1)

= [β0X0, β4X4, β8X8,

β4g
3
1 , β4g

3
2 , β4g

3
3 , β8g

3
5 , β8g

3
6 , β8g

3
7 ,

β0g
3
9 , β0g

3
10, X1X2X3X5X6X7X9X10X11], (19)

where we have used the basic transformation among stabilizer
generators several times and re-definitions them such as g3j =
Zj1[j]XXZ and also the last element of the parity

∏
X , both

of which are defined on the unmeasured sites. Here, we should
remark that the outcomes have the following strict correlation
β8 = β0β4, which stems from the fact that the ground state
of the α = 4 Hamiltonian has P = +1. From the above set
of stabilizer generators, the resultant state is obtained as in the
form of Eq. (10) with the positive parity.

As the second step, the projective measurement P 1
β⃗1

is ap-
plied as

Sα=4(ms = 1)
P 1

β⃗1

−−→ Sα=4(ms = 2)

= [β0X0, β4X4, β8X8, β1X1, β5X5, β9X9,

β4β5g
2
2 , β4β5g

2
3 , β8β9g

2
6 , β8β9g

2
7 , β0β1g

2
10, β0β1g

2
11],

(20)

where we have made use of the basic transformation for sev-
eral times, g2j = Zj2[j]XZ, and we again find outcomes corre-
lation such as β9 = β1β5. From this set of the stabilizer gener-
ators, we obtain the resultant state as |CSg

e (2)⟩⊗ |β⃗0
x⟩(sys)0 ⊗

|β⃗1
x⟩(sys)1 .

Finally, the last projective measurement P 2
β⃗

is applied as

Sα=4(ms = 2)
P 2

β⃗2

−−→ Sα=4(ms = 3)

= [β0X0, β4X4, β8X8, β1X1, β5X5, β9X9,

β2X2, β6X6, β10X10,

β4β5β6g
1
3 , β0β1β2g

2
11, X3X7X11],

(21)

with the basic transformation, g1j = Zj3[j]Z, and the last
element is the parity P on the subsystem (sys)3 obtained
by the outcomes correlation β10 = β2β6. From this set of
the stabilizer generators, the stabilizer state corresponds to
|GHZg

+⟩(sys)3
⊗2

k=0 |β⃗k
x⟩(sys)k .

We conclude that we have verified the conjecture for the
α = 4 case in the analytical level by using the update of the
efficient algorithm for the stabilizer formalism.

C. Concrete example II : α = 3 case in a small system

Here as an odd α example, we consider L = Nα with α =
N = 3. The same calculation as that of the former example
can be applied. In fact, the present case is simpler than the
former one. In the stabilizer formalism, the α = 3 cluster
SPT state with P = +1 is given by an initial set of 9 stabilizer
generators denoted by Sα=3(ms = 0), given by

Sα=3(ms = 0) = [g30 , · · · , g38 , X0X1X2X3X4X5X6X7X8]

where the last element requires that the state is in the P = +1
sector.

Let us apply P 0
β⃗0

, then we obtain the updated set of stabi-
lizer generators,

Sα=3(ms = 0)
P 0

β⃗0

−−→ Sα=3(ms = 1)

= [β0X0, β3X3, β6X6, β3g
2
1 , β3g

3
2 , β6g

2
4 , β6g

2
5 , β0g

2
7 , β0g

2
8 ],

(22)

where we have used the basic transformation several times and
we find the outcomes have the correlation β6 = β0β3 coming
from the positive parity P = +1 of the initial state. From this
set of the stabilizer generators, the stabilizer state has the form
of Eq. (10).

Further, the last projective measurement P 1
β⃗1

is applied as

Sα=3(ms = 1)
P 1

β⃗1

−−→ Sα=3(ms = 2)

= [β0X0, β3X3, β6X6, β1X1, β4X4, β7X7,

β3β4g
1
2 , β0β1g

1
8 , X2X5X8], (23)

with g1j = Zj2[j]Z, and the last element is the parity P2

defined on the subsystem (sys)2 (We also find the out-
comes has the correlation β7 = β1β4.) From this set of
the stabilizer generators, the stabilizer state corresponds to
|GHZg

+⟩(sys)2
⊗1

k=0 |β⃗k
x⟩(sys)k .

