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Abstract

The time evolution of an open quantum system is governed by the Gorini-Kossakowski-Sudarshan-

Lindlad equation for the reduced density operator of the system. This operator is obtained from

the full density operator of the composite system involving the system itself, the bath, and the

interactions between them, by performing a partial trace over the bath degrees of freedom. The en-

tanglement between the system and the bath leads to a generalized Liouville evolution that involves,

amongst other things, dissipation and decoherence of the system.

In a similar fashion, the time evolution of a physical observable in a classically constrained

dynamical system is governed by a generalization of the Liouville equation, in which the usual

Poisson bracket is replaced by the so-called Dirac bracket. The generalization takes into account the

reduction in the phase space of the system because of constraints, which arise either because they

are introduced by hand, or because of some underlying gauge invariance.

We derive an intriguing, but precise classical-quantum correspondence between the aforemen-

tioned situations which connects the Lindblad operators to the constraints. The correspondence is

illustrated in a system of coupled simple harmonic oscillators studied earlier in the context of the

area law of black holes by Bombelli, Koul, Lee, and Sorkin, and independently by Srednicki.
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1 Introduction

Physical systems at the atomic, nuclear, and sub-nuclear levels are governed by quantum me-

chanics. Since quantum mechanics is an inherently abstract and non-deterministic theory, the

correspondence between quantum mechanics and the physically more relatable classical me-

chanics has intrigued people for several decades. The Correspondence Principle of Bohr [1], the

Ehrenfest Theorem [2], the Coherent States of Schrodinger [3], and the JWKB approximation [4]

[5] [6] [7] are amongst the earlier attempts to bridge the gap between classical and quantum the-

ories. A little later, Wigner [8] invented a probability distribution using which the expectation

values of operators in quantum mechanics could be computed by simply performing averages of
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the corresponding observables in the classical phase space.

Another well-known connection between classical and quantum mechanics is based on the pre-

scription of promoting the classical observables to quantum operators [9]. The Poisson brackets

of the observables in Hamiltonian mechanics are then replaced by commutation relations be-

tween the corresponding operators in quantum mechanics multiplied by i~. Thus, one may view

quantum mechanics as a purely classical, but suitably geometrized theory [10] [11].

A particularly important set of problems is encountered when the dynamics in classical me-

chanics is confined to a subspace of the phase space. This could be because of constraints

introduced by hand, or because the canonical coordinates used to describe the system have some

redundant degrees of freedom. Such systems are called constrained systems. Dirac [12],[13]

showed how the usual Hamiltonian methods could be generalized to such situations. A central

result of this analysis uses the Dirac bracket instead of the Poisson bracket to capture the effect

of the constraints in classical mechanics. Canonical quantization consists of replacing the Dirac

bracket with a commutator multiplied by i~, modulo operator ordering problems.

Similarly, another important set of problems is encountered when one considers open quantum

systems[14][15]. In this case, one starts with the total Hilbert Space of the system and the

environment. The state of the quantum system is obtained by performing a partial trace over

the environment.

Both these problems involve a reduction in the degrees of freedom defining the underlying

spaces, one the phase space of classical mechanics, and the other, the Hilbert space of quantum

mechanics. In the spirit of the aforementioned correspondence between classical and quantum

mechanics, it is therefore natural to examine the correspondence between constrained dynamical

systems and open quantum systems.

In this paper, we do a detailed study of this correspondence. We construct a map between the

so-called Lindblad operators [16][17] appearing in the master equation governing open quantum

systems on the one hand, and the constraints, appearing through the Dirac bracket, in the

dynamical equation of motion governing the corresponding classical system on the other hand.

The rest of the paper is organized as follows: In Section 2, we give a lightning review of

constrained dynamical systems emphasizing mainly the definition and derivation of the Dirac

bracket. We sketch the derivation of the Lindblad equation mentioning the relevant approxima-

tions used [20][15]. The dissipation parameters that appear in the Lindblad equation which are

crucial in establishing the connection between constrained systems and open quantum systems

are most efficiently calculated in the interaction picture and we present a review of the relevant

details.

3



In Section 3, we present our main result establishing the advertised correspondence.

In Section 4, we illustrate our correspondence in a system of coupled simple harmonic oscil-

lators studied earlier by Bombelli, Koul, Lee, and Sorkin [18], and independently by Srednicki

[19], in a different context.

We summarise the results of the paper and present an outlook in Section 5.

2 Review

This section consists of two parts. In the first part, we will present a brief review of constrained

dynamical systems. In the second part, we will review some aspects of open quantum systems

needed to establish the correspondence between the two in the next section.

2.1 Constrained Dynamical Systems

Let S denote the action functional

S[qi(t)] =

∫ b

a

dt L(qi, q̇i) (1)

where qi(t) are canonical coordinates and q̇i(t) denotes derivative of qi with respect to time t.

For simplicity, we consider Lagrangians without explicit time dependence.

