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Efficient quantum arithmetic circuits are commonly found in numerous quantum algorithms of practical significance. Till date, the
logarithmic-depth quantum adders includes a constant coefficient 𝑘 ≥ 2 while achieving the Toffoli-Depth of 𝑘 log𝑛 + O(1) . In this
work, 160 alternative compositions of the carry-propagation structure are comprehensively explored to determine the optimal depth
structure for a quantum adder. By extensively studying these structures, it is shown that an exact Toffoli-Depth of log𝑛 + O(1) is
achievable. This presents a reduction of Toffoli-Depth by almost 50% compared to the best known quantum adder circuits presented
till date. We demonstrate a further possible design by incorporating a different expansion of propagate and generate forms, as well
as an extension of the modular framework. Our paper elaborates on these designs, supported by detailed theoretical analyses and
simulation-based studies, firmly substantiating our claims of optimality. The results also mirror similar improvements, recently
reported in classical adder circuit complexity.
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1 INTRODUCTION

Quantum computers powered by quantum algorithms promise to offer problem-solving abilities that will far exceed
the most powerful supercomputers of today. These quantum algorithms rely on efficient arithmetic circuits to harness
their full potential. While the quantum computing space continues to bustle with diverse research activities, optimizing
quantum circuits remains a fundamental necessity. Quantum adders stand out as one of the key circuits in any quantum
computing system. For instance, Shor’s algorithm [10], which can factorize large integers exponentially faster than a
classical computer, relies on efficient quantum addition.

While adder circuits have been frequently explored in classical computing, they remain relatively less-chartered in the
quantum computing paradigm. Arithmetic circuits have been extensively explored in classical computing. Interestingly,
the Sklansky Tree [11] is widely applied for its minimal depth among all the other parallel prefix structures. However,
implementing this structure in the quantumworld presents significant challenges, primarily due to qubit non-copyability.
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This paper proposes a novel quantum adder based on the Sklansky Tree, which is verified as the optimal depth
structure among all the quantum adders. Throughout this research, we faced a series of challenges. Specifically, the
inability to copy qubits presented a barrier to the direct application of the prefix tree adders in the quantum world. To
address this issue, we developed a quantum repeat gate that helps to efficiently incorporate the different Prefix Tree
structures such as Sklansky [11] into the quantum world under specific constraints. The proposed repeat gate not only
contributes to the establishment of an optimal-depth quantum adder but also effectively addresses the problems arising
from qubit non-copyability in other specific quantum circuits.

Our primary contribution is the development of the optimal-depth quantum adder that achieves an remarkable
Toffoli-Depth of log𝑛 + O(1) for 𝑛 bit-sized additions. Obviously, it marks an important improvement over all the
previous quantum carry-lookahead adders based on the Brent-Kung tree, which required a minimum of 2 log𝑛 + O(1)
Toffoli-Depth. By conducting a thorough assessment involving Toffoli-Depth, Qubit Count, and Toffoli-Count, this
paper offers significant insights into the strengths and constraints of the quantum optimal-depth adder, enhancing the
continuous development of quantum computing, which parallels the development of classical adder analysis [5]. In
brief, the main contributions include:

• Thoroughly investigate the prefix tree and explore computation forms using different propagation and generation
techniques.

• Propose innovative designs for optimal Toffoli-Depth adders, optimal Toffoli-Depth Ling adder and optimal
Toffoli-Depth modular adder, achieving the peak performance in quantum addition circuits.

The rest of this paper is organized as follows: Section 2 describes the relevant previous research. In Section 3, we
introduce and compare the Sklansky Tree and other parallel prefix structures. Section 4 presents the overall design
of the proposed optimal Toffoli-Depth quantum adder, Ling expansion and modular adder expansion. Additionally,
Section 5 offers a detailed performance analysis, including a comparison with dominant quantum adder designs. We
conclude the paper and discuss future research directions in Section 6.

2 RELATEDWORK

We provide a comprehensive overview of the related literature in this section. In the quantum world, reducing the
Toffoli gate is a prominent trend [7][18] due to its time-intensive property. Among all the different types of quantum
adders, Carry-Lookahead Adders (CLAs) are specially designed to achieve reduced depth. In 2004, Draper et al. [3]
proposed a logarithmic-depth quantum carry-lookahead adder, reducing Toffoli-Depth from𝑂 (𝑛) to 𝑂 (log𝑛), resulting
in notable efficiency improvements. Subsequently, there was an obvious increase in the development of quantum CLAs.
For example, Takahashi et al. further optimized Draper’s work and designed some important quantum CLAs [12, 13].
Furthermore, Wang et al. [16] compared all the quantum CLAs and found Brent-Kung [1] to be the top choice for
implementing quantum adders.

However, it is interesting to note that, while majority of the quantum CLAs are based on the Brent-Kung structure,
the Kogge-Stone [6] and Slansky [11] architectures continue to have the lowest depth among all the parallel prefix
structures in theory. For example, compared to Brent-Kung’s 2 log𝑛 depth, the Kogge-Stone and Slansky structures
achieve n-bit addition with only half the depth. However, research on the quantum prefix tree structure is currently
limited. This is primarily due to the nature of the prefix tree structures which involve extensive bit-sharing operations.
In classical computing, multiple operations that share the same input bit are possible simultaneously. In the quantum
domain, due to the non-copyability of qubits, operations sharing the same input must be executed in separate time
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slots. As a result, previous works have favored the use of the Brent-Kung tree in quantum computing, considering it a
more convenient and cost-effective approach. Nonetheless, we have proposed a novel addition framework to solve this
qubit-sharing challenge within specific constraints. Following a thorough comparison, we have found that the Sklansky
Tree emerges as the optimal structure among all the quantum prefix tree adders.