We have verified the conjecture for the α = 3 case in the
analytical level. The case for larger system size and α is nu-
merically verified in Sec.VI.
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V. INTRODUCING FEEDBACK UNITARY

So far, we have only considered applying the projective
measurements {P k

β⃗k
} to the subsystem (sys)k, and focused

on the output states depending on random measurement out-
comes. In other words, we have mostly observed measure-
ment trajectories. However recently, a feedback operation
with controlled unitary has been proposed in [42], where an
initial α = 2 cluster SPT state is turned into a non-glassy
Ising-type GHZ state on even sites through local measure-
ments on odd sites and feedback operation. Here, we shall
give an extension of that feedback unitary for the generic α
systems.
Feedback unitary for each measurement step: We discuss the
extended feedback at (ms = k+1)-th measurement step with
the outcomes β⃗k denote by Uf

k (β⃗
k), explicit form of which is

given as

Uf
k (β⃗

k) =
α−1∏

m=k+1

um(β⃗k), (24)

um(β⃗k) =

L/α−1∏
ℓ=0

X
1−

∏ℓ
q=0 βαq+k

2

αℓ+m . (25)

Thus, controlled unitary at (ms = k + 1)-th measurement
step, U c

k , is defined as composite of the following operators;

U c
k(β⃗

k) = Uf
k (β⃗

k)P k
β⃗k , (26)

U c
k ≡

∑
β⃗k

U c
k(β⃗

k). (27)

The form of this controlled unitary U c
k can be regarded as an

extended version proposed in [40, 42].
Then, following Ref. [40], we consider sequential measure-

ments with the outcome feedback, starting from a generic even
α cluster SPT state as an example. The first step of the con-
trolled unitary is

U c
0 (β⃗

0)|CSe(α)⟩ ∝ |CSo(α− 1)⟩ ⊗ |β⃗0
x⟩(sys)0 . (28)

On the unmeasured sites, we obtain non-glassy (α − 1) clus-
ter SPT state denoted by |CSo(α − 1)⟩ with P0 = +1 cor-
responding to the positive-parity ground state of the original
Hamiltonian Hgc(α− 1) in Eq. (1).

By using this procedure for (α−1) times to the initial state,
the non-glassy reduced cluster SPT states on the unmeasured
sites emerge at each step. By the same procedure explained in
Sec.IV A, after (ms = α−1) steps by the controlled feedback
U c
k(β⃗

k), we finally obtain the state in the following form:(α−2∏
k=0

U c
k(β⃗

k)

)
|CSe(α)⟩ ∝ |GHZ+⟩(sys)α−1

α−2⊗
k=0

|β⃗k
x⟩(sys)k .

(29)

We obtain the α-period LRO state as the clean and no-glassy
GHZ state with Pα−2 = +1 denoted by |GHZg

+⟩(sys)α−1
on

the subsystem (sys)α−1. After all, (α − 1)-times controlled-
unitary operations are applied to the α cluster SPT state.
At each step, we obtain the reduced non-glassy cluster SPT
state on the unmeasured subsystem and finally get the clean
GHZ state, having α-period LRO. A schematic image of this
procedure is shown in Fig. 2(b). Obviously, this manipulation
is also applicable for the general odd α-cases.

Mixed-state picture: The above procedure is discussed in the
purified picture as in Ref. [40]. As proposed in Ref. [42],
the manipulation under consideration can be applied to mixed
states with the local operation and classical communication
(LOCC).

We rewrite the initial state |Ψα
0 ⟩ = |CS(α)⟩ in terms of its

density matrix ρα0 = |Ψα
0 ⟩⟨Ψα

0 |, where we consider one of the
two-fold degenerate ground states ofHgc(α) with P = +1 for
odd α case, and apply the first step (ms = 1) of the controlled
unitary U c

0 (β⃗
0) to ρα0 [42], then the density matrix changes as

ρα1 =
∑
β⃗0

U c
0 (β⃗

0)ρα0U
c†
0 (β⃗0). (30)

The mixed state after the measurement exhibits the order of
the (α− 1) cluster SPT state.

If this approach is repeated byms times, we obtain a mixed
state after ms measurement steps with the feedback, denoted
by ραms

. The mixed state ραms
has the string order of the

(α − ms) cluster SPT state. We can analytically prove this
observation from the finite string order of α cluster SPT state
as follows,

1 = ⟨CS(α)|Ŝ(α, αi0 +ms, αk0 +ms)|CS(α)⟩

= tr

[
Ŝ(α−ms, αi0 +ms, αk0 +ms)ρ

α
ms

]
. (31)

The explicit form of the α′-string order operator Ŝ(α′, αi0 +
m,αk0 + m) is given by Eq. (34) below. The proof of the
above equation is given in Appendix. D and E.