The Poisson brackets between the coordinates and the canonically conjugate momenta pi = ∂L
∂q̇i

are given by the equation
{

qj , p
i
}

= δij (2)

The canonical Hamiltonian is obtained by a Legendre transform of the Lagrangian in the fol-

lowing manner,

Hc = piq̇i − L(qi, q̇i) (3)

The dynamics is determined by Hamilton’s equations

q̇i =
{

qi, Hc

}

=
∂Hc

∂pi
, ṗi =

{

pi, Hc

}

= −∂Hc

∂qi
(4)

If the Lagrangian L(qi, q̇i) is singular, the determinant of the Hessian Wij vanishes,

Det
[

Wij

]

= 0 where Wij =
∂2L

∂q̇i∂q̇j
=
∂pi

∂q̇j
(5)
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If the rank of the Hessian WN×N is R (R < N) and 2N is the total number of phase space

variables,

q̇a = fa(q, pb, q̇
ρ) a, b = 1, .., R and ρ = R + 1, ..., N (6)

From (5) and (6) we can see that (N −R) q̇is are undetermined,

pi = g̃i(q, q̇
a, q̇ρ) = g̃i

(

q, fa(q, pb, q̇
ρ), q̇ρ

)

= gi(q, pb, q̇
ρ) i = 1, 2...N (7)

pτ = gτ (q, pb) τ = R + 1, ..., N (8)

The pτ do not depend on q̇ρs since we can’t solve for them. These (N − R) relations given by

Eq.(8) are the primary constraints,

φm(q, p) ≈ 0. where, m = R + 1, ..., N (9)

The ≈ sign, said to be weakly equal to, indicates that this equation identically holds on the

subspace determined by the constraints, but not on the whole phase space.

The canonical Hamiltonian is restricted to the reduced phase space and is not uniquely de-

termined. We may add to it any linear combination of the φms which will give us the primary

Hamiltonian.

Hp = Hc + λmφm ≈ Hc (10)

where the λm are the Lagrange multipliers. The requirement that the primary constraints [eq.

(9)] be preserved in time yields,

φ̇n =
{

φn, Hp

}

≈
{

φn, Hc

}

+λm

{

φn, φm

}

≈ 0. ∀n = R + 1...N (11)

Three things can happen at this stage:

(a) the above equation can be identically satisfied, in which case no extra information can be

gathered about the system,

(b) the above gives rise to a new equation depending on the Lagrange multipliers λm, using which

we can determine one or more of them explicitly as functions of the coordinates and momenta,

(c) we get a new equation between the coordinates and momenta, independent of the Lagrange

multipliers, λm. These new relations are also constraints.

We need to go through this rigmarole once again with the new set of constraints. At the end

of this exercise, we would have determined some λm, and the complete set of new constraints

we acquire in the process is called the set of secondary constraints. These, together with the

primary constraints form the total set of constraints. To summarise,

φa(q, p) ≈ 0 a = 1, ...T, where, T = K +M and M = N − R (12)
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In the above equation, M is the number of primary constraints, K is the number of additional

secondary constraints, and T is the total number of constraints. The remaining arbitrariness in

the Hamiltonian is due to the Lagrange multipliers that are left undetermined at this stage.

Dirac defines a function R(q, p) as a first-class quantity if
{

R, φa

}

≈ 0, a = 1, ..., T (13)

and second class if
{

R, φa

}

6≈ 0. for at least one a. (14)

All the constraints can be classified into first and second class constraints:

ψi(q, p) ≈ 0. i = 1, ..., I [First-class constraints] (15)

φα(q, p) ≈ 0. α = 1, ..., Q [Second-class constraints] (16)

First class constraints generate redundancies (gauge invariances) in theory. By choosing an

appropriate number of gauge fixing conditions, these redundancies can be eliminated, and the

first class constraints are converted to second class by the gauge fixing conditions. One may

check that these extra gauge fixing constraints are precisely the ones that fix the remaining

undetermined Lagrange multipliers.

The Dirac bracket between any two observables A and B, is defined as follows:
{

A,B
}⋆

=
{

A,B
}

−
{

A, φα

}

C−1
αβ

{

φβ, B
}

. (17)

where φα are second class constraints, and Cαβ ≡
{

φα, φβ

}

is the matrix of Poisson brackets of

second class constraints.

The time development of any classical observable, F (q, p) is determined by the evolution

equation

Ḟ (t) =
{

F,HE

}⋆
=
{

F,Hc

}

+ vi
{

F, ψi

}

−
{

F, φα

}

C−1
αβ

{

φβ, Hc

}

(18)

Here, HE = Hc+viψi is the effective Hamiltonian of the system. Hc is the canonical Hamiltonian,

vi are Lagrange multipliers which are undetermined, and ψi are the first class constraints. If

there are no first-class constraints, the second term on the RHS of equation (18) is zero, and

evolution equation is exactly like the Liouville equation but with the Poisson bracket replaced

by the Dirac bracket.

2.2 Lindblad Equation

Lindblad, and independently Gorini, Kossakowski, and Sudarshan, derived the most general

completely positive Markovian semigroup master equation for the dynamics of an open quantum
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system [16][17] given by,

ρ̇(t) = −i[Hs, ρ(t)] +
∑

α,β

aαβ

[

Fαρ(t)F
†
β − 1

2

{

F
†
βFα, ρ(t)

}

]

(19)

In this equation Fα, α = 1, 2, · · ·N2, where N is the dimension of system Hilbert space HS,

stand for an orthonormal set of operators, and aαβ is a constant positive semi-definite matrix of

dissipation parameters. In the above equation and in what follows, we set ~ = 1.

In this section we review the master equation by starting from the full system, i.e., the bath,

and the system, and derive the reduced density matrix by integrating out the bath degrees of

freedom. In doing so, we explicitly identify the role played by the Markovian approximation,

and the coarse-graining procedure, which will enable us to derive the all-important dissipation

parameters.

Let us consider a general Hamiltonian of the form,

H(t) = HS +HB +HI = H0 +HI (20)

where, H0 = HS +HB is the ‘free’ Hamiltonian of both the system and the bath, and HI is the

interaction Hamiltonian. Let us further assume initial decoupling between the system and bath,

ρT (0) = ρS(0)⊗ ρB(0) (21)

The integration over the bath degrees of freedom can be performed in the usual way [14]. The

time dependence of the reduced density operator can then be described by the Kraus Operator

Sum Representation (OSR), as follows:

ρs(t) =
∑

lm

Klm(t)ρs(0)K
†
lm(t) (22)

The Kraus operators straddle the total system (bath + system), and are matrix elements in so

far as the bath is concerned, but act as operators on the system

Klm(t) =
√
pm 〈l|U(t) |m〉 , U(t) = e−iHt (23)

Evidently, there are d2B number of Krauss operators, where dB is the dimensionality of the bath

Hilbert space. We label them by i = 0, 1, 2, · · ·d2B − 1.

The Kraus operators, Ki, can be expanded in the time-independent operator basis
{

Fα

}d2
S
−1

α=0
with F0 = I,

Ki(t) =

d2
S
−1
∑

α=0

biα(t)Fα (24)
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where, biα are the time-dependent elements of a rectangular d2S × d2B dimensional matrix.

The reduced density operator can be expressed as

ρs(t) =

d2
S
−1
∑

α,β=0

χαβ(t)FαρS(0)F
†
β . (25)

Note that the matrix elements χαβ(t) appearing in the above equation are given by

χαβ(t) =

d2
B
−1
∑

i=0

biα(t)b
⋆
iβ(t) (26)

χ(t) is a positive semi-definite, hermitian d2s × d2s matrix.

After some algebraic manipulations, we get the fixed basis OSR evolution equation to be

d

dt
ρs(t) = −i

[

Q̇(t), ρs(0)
]

+
∑

α,β≥1

χ̇αβ(t)

(

Fαρs(0)F
†
β − 1

2

{

F
†
βFα, ρs(0)

}

)

(27)

where Q(t), whose physical significance will become clear presently, is a hermitian operator

defined by,

Q(t) ≡ i

2

∑

β≥1

(

χβ0(t)Fβ − χ0β(t)F
†
β

)

(28)

This equation connects the reduced density matrix at two different instants of time. To bring it

to the Lindblad form [eq.(19)], we resort to the following procedure.

2.2.1 Coarse Graining

The method of coarse-graining can be found in [20]. We consider three time scales: (a) τB, the

bath time scale, typically the inverse of the maximum natural frequency associated with the bath

(b) the coarse-graining time scale τ over which the bath is reset to its original state (timescale

for the bath memory to be erased, also referred to as the Markovian approximation) and (c) a

system timescale τs, the timescale associated with the changes in the reduced density matrix.

The coarse-graining procedure consists of assuming

τB << τ << τs (29)

Note that there is yet another timescale τ0 associated with the unitary evolution of the system,

and it should lie between τB and τs. To quote Feynman, we are therefore in an ‘equilibrium’

regime where "all the fast processes have already taken place, and the slow processes are yet to

take place"[21].
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Under these conditions, the OSR evolution equation reduces to

d

dt
ρs(t) = −i

[

〈Q̇〉, ρs(t)
]

+
∑

α,β≥1

〈χ̇αβ〉
(

Fαρs(t)F
†
β − 1

2

{

F
†
βFα, ρs(t)

}

)

(30)

where 〈Q̇〉 is effectively the Hamiltonian responsible for the unitary evolution of the system: it

contains not just the system Hamiltonian, but also the Lamb shift correction coming from the

system-bath interaction. Thus, we have

d

dt
ρs(t) = −i

[

HS +HLS, ρs(t)
]

+
∑

α,β≥1

〈χ̇αβ〉
(

Fαρs(t)F
†
β − 1

2

{

F
†
βFα, ρs(t)

}

)

(31)

which is of the Lindblad form [eq.(19)], as advertised.