Finally, we repeat this procedure ms = (α − 1) times and
obtain the following mixed state density matrix,

ραα−1 =
∑

β⃗0,··· ,β⃗α−2

(
U c
α−2(β⃗

α−2) · · ·U c
0 (β⃗

0)

)
ρα0

×
(
U c†
0 (β⃗0) · · ·U c†

α−2(β⃗
α−2)

)
. (32)

We expect that this density matrix, ραα−1 exhibits the follow-
ing LRO of the Ising GHZ-type such as

tr[ραα−1Zi1Zi2 ] = 1, (33)

where i1 and i2 are sites of the subsystem (sys)α−1.

VI. NUMERICAL VERIFICATION WITHOUT FEEDBACK
UNITARY BY USING THE EFFICIENT STABILIZER

SIMULATION

We have given the qualitative discussion and concrete ex-
amples of the measurement-reduction hierarchy starting from
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generalized α cluster SPT states. In what follows, we nu-
merically show evidences of the emergent hierarchy structure
(for the systems without the feedback unitary), the numerical
calculation of which can be performed by using the efficient
numerical algorithm for the stabilizer formalism [45, 46].

In the numerics, we observe the following quantities. The
first one is an extended glassy string order. We expect that the
glassy α′ cluster SPT state can be captured by the following
operator [52]

Ŝ(α′, i0, k0) = Zα′i0

[k0−1∏
i=i0

(α′−1∏
m=1

Xα′i+m

)]
Zα′k0 . (34)

Here, please note that the supports of all the operators reside
on the unmeasured sites. The labels are defined by jms af-
ter ms measurement steps. As Ŝ(α′, i0, k0) takes positive
and negative values randomly reflecting random outcomes, we
calculate the squared expectation value of Ŝ(α′, i0, k0) called
the glassy string order (STO),

Sg(α
′, i0, k0) = |⟨Ψs|Ŝ(α′, i0, k0)|Ψs⟩|2, (35)

where |Ψs⟩ denotes the SPT states appearing after measure-
ments. This quantity is obtained by checking the commutativ-
ity for the stabilizer generators of the state |Ψs⟩, and does not
depend on the pattern of the outcomes of measurements, the
technical aspect is explained in [26]. When the state |Ψs⟩ is in
a (fixed point) glassy α′ cluster SPT phase, Sg(α

′, i0, k0) = 1
for any i0 and k0. On the other hand for state |Ψs⟩ not in that
phase, Sg(α

′, i0, k0) = 0.
As the second quantity, we consider the following con-

nected spin-glass long-range order parameter (SGO) [13, 29]

SG(i0, k0) = |⟨Ψs|Zi0Zk0
|Ψs⟩|2

−|⟨Ψs|Zi0 |Ψs⟩|2 − |⟨Ψs|Zk0 |Ψs⟩|2.(36)

Here, note that i0, and k0 are both the unmeasured sites,
i.e., we are interested in the correlations in the subsystem
(sys)α−1. The SGO characterizes the glassy GHZ phase sim-
ilar to the spin-glass-ordered phase. The numerical techni-
cal aspect is explained in [13]. When the state |Ψs⟩ is a
perfect-glassy GHZ state, then SG(i0, k0) = 1 for any i0 and
k0. On the other hand for state |Ψs⟩ not in the GHZ phase,
SG(i0, k0) = 0.

The third quantity is the entanglement entropy for a sub-
system X denoted by SX . In the stabilizer formalism, the
entanglement entropy is related to the number of linearly-
independent stabilizers in a target subsystem X [57, 58]. It
is given by SX = gX − LX , where LX is the system size of
the subsystem X , gX is given by rank|MX |, where the ma-
trix MX is obtained by stacking binary-represented vectors of
L stabilizer generators, which are spatially truncated within
subsystem X . In this work, we set X to a connected half sub-
system including L/2 sites of the entire system, LX = L/2.