2.2.2 Dissipation Parameters

In the interaction picture, the Hamiltonian becomes

H̃I(t) = U
†
0(t)HI(t)U0(t), U0(t) = e−iHSt ⊗ e−iHBt (32)

We take the interaction Hamiltonian to be of the form

H̃I(t) =
∑

β,δ

λβδ S̃β(t)⊗ B̃δ(t) (33)

where, S̃β(t) and B̃δ(t) are the system and bath operators respectively, and can be written as

S̃β(t) = eiHStSβe
−iHSt =

∑

α

pβα(t)Sα

B̃δ(t) = eiHBtBδe
−iHBt =

∑

γ

qδγ(t)Bγ

(34)

The density matrix in the interaction picture evolves as

ρ̃T (t) = U
†
0(t)ρT (t)U0(t) = Ũ(t)ρT (0)Ũ

†(t) (35)

where ρT is the total density matrix of the system and bath collectively. The unitary evolution

operator in the interaction picture is given by,

Ũ(t) = U
†
0(t)U(t, 0)

= T̂ exp

[

− i

∫ t

0

H̃I(t
′)dt′

]

= I +
∞
∑

n=1

(−i)n
n!

∫ t

0

dtn

∫ tn

0

dtn−1....

∫ t2

0

dt1T̂
{

H̃I(t1)H̃I(t2)....H̃I(tn)
}

(36)
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The system density matrix in the interaction picture is,

ρ̃S(t) = TrB

[

ρ̃T (t)
]

=
∑

i

K̃i(t)ρS(0)K̃
†
i (t) (37)

where, K̃i are the Kraus operators in the interaction picture

K̃i(t) = K̃lm(t) =
√
pm 〈l| Ũ(t) |m〉 (38)

Then equations (24), (25) and (26) become,

K̃i(t) =

d2
S
−1
∑

α=0

b̃iα(t)Fα; ρ̃S(t) =

d2
S
−1
∑

α,β=0

χ̃αβ(t)FαρS(0)F
†
β χ̃αβ(t) =

d2
B
−1
∑

i=0

b̃iα(t)b̃
⋆
iβ(t) (39)

Now, identifying the system operators, Fα ≡ Sα, eq.(31) becomes,

d

dt
ρ̃s(t) = −i

[

HLS, ρ̃s(t)
]

+
∑

α,β≥1

〈 ˙̃χαβ〉
(

Sαρ̃s(t)S
†
β −

1

2

{

S
†
βSα, ρ̃s(t)

}

)

(40)

In the Schrodinger’s picture, the above equation becomes,

d

dt
ρs(t) = −i

[

HS +HLS, ρs(t)
]

+
∑

α,β≥1

〈χ̇αβ〉
(

Sαρs(t)S
†
β −

1

2

{

S
†
βSα, ρs(t)

}

)

(41)

The explicit derivation of dissipation parameters can be found in [22]. We can expand the

Kraus operators by using the expansion of Ũ(t) eq.(36). From now on we suppress the tilde

notation for convenience. From eq.(38) and eq.(36) with F0 = IS

Ki(t) =
√
pmδlmIS +

∞
∑

n=1

K
(n)
i (t) (42)

In the weak coupling regime, we will only consider up to the first order (n = 1) and we have,

K
(1)
i=lm(t) = −it√pm

∑

α;γ;β,δ

λβδSα 〈l|Bγ |m〉Γαγ
βδ ≡

d2
S
−1
∑

α=1

biα(t)Fα (43)

where we define,

Γαγ
βδ (t) =

1

t

∫ t

0

dt′pβα(t
′)qδγ(t

′) (44)

From eq.(44) we can find that,

biα(t) = −it√pm
∑

α′α′′α′′′

λα′′α′′′ 〈l|Bα′ |m〉Γαα′

α′′α′′′(t) α ≥ 1 (45)
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Using eq.(39),

χα0(t) = −it
∑

α′α′′α′′′

λα′′α′′′〈Bα′〉BΓαα′

α′′α′′′(t) (46)

and,

χαβ(t) = t2
∑

α′α′′α′′′β′β′′β′′′

λα′′α′′′

(

λβ′′β′′′

)⋆

〈Bα′′B
†
β′′〉BΓαα′

α′′α′′′(t)
(

Γββ′

β′′β′′′(t))
)⋆

(47)

Then the dissipation parameter becomes,

γαβ = 〈χ̇αβ〉 =
χαβ(τ)

τ
= τ

∑

α′α′′α′′′β′β′′β′′′

λα′′α′′′

(

λβ′′β′′′

)⋆

〈Bα′′B
†
β′′〉BΓαα′

α′′α′′′(τ)
(

Γββ′

β′′β′′′(τ))
)⋆

(48)

with Lamb Shift parameter,

HLS =
i

2

∑

α

〈χ̇α0〉Sα − 〈χ̇α0〉⋆S†
α (49)

3 The Dirac Bracket ↔ Open Quantum Systems Correspondence

In this section, we will build the correspondence between constrained dynamical systems and

open quantum systems in a general manner.

The evolution equation of any phase space variable is given by eq.(18)

ρ̇(t) =
{

ρ,HE

}⋆
=
{

ρ,HE

}

−
{

ρ, φa

}

C−1
ab

{

φb, Hc

}

(50)

where,

Dab = (C−1)ab, Cab =
{

φa, φb

}

(51)

where φ’s are all the second class constraints of the system.

According to Dirac, any quantity that is weakly zero can be written as a linear function of the

φ’s. The φ’s are the only quantities in the theory that are independently weakly zero. Therefore,

φ̇b ≈ 0 ⇒
{

φb, Hc

}

≈ 0

⇒
{

φb, Hc

}

=
∑

c

νbcφc = χb
(52)

Equation (50) becomes,
d

dt
ρ(t) =

{

ρ,HE

}

−
{

ρ, φa

}

Dabχb (53)

Assuming there are no operator ordering problems, we can promote the phase space observ-

ables (and hence the constraints) to quantum operators and replace the Poisson Brackets with

commutators,
d

dt
ρ(t) = i

[

ρ,HE

]

−
[

ρ, φa

]

Dabχb (54)

11



Using the following commutator and anticommutator,
{

φaρ,D
abχb

}

= φaρD
abχb +Dabχbφaρ

[

φa, D
abχb

]

= φaD
abχb −Dabχbφa

(55)

Equation (54) becomes,

ρ̇(t) = i
[

ρ,HE

]

−
{

Dabχbφa, ρ
}

+
{

φaρ,D
abχb

}

−ρ
[

φa, D
abχb

]

(56)

A direct comparison of the coarse-grained Master Equation [eq.(41)] and the equation (56) gives,

Dabχbφa =
1

2
γαβS

†
βSα (57)

The above equation (57), is the central result of this paper.

The coarse-grained Master Equation [eq.(41)] is written in the fixed operator basis
{

Sa

}

. To

bring it to the Lindblad form, we note that γ is positive semidefinite and we can diagonalize it

as follows:

γ̃ = u†γu (58)

The RHS of eq.(57) becomes,

1

2
γabS

†
bSa =

1

2
uacγ̃c(u

†)cbS
†
bSa =

1

2
Lc γ̃c L

†
c (59)

enabling us to identify the Lindblad operators

Lc = Sauac (60)

Similarly, the antisymmetric matrix Dab on the LHS can be brought to a block diagonal form

through a unitary transformation,

UTDU = B (61)

where B is a block diagonal antisymmetric matrix with entries along the diagonal given by 2x2

antisymmetric matrices as follows:

B =

{(

0 b1

−b1 0

)

,

(

0 b2

−b2 0

)

...

(

0 bn

−bn 0

)}

Thus the LHS becomes,

Dabχbφa = UacBcdU
bdχbφa = ΦcBcdΦ̇

d (62)

where we have defined,

Φc = Uacφa and Φ̇d = U bdχb, since, χb = φ̇b (63)

12



The correspondence relation in equation (57) now takes the form

ΦcBcd Φ̇
d =

1

2
Lc γ̃c L

†
c (64)

One can in principle solve the above equation to relate the Lindblad operators to the constraints,

and vice versa. In the next section, we illustrate this in a specific example, viz., the case of two

coupled simple harmonic oscillators.

4 An example: Two coupled oscillators

The model we consider was studied earlier by Srednicki and Bombelli et al in the context of

the area law for black hole entropy [19],[18]. Their toy model describes two interacting simple

harmonic oscillators in one dimension with the Hamiltonian

H =
1

2
p21 +

1

2
k1x

2
1 +

1

2
p22 +

1

2
k2x

2
2 − k′x1x2 (65)

For simplicity, we choose unit masses for both the oscillators (m1 = m2 = 1). The first oscillator,

labeled by 1 is considered as the system, and the second oscillator, labeled by 2 is considered as

the bath.1

To derive the Lindblad equation, we begin by identifying the interaction Hamiltonian to be

HI = −k′x1x2 = κ(a + a†)⊗ (b+ b†) (66)

where,

κ = −k
′

2

√
ω0ωB; k1 = ω2

0; k2 = ω2
B

x1 =

√

ω0

2
(a+ a†), x2 =

√

ωB

2
(b+ b†)

In the interaction picture eq.(66) becomes,

HI(t) = κ
(

a(t) + a†(t)
)

⊗
(

b(t) + b†(t)
)

(67)

This equation is of the general form

HI(t) =
∑

i, k

λik Si(t)⊗Bk(t) (68)

1Usually the bath consists of an infinite number of oscillators. We approximate the bath by a single oscillator to

illustrate the main result of this paper. It is not uncommon to represent a bath by a single oscillator: In the Jaynes-

Cummings model for atom-radiation interaction, for example, the atom is approximated by a two-level system, and the

bath by a single mode of the electromagnetic radiation in a cavity [23].

13



where i = 1, 2 and k refers to the total number of bath oscillators. Since there is only one

bath oscillator we will henceforth suppress the index k. A direct comparison of the above two

equations gives

Si(t) =
∑

i′

pii′(t)Si′ = ai(t) = aie
iω0it (69)

where, a1 = a, a2 = a†, ω01 = ω0, ω02 = −ω0, and

B(t) = b(t) + b†(t) = q(t)(b+ b†) (70)

4.1 Dissipation Parameters, Lamb Shift Hamiltonian, and the Lindblad Equation

Let us split the Hamiltonian [eq.(67)] into two parts, the first one being,
∑

i κai(t)⊗ beiωBt, and

the second one
∑

i κai(t)⊗ b†e−iωBt.