We turn to the numerical setup and results. We prepare
α = 20 and 21 cluster SPT states as an initial stabilizer state.
We apply total α− 1 measurement steps, where we apply the
measurement Pms−1

β⃗ms−1
at each measurement step labeled by

(a)

(b)

FIG. 3. The values of α-glassy STO and SGO (α′ = 1), (a) α = 20,
N = 20 (b) α = 21, N = 20. All order parameters are calculated
by employing the relabeled sites defined on the unmeasured sites at
each measurement step ms.

ms, (ms = 1, · · · , α − 1, where ms = 0 corresponds to
no measurement to the system, that is, the system is in the
initial state.) Please note that in the calculation of α′-STO
and SGO at each ms, we consider only the unmeasured sites
and calculate the α′-STO and SGO defined on the unmeasured
sites labeled by jms as shown in Fig. 1 (b) and Appendix C,
that is, no measured sites are included in the definition of the
operators. Under this prescription of the site choice, we set
i0 = 0 and k0 = 8.

Figure 3 displays results of various α′-STO and SGO
[which is nothing but the α′ = 1 case] along the measure-
ment step ms. For even α = 20 case [Fig. 3(a)], we see
that at ms = 0, Sg(α

′ = 20, i0, k0) = 1 and the others
have zero values. Then, as increasing ms, we observe that
Sg(α

′ = α −ms, i0, k0) = 1 and the others have zero value.
This indicates that at the measurement step ms, a glassy
α−ms cluster SPT state emerges in the unmeasured subsys-
tems. At the final stepms = α−1, we observe the emergence
of a strict glassy GHZ state in the subsystem (sys)α−1 due to
SG(i0, k0) = 1.
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(a) (b)

FIG. 4. Half subsystem entanglement entropy SL/2: (a) α = 20,
N = 20 and the total number of the measurement steps is 19. (b)
α = 21, N = 20. The total number of the measurement steps is 20.

For the odd α = 20 case [Fig. 3(b)], we observe the same
behavior as that of the even α case. Starting from α cluster
SPT state, the state reaches the final glassy GHZ state through
(α− 1) sequential measurements by Pms−1

β⃗ms−1
.

These numerical results corroborate the conjecture in the
previous section.

We finally numerically study the entanglement entropy
(EE) SL/2. The results are shown in Fig. 4. For even α = 20
case [Fig. 4(a)], atms = 0, the initial EE is SL/2 = 20, which
agrees with the properties of the even α cluster SPT state [54].
We further observe the linear decreasing behavior of the EE
indicating that (α−ms) cluster SPT state is produced by the
measurements. Finally at ms = α − 1, we see SL/2 = 1,
indicating the emergence of the glassy GHZ state [29, 59].

For the odd α = 21 case [Fig. 4(b)], at ms = 0, the initial
EE is SL/2 = 21, as expected for the odd α cluster SPT state
[54]. We further observe the linear decreasing behavior of the
EE similar to that of the even α case. Finally at ms = α − 1,
we also see SL/2 = 1.

Here, we comment that the value of SL/2 is related to the
number of emerging edge modes when we introduce a cut of
the system or employ open boundary conditions [54]. A study
concerning edge modes in the present setup is a future prob-
lem.

VII. CONCLUSION

In this study, we have proposed a measurement-reduction
hierarchy of the generalized cluster SPT state by sequential
subsystem projective measurements from an initial general-
ized cluster SPT state with large symmetry. We expect that
only the sequential subsystem projective measurements in-
duce the series of the glassy cluster SPT states and finally a
glassy GHZ state. Furthermore, we found efficient feedback
unitary regarded as an extension form to that of the previous
studies [40, 42]. The mixed states created by the sequential
controlled unitary exhibit an extended string order at each
measurement step indicating the emergence of the reduced

cluster SPT state on the unmeasured sites. The class of the
cluster SPT state depends on the number of the measurement
step.