Comparing the first part with eq.[(68),(69)], we get

λi = κ, pii′(t) = δii′e
iω0it, q(t) = eiωBt, Si′ = ai′ (71)

From eq.(44), by identifying the system index α ≡ i′ and interaction index β ≡ i, it follows

Γi′

i (τ) =
1

τ

∫ τ

0

dt pii′(t) q(t) = δii′ Γ(ω0i + ωB) (72)

where,

Γ(ωB) =
1

τ

∫ τ

0

eiωBtdt = e
iωBτ

2 sinc
(ωBτ

2

)

(73)

From eq.(48) the dissipation parameter corresponding to the first part is,

χ
(1)
i′j′(τ)

τ
= τ

∑

i;j

λiλ
⋆
j 〈bb†〉B Γi′

i (τ)
(

Γj′

j (τ)
)⋆

= τλi′λ
⋆
j′ 〈bb†〉B Γ(ω0i′ + ωB)Γ(−ω0j′ − ωB)‘

(74)

where,

〈b†b〉B = 〈bb†〉B − 1 =
1

eβωB − 1
(75)

Similarly, comparing the second part with eq.[(68),(69)], we get

λi = κ, pii′(t) = δii′e
iω0it, q(t) = e−iωBt, Si′ = ai′

Note that only q(t) changes to its complex conjugate, consistent with the fact that the first and

second parts are hermitian conjugates of each other. The corresponding dissipation parameter

14



for the second part is

Γi′

i (τ) = δii′ Γ(ω0i − ωB) (76)

χ
(2)
i′j′(τ)

τ
=τλ⋆i′λj′ 〈b†b〉B Γ(ω0i′ − ωB)Γ(−ω0j′ + ωB) (77)

The total dissipation parameter becomes from eq.(74) and eq.(77),

γij =
χ
(1)
ij (τ)

τ
+
χ
(2)
ij (τ)

τ

= τ |κ|2
(

〈bb†〉B Γ(ω0i + ωB)Γ(−ω0i − ωB) + 〈b†b〉B Γ(ω0i − ωB)Γ(−ω0i + ωB)

)

= τ |κ|2
[(

eβωB

eβωB − 1

)

Γ(ω0i + ωB)Γ(−ω0j − ωB) +

(

1

eβωB − 1

)

Γ(ω0i − ωB)Γ(−ω0j + ωB)

]

(78)

The individual components are given by the explicit expressions

γ11 = τ |κ|2
[(

eβωB

eβωB − 1

)

sinc2
(ω0 + ωB

2
τ
)

+

(

1

eβωB − 1

)

sinc2
(ω0 − ωB

2
τ
)

]

(79)

γ22 = τ |κ|2
[(

eβωB

eβωB − 1

)

sinc2
(ω0 − ωB

2
τ
)

+

(

1

eβωB − 1

)

sinc2
(ω0 + ωB

2
τ
)

]

(80)

γ12 = τ |κ|2sinc
(ω0 + ωB

2
τ
)

sinc
(ω0 − ωB

2
τ
)

coth
(βωB

2

)

eiω0τ (81)

γ21 = τ |κ|2sinc
(ω0 + ωB

2
τ
)

sinc
(ω0 − ωB

2
τ
)

coth
(βωB

2

)

e−iω0τ (82)

The Lamb-shift Hamiltonian can be found from eq.(49),

HLS =
i

2

∑

α

〈χ̇α0〉Sα − 〈χ̇α0〉⋆S†
α = 0. (83)

The latter equality follows from eq.(46)

〈χ̇α0〉 =
χα0(τ)

τ
=
∑

i

λi〈b〉B Γi′

i (τ) = 0, since 〈b〉B = 0. (84)

From eq.(69) we can identify the the system operators to be, S1 = a, S2 = a†. Now that we have

the dissipation parameters [eq.(79)-eq.(82)] we can write the Lindblad equation [eq.(41)] for the

reduced density matrix. For convenience we write, ρs(t) as ρ(t) and

ρ̇(t) = −i
[

HS, ρ(t)
]

+ γ11

(

aρ(t)a† − 1

2

{

a†a, ρ(t)
}

)

+γ12

(

aρ(t)a− 1

2

{

aa, ρ(t)
}

)

+ γ21

(

a†ρ(t)a†2 − 1

2

{

a†a†, ρ(t)
}

)

+γ22

(

a†ρ(t)a− 1

2

{

aa†, ρ(t)
}

)

(85)

where the square brackets represent commutators and the curly brackets represent anti-commutators,

following the standard convention.
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4.2 The Quantum Side of the Correspondence

The RHS of the equation stating the correspondence, eq.(57), which refers to the open quantum

system becomes,

1

2
γαβS

†
βSα =

1

2

[

γ11 a
†a + γ22 aa

† + γ12 a
2 + γ21 (a

†)2
]

(86)

The system’s creation and annihilation operators can be written as,

a =
1√

2mω0

(mω0x1 + ip1)

a† =
1√

2mω0

(mω0x1 − ip1)

Then eq.(86) becomes,

1

2
γαβS

†
βSα =

mω0

4
(γ11 + γ22 + γ12 + γ21)x

2
1 +

1

4mω0

(γ11 + γ22 − γ12 − γ21) p
2
1

+
i

4
(γ11 − γ22 + γ12 − γ21) x1p1 +

i

4
(−γ11 + γ22 + γ12 − γ21) p1x1

(87)

Now that we have the Lindblad equation [eq.(85)] for the system, we need to identify a suitable

set of constraints on the phase space of the two oscillator system (x1, p1, x2, p2) to realize the

classical-quantum correspondence. We tackle this issue in the next subsection.

4.3 The Classical Side of the Correspondence

Let us begin by imposing a constraint on the phase space by setting a general linear combination

of the phase space variables weakly to zero,

φ1 = αx1 + βp1 + γx2 + δp2 ≈ 0. (88)

Thus, the primary Hamiltonian is given by,

HP = HC + λφ1

=
1

2
p21 +

1

2
k1x

2
1 +

1

2
p22 +

1

2
k2x

2
2 − k′x1x2 + λ(αx1 + βp1 + γx2 + δp2)

(89)

Requiring the constraint φ1 ≈ 0, to be preserved in time,

φ̇1
!≈ 0

implies,

φ̇1 ≈ i
[

φ1, HP

]

≈ 0

⇒ (βk1 − δk′)x1 + (δk2 − βk′)x2 − αp1 − γp2 6≈ 0
(90)
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which gives us a secondary constraint,

φ2 = (βk1 − δk′)x1 + (δk2 − βk′)x2 − αp1 − γp2 (91)

The secondary constraint should be consistent as well,

φ̇2
!≈ 0

Thus, φ̇2 ≈ i
[

φ1, HP

]

≈ 0

⇒ (k′γ − k1α)x1 + (k′α− k2γ)x2 + (k′δ − k1β)p1 + (k′β − k2δ)p2

+ λ(−α2 − k1β
2 − γ2 + 2k′βδ − k2δ

2) 6≈ 0
(92)

We can solve for the Lagrange multiplier λ from the above equation which ensures the consistency

of φ2.

λ =
(k′γ − k1α)x1 + (k′α− k2γ)x2 + (k′δ − k1β)p1 + (k′β − k2δ)p2

α2 + k1β2 + γ2 − 2k′βδ + k2
(93)

In summary, we have two constraints in total and their Poisson bracket is a non-vanishing

constant. So both the constraints are second class and we can construct the anti-symmetric

matrix of Poisson brackets Cab and its inverse Dab out of them as given below:

Cab ≡
{

φa, φb

}

⇒ C =

(

0 η

−η 0

)

where, η = C12 = −C21 = α2 + k1β
2 + γ2 + 2k′βδ + k2δ

2 (94)

So,

Dab = (C−1)ab ⇒ D =

(

0 − 1
η

1
η

0

)

It follows that the classical side of the correspondence is given by

Dabχbφa = Dab φ̇bφa

= D12φ̇2φ1 +D21φ̇1φ2 =
1

η
φ2
2

=
1

η

[

(β2k21 − 2βδk1k
′ + δ2k′

2
)x21 + (β2k′

2 − 2βδk′
2
k2 + δ2k22)x

2
2 + α2p21 + γ2p22

+ (2αδk′ − 2αβk1)x1p1 + (2βγk′ − 2γδk2)x2p2 + (−2β2k1k
′ + 2βδk1k2

+ 2βδk′
2 − 2δ2k′k2)x1x2 + 2αγp1p2 + (2k′αβ − 2k2αδ)x2p1 + (−2k1βγ + 2k′γδ)x1p2

]

(95)

where we have used χb = φ̇b.
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4.4 The Classical-Quantum Correspondence

The classical-quantum correspondence follows from consistency requirements. Comparing the

above two expressions for the quantum (eq.87) and the classical sides (eq.95) evaluated above,

it follows that

γ = 0, δ =
k′

k2
β (96)

Then the constraints become

φ1 = αx1 + β
(

p1 +
k′

k2
p2

)

(97)

φ2 =
(

k1 −
k′

2

k2

)

βx1 − αp1 (98)

and eq.(95) becomes,

Dabχbφa =
1

η

[

(k′2 − k1k2)
2β2

k22
x21 + α2p21 +

k′
2 − k1k2

k2
αβ (x1p1 + p1x1)

]

(99)

with

η = α2 +
(

k1 −
k′

2

k2

)

β2 (100)

Finally, comparing the coefficients of x21, p
2
1, x1p1 and p1x1 [eq.(99)] with the RHS [eq.(87)], we

get

mω0

4
(γ11 + γ22 + γ12 + γ21) =

1

η

(k′2 − k1k2)
2β2

k22
(101)

1

4mω0
(γ11 + γ22 − γ12 − γ21) =

1

η
α2 (102)

i

4
(γ11 − γ22 + γ12 − γ21) =

1

η

k′
2 − k1k2

k2
αβ (103)

i

4
(−γ11 + γ22 + γ12 − γ21) =

1

η

k′
2 − k1k2

k2
αβ (104)

These equations relate the dissipation parameters in the reduced quantum system to the coeffi-

cients of the phase space variables in the constraints that define the classical constrained system.