We expect that our investigated scheme of sequential mea-
surements for a particular symmetry generator has broad ap-
plications to various SPTs defined on high-dimensional sys-
tems with a number of large symmetry groups. There, the re-
duction procedure can act properly. It has already been shown
that at one-layer level of subsystem measurements a 2D clus-
ter SPT turns into a 2D LRO state [40] and an long-range en-
tangled state can be produced [60].
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APPENDIX A: BASIC TRANSFORMATION IN A SET OF
STABILIZER GENERATORS

We consider a set of the stabilizer generators denoted by
[g0, · · · , gN−1], where N -generators are included and they
are linearly independent with each other. As explained in
Ref. [56], there is a standard transformation between stabi-
lizers. We can freely change the set of stabilizer generators by
multiplying gi by gj (i ̸= j) to obtain a new stabilizer gener-
ator gi → gigj ≡ g′i. Under this transformation, the stabilizer
group obtained from stabilizer generators is invariant. By us-
ing this rule including the sign of the stabilizer generators, we
can construct a tractable set of stabilizer generators to identify
the corresponding many-body states. This prescription woks
similarly for the stabilizer generators with the outcome factors
gi → βjgi with βj = ±1. In the standard transformation, we
can change the form of the stabilizer generators by multiply-
ing βigi with βjgj (i ̸= j) to obtain a transformed stabilizer
generator as βigi → βiβjgigj ≡ βiβjg

′
i.

APPENDIX B: UPDATE RULE OF PROJECTIVE
MEASUREMENTS IN EFFICIENT NUMERICAL

ALGORITHM OF STABILIZER FORMALISM

We review a simple update procedure for a projective mea-
surement in Aaronson-Gottesman efficiently stabilizer algo-
rithm [45, 46, 56]. This update method is efficient not only
for numerical calculations but also for the analytical calcu-
lation to deduce a measured many-body state generated by
projective measurements with Pauli string measurement oper-
ators.

We employ a sightly different notation to include sign of
outcomes [45, 46, 56]. This notation is useful to write down
an effective Hamiltonian after measurements and to elucidate
the relations among values of outcomes in distinct sites.

The efficient update way is as follows:
Suppose that a pure state in a N -qubit system is stabilized
by a set of N stabilizer generators. We denote this set by
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S = [g0, g1, · · · , gN−1], and call the state under consideration
stabilizer state S. For this stabilizer state S, let us measure the
physical quantity corresponding to the operator s in a Pauli
group PN (Pauli string operators), where we consider s2 = 1
and the outcome takes βs = ±1. [In numerical calculations,
we will ignore the sign of the measured value since it does not
affect the result for our target physical quantities.]

Then, by the projective measurement on the state S, the
stabilizer generators are updated as follows [45, 46]:

(I) Search anticommutative stabilizer generators to s. This
can be carried out by using the check matrix [56].
From this procedure, as the case 1, we obtain sin-
gle or some m anticommutative stabilizer generators,
gℓ1 , gℓ2 , · · · , gℓm (m ≤ N ). As the case 2, there is no
anticommutative one, S is not updated.

(II) If the case 1 occurs in (I) and there is a only sin-
gle stabilizer generator denoted by gm1

anticommute
to s, we replace gm1

with βss. Here βs is the out-
come with probability pβs

=
√
⟨Ψst|Pβs

|Ψst⟩ = 1/2

with Pβs
=

1

2
[I + βss][56], where |Ψst⟩ is the stabi-

lizer state by S. The update of S is achieved.

(III) When there are (more than two)m anticommutative sta-
bilizer generators gℓ1 , gℓ2 , · · · , gℓm (m ≤ N ), replace
gℓ1 with βss. Furthermore, for the rest of anticommu-
tative ones gℓi , update gℓi → gℓigℓ1 . By this procedure
the set of stabilizer generators S is updated by the pro-
jective measurements with the measurement operator s.

Furthermore, when we next carry out the projective mea-
surement with a measurement operator s′ with the outcome
βs′ , we do the above update prescription again but by treating

the stabilizer generators with the previous outcome factor βs,
such as βss.

APPENDIX C: RELABEL FUNCTIONS

In this appendix, we explain the re-numbering rule of the
unmeasured sites after ms measurement steps.

First, j is the initial site label as shown in Fig. 1 (b). Then,
the site-relabeling after the first (ms = 1) measurement step,

j1[j] ≡ (⌊ j
α
⌋)(α− 1) + [(j mod α)− 1],

for j ∈ (all) − (sys)0. The site label j1 labels correctly the
unmeasured sites in order as Fig. 1 (b).

Generally, the site-relabeling after ms measurement steps
denoted as jms is given by

jms [j] ≡ (⌊ j
α
⌋)(α−ms) + [(j mod α)−ms],

for j ∈ (all)−
∑ms−1

k=0 (sys)k.
Also, in the effective Hamiltonian after the first step mea-

surement, the site-label of the outcome factor β is given by

n0[j1] ≡ (⌊ j1

α− 1
⌋+ 1)α+ 0.