We need to solve these equations for α, β in order to determine the constraints [eq.(97),(98)].

Evidently, only two of these equations are independent as we show below.

Note that eq.(103) and eq.(104) are not consistent unless γ11 = γ22. Therefore equating the

expressions for γ11 and γ22 in eq.(79) and eq.(80) leads to the following

sinc
(ω0 + ωB

2
τ
)

= ± sinc
(ω0 − ωB

2
τ
)

(105)
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which has two solutions viz. ωB >> ω0 or ω0 >> ωB. The bath, by definition, has a much larger

energy than the system. Thus it is sensible to choose ωB >> ω0. Note that this is consistent

with eq.(29).

In this limit, the dissipation parameters [eq.(79) - eq.(82)] become,

γ11 = γ22 = τ |κ|2coth
(βωB

2

)

sinc2(
ωBτ

2
) and,

γ12 = γ11e
iω0τ γ21 = γ11e

−iω0τ

(106)

and the four equations (101 - 104) become,

mω0γ11cos
2
(ω0τ

2

)

=
1

η

(k′2 − k1k2)
2

k22
β2 (107)

1

mω0

γ11sin
2
(ω0τ

2

)

=
1

η
α2 (108)

−γ11
2
sin(ω0τ) =

1

η

k′
2 − k1k2

k2
αβ (109)

Note that multiplying eq.(107) and eq.(108) we get the square of eq.(109),

γ211
4
sin2(ω0τ) =

(k′
2 − k1k2

k2

)2 β2α2

η2
(110)

It therefore suffices to solve the independent equations (107) and (108) for α and β. With η

given by eq.(100), we can compute α in terms of β from eq.(107),

α = ±
(

k′2 − k1k2

k2

[

1 +
1

c0

k′2 − k1k2

k2

]

)
1

2

β (111)

where

c0 = mω0γ11cos
2
(ω0τ

2

)

(112)

Similarly from eq.(108) we get,

α = ±
(

c1

c1 − 1

k′
2 − k1k2

k2

)

β (113)

where

c1 =
1

mω0
γ11sin

2
(ω0τ

2

)

(114)

So the constraint eq.(97) becomes,

φ1 = αx1 + β
(

p1 +
k′

k2
p2

)

(115)

19



where, α is given by eq.(111) and eq.(113). Choosing β = 1 without loss of generality, we find

four possible values of α and hence four ways of constructing the constraint φ1.

Having identified the constraints that are consistent with the correspondence principle, all

that remains to be done is to identify the corresponding Lindblad operators.

This is easily done by diagonalizing the dissipation matrix via eq.(58)

γ̃ =

(

2γ11 0

0 0

)

(116)

with,

u =
1√
2γ11

(

γ12 −γ12
γ11 γ11

)

The Lindblad operators can be found from eq.(60)

L1 =
1√
2

(

eiω0τa+ a†
)

; L2 =
1√
2

(

−eiω0τa+ a†
)

(117)

where,

S =
(

a, a†
)

From eq.(64) we can get the Lindblad operators in terms of the constraints

L1L
†
1 =

1

2γ11η
φ2
2 (118)

where, φ2, η and γ11 are given by eq.(98), eq.(100) and eq.(106) respectively. Note that L2

doesn’t appear in the above equation, and also in the Lindblad equation. This is because the

corresponding element in the diagonalized dissipation matrix [eq.(116)] γ̃22 = 0.

5 Conclusions and Outlook

In this paper, we have explored an intriguing connection between constrained classical mechan-

ical systems on the one hand, and open quantum systems on the other hand. We derived a

precise connection between the two by comparing the generalizations of the Liouville equation

which describes the time evolution of the system. The Lindblad operators which capture the

entanglement between the system and the bath in the quantum case, and are responsible for

dissipation, decoherence, etc., are mapped to the constraint equations in the classical case which

are responsible for the reduction of the classical phase space, and hence to a modified time

evolution equation involving Dirac brackets.
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We illustrated this novel correspondence in a concrete example, namely coupled harmonic

oscillators, studied earlier in the context of black hole entropy by several authors.

Although the correspondence we established may seem puzzling at first sight, it is no more

surprising than the many well-established connections between quantum mechanics and classical

mechanics viz. Bohr’s Correspondence Principle, the Ehrenfest Theorem, the JWKB approxi-

mation, Coherent States, and the Wigner distribution.

Our results shed new light on both open quantum systems and constrained classical systems.

Further investigations along these lines should enable us to study gauge theories from an open

quantum systems perspective and to understand open quantum systems from a geometric and

gauge theoretic perspective. We hope to report on these developments in the near future.
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