Generally, for the effective Hamiltonian after ms measure-
ment steps, the site-label of the outcome factor β in the effec-
tive Hamiltonian is given by

nms−1[jms ] ≡ (⌊ jms

α−ms
⌋+ 1)α+ (ms − 1).

Note that the inverse re-labeling function can be also de-
fined for all site-labeling rules appearing here.

APPENDIX D: PRESENCE OF STRING ORDER AT ANY MEASUREMENT STEP

By extending the observation in [42], we shall prove that a series of the mixed state ραms
have their own finite string order.

We start α cluster SPT state. In the following calculation, we use the initial site label even after any measurements.

The string order for the initial state is

⟨CS(α)|Ŝ(α, αi0 +ms, αk0 +ms)|CS(α)⟩ = ⟨CS(α)|Zαi0+ms

[k0−1∏
i=i0

(
Xαi+1+ms

· · ·Xαi+α−1+ms

)]
Zαk0+ms

|CS(α)⟩ = 1.

(37)

Here, we suitably set the sites of the string operators such that the edges of sites are set as αi0 +ms and αk0 +ms. ms is the
target number of the measurement steps, ms, where we consider 1 ≤ ms ≤ α− 1.
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The above string order becomes

⟨CS(α)|Zαi0+ms

[k0−1∏
i=i0

(
Xαi+1+ms

· · ·Xαi+α−1+ms

)]
Zαk0+ms

|CS(α)⟩

=
∑

β⃗0,··· ,β⃗ms−1

⟨CS(α)|
[
P 0
β⃗0 · · ·Pms−1

β⃗ms−1

]
Zαi0+ms

[k0−1∏
i=i0

(
Xαi+1+ms · · ·Xαi+α−1+ms

)]
Zαk0+ms

[
Pms−1

β⃗ms−1
· · ·P 0

β⃗0

]
|CS(α)⟩

=
∑

β⃗0,··· ,β⃗ms−1

⟨CS(α)|
[
P 0
β⃗0 · · ·Pms−1

β⃗ms−1

]
Zαi0+ms

[k0−1∏
i=i0

(
Xαi+1+ms · · ·Xαi+α−1

)][ k0∏
i=i0+1

(
Xαi · · ·Xαi+ms−1

)]

×Zαk0+ms

[
Pms−1

β⃗ms−1
· · ·P 0

β⃗0

]
|CS(α)⟩

=
∑

β⃗0,··· ,β⃗ms−1

⟨CS(α)|
[
P 0
β⃗0 · · ·Pm−1

β⃗ms−1

]
Zαi0+ms

[k0−1∏
i=i0

(
Xαi+1+ms

· · ·Xαi+α−1

)][ k0∏
i=i0+1

(
βαi · · ·βαi+ms−1

)]

×Zαk0+ms

[
Pms−1

β⃗ms−1
· · ·P 0

β⃗0

]
|CS(α)⟩

=
∑

β⃗0,··· ,β⃗ms−1

⟨CS(α)|
[
P 0
β⃗0 · · · (Pms−1

β⃗ms−1
Uf†
ms−1(β⃗

ms−1))

]
Zαi0+ms

[k0−1∏
i=i0

(
Xαi+1+ms

· · ·Xαi+α−1

)][ k0∏
i=i0+1

(
βαi · · ·βαi+ms−2

)]

×Zαk0+ms

[
(Uf

ms−1(β⃗
ms−1)Pms−1

β⃗ms−1
) · · ·P 0

β⃗0

]
|CS(α)⟩, (38)

where in the second line, we have used
∑

β⃗k P
k
β⃗k

=
∑

β⃗k(P
k
β⃗k
)2 = 1 and in the last line

Uf†
ms−1(β⃗

ms−1)Zαi0+ms
(X · · ·X)Zαk0+ms

Uf†
ms−1(β⃗

ms−1) = Zαi0+ms
(X · · ·X)

[ k0∏
i=i0+1

βαi+ms−1

]
Zαk0+ms

. (39)

The proof of this equation is given in Appendix.E.
We further proceed the calculation from Eq. (38),

Eq. (38) =
∑

β⃗0,··· ,β⃗ms−1

⟨CS(α)|
[
(P 0

β⃗0U
f†
0 (β⃗0)) · · · (Pms−1

β⃗ms−1
Uf†
ms−1(β⃗

ms−1))

]
Zαi0+ms

[k0−1∏
i=i0

(
Xαi+1+ms

· · ·Xαi+α−1

)]

×Zαk0+ms

[
(Uf

ms−1(β⃗
ms−1)Pms−1

β⃗ms−1
) · · · (Uf

0 (β⃗
0)P 0

β⃗0)

]
|CS(α)⟩

=
∑
p

∑
β⃗0,··· ,β⃗ms−1

⟨CS(α)|
[
(P 0

β⃗0U
f†
0 (β⃗0)) · · · (Pms−1

β⃗ms−1
Uf†
ms−1(β⃗

ms−1))

]
|ψp⟩⟨ψp|Ŝ(α−ms, αi0 +ms, αk0 +ms)

×
[
(Uf

ms−1(β⃗
ms−1)Pms−1

β⃗ms−1
) · · · (Uf

0 (β⃗
0)P 0

β⃗0)

]
|CS(α)⟩

= tr

[
Ŝ(α−ms, αi0 +ms, αk0 +ms)ρ

α
ms

]
, (40)

where Ŝ(α − ms, αi0 + ms, αk0 + ms) is the operator of (α − ms) string order and the sites on the operators are in the
unmeasured sites, and ραms

is

ραms
=

∑
β⃗0,··· ,β⃗ms−1

[
U c
ms−1(β⃗

ms−1) · · ·U c
0 (β⃗

0)

]
|CS(α)⟩⟨CS(α)|

[
U c†
0 (β⃗0) · · ·U c†

ms−1(β⃗
ms−1)

]
. (41)

We have used the completeness relation for a set of L-site qubit orthogonal basis,
∑

p |ψp⟩⟨ψp| = 1.
From this calculation, from the presence of the string order of the initial α cluster SPT state, we conclude that the measured

and feedbacked state after ms times one-layer measurements for each different subsystem (sys)k for k = 0, · · · ,ms − 1 also
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has (α−ms) string order,

1 = ⟨CS(α)|Ŝ(α, αi0 +ms, αk0 +ms)|CS(α)⟩ = tr

[
Ŝ(α−ms, αi0 +ms, αk0 +ms)ρ

α
ms

]
. (42)

From this relation, we expect the presence of the string order for any measurement step except for (α − 1) step. This indicates
that the cluster SPT state on unmeasured sites exists for any measurement step except for (α − 1) step and the class of the
string order depends on the numbers of the measurement step ms. This relation nothing but indicates a measurement reduction
hierarchy. Also, Eq.(42) for ms = α− 1 case is also satisfied, corresponding to the Ising GHZ LRO.

E. PROOF OF EQ. (39)

We here show the proof of Eq. (39).

Uf
ms−1(β⃗

ms−1)Zαi0+ms(X · · ·X)Zαk0+msU
f†
ms−1(β⃗

ms−1)

= Uf
ms−1(β⃗

ms−1)Zαi0+ms
Uf†
ms−1(β⃗

ms−1)(X · · ·X)Uf
ms−1(β⃗

ms−1)Zαk0+ms
Uf†
ms−1(β⃗

ms−1). (43)

Here,

Uf
ms−1(β⃗

ms−1)Zαi0+ms
Uf†
ms−1(β⃗

ms−1) = ums(β⃗ms−1)Zαi0+ms
ums†(β⃗ms−1)

=

(
X

1−
∏i0

q=0 βαq+(ms−1)
2

αi0+ms

)
Zαi0+ms

(
X

1−
∏i0

q=0 βαq+(ms−1)
2

αi0+ms

)
=

[ i0∏
q=0

βαq+(ms−1)

]
Zαi0+ms ,

Uf
ms−1(β⃗

ms−1)Zαk0+msU
f†
ms−1(β⃗

ms−1) =

[ k0∏
q=0

βαq+(ms−1)

]
Zαk0+ms . (44)

Thus, by substituting the above equations into Eq. (43), we obtain

Eq. (43) =
[ i0∏
q=0

βαq+(ms−1)

]
Zαi0+ms(X · · ·X)

[ k0∏
q=0

βαq+(ms−1)

]
Zαk0+ms = Zαi0+ms(X · · ·X)

[ k0∏
i=i0+1

βαi+ms−1

]
Zαk0+ms .

(45)
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