In this paper, we propose an innovative quantum optimal-depth adder based on the Sklansky tree. Through systematic
comparison with other existing designs, our adder demonstrates a Toffoli-Depth of log(𝑛) + O(1), which significantly
outperforms the Toffoli-Depth of previous Brent-Kung-based adders. Consequently, our design has the potential to
become a noteworthy candidate for constructing large-scale quantum circuits, mirroring an advancement similar to
classical adder circuit design [5].

3 DESIGN CHOICES FOR DEPTH REDUCTION

In this section, we elaborate on the choices to be made with the primary objective of reducing Toffoli-Depth. As shown
in Figure 1, in this study, we explored a total of 160 design options. In Sections 3.1 and 3.2, we provided detailed
descriptions of the Prefix tree and the Propagation and Generation Computation methods, respectively. Regarding
addition strategies, there are two options: in-place addition and out-of-place addition, but this work primarily focuses
on the quantum out-of-place adder with lower Toffoli-Depth. In Section 4.2, we discuss the uncomputation strategy,
presenting a framework for an adder with uncomputation. Specifically, this framework is outlined by removing all
uncomputation steps, such as step 3, to obtain a version without uncomputation. In Section 5.1, two different Toffoli
strategies are proposed. Specifically, Strategy 1 involves only Toffoli gates, while Strategy 2 combines Toffoli gates with
logical-AND for further optimization of our circuits. For modular choices, we include both regular adders and modular
adders, with specific details discussed in Section 5.4.

160 Design Choices

Prefix Tree Propagation &
Generation Addition Strategy Uncomputation Toffoli Strategy Modular Choices

Kogge-Stone

Sklansky

Brent-Kung

Han-Carlson

Ladner-Fisher

Ling-based

Regular

Out-of-place

In-place

Without
Uncomputation

With
Uncomputation

Strategy 2
Toffoli + Logical-And

Strategy 1
Toffoli

Modular

Regular

5 x 2 x 2 x 2 x 2 x 2=160 Choices

Fig. 1. Design Choices.
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3.1 Choice of Prefix Tree

As shown in Table 1, the classical Sklansky tree and Kogge-Stone tree stand out as the most efficient parallel prefix
structures in terms of logical depth compared to other similar structures, such as the Brent-Kung tree and the Han-
Carlson tree.

Table 1. Comparison of dominant prefix trees for 𝑛-bit addition.

Prefix Tree Logical depth Operation nodes
Brent-Kung 2 log𝑛 − 2 2𝑛 − log𝑛 − 2
Sklansky log𝑛 (𝑛/2) ∗ log𝑛

Kogge-Stone log𝑛 𝑛 log (𝑛/2) + 1
Han-Carlson log𝑛 + 1 (𝑛/2) ∗ log𝑛
Ladner-Fisher log𝑛 + 1 3

4𝑛 − 1 + (𝑛/4) ∗ log𝑛

Among state-of-the-art logarithmic-depth quantum adders, the common approach is to use the Brent-Kung tree
[3, 16, 17]. However, it is well known in the classical adder that the Kogge-Stone and Slansky prefix trees can achieve
a significantly lower logical depth, i.e., log𝑛, reducing depth of the Brent-Kung tree by half. Given this substantial
difference in logical depth, it is surprising that these prefix trees were not studied earlier. One possible reason for the
same is the prefix tree incurs an overhead due to copy operation, which is inherently prevented in quantum domain
due to no-cloning theorem. However, this limitation can be bypassed through introduction of ancilla qubits with
initialization states as |1⟩ or |0⟩ and proper application of CNOT gate as shown in Figure 2.

Among the five prominent quantum prefix tree structures, Quantum Slansky (Figure 2(b)) stands out as particularly
advantageous. While it exhibits the lowest logical depth, Quantum Slansky also features significantly fewer CNOT
operations compared to Quantum Koggle Stone, which has an equivalent logical depth.

3.2 Choice of Propagate and Generate Computation

The efficiency of quantum carry-lookahead adder depends on the choice of propagate and Generate strategy. Here, two
common approaches are described as follows:

• Conventional Propagation and Generation. The conventional method employs standard logical operations
for carry propagation and generation as shown in formulas 1,2,3,4 and 5.

(𝐺0:0, 𝑃0:0) = (𝑔0, 𝑝0) (1)

(𝐺0:𝑖 , 𝑃0:𝑖 ) = (𝑔𝑖 , 𝑝𝑖 ) ◦ (𝐺0:𝑖−1, 𝑃0:𝑖−1) (2)

(𝑔𝑥 , 𝑝𝑥 ) ◦ (𝑔𝑦, 𝑝𝑦) = (𝑔𝑥 + 𝑝𝑥 · 𝑔𝑦, 𝑝𝑥 · 𝑝𝑦)

= (𝑔𝑥 ⊕ (𝑝𝑥 · 𝑔𝑦), 𝑝𝑥 · 𝑝𝑦) (3)

𝑐0 = 0 (4)

𝑐𝑖+1 = 𝑔𝑖 + 𝑝𝑖 · 𝑐𝑖 = 𝐺0:𝑖 (5)

It is widely used for its simplicity, providing a clear and straightforward construction of quantum carry-lookahead
adders.

• Ling-Based Propagation and Generation. This method is represented by the Quantum Ling adder [17], which
incorporates the Ling basis[8] into the dominant Quantum Carry Look-Ahead Adders(CLA) which mainly based
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(p8, g8) (p7, g7) (p6, g6) (p5, g5) (p4, g4) (p3, g3) (p2, g2) (p1, g1)

1 1 1 1 1 1

1 1 1 1

c8 c7 c6 c5 c4 c3 c2 c1

(a) Quantum Kogge-Stone.

(p8, g8) (p7, g7) (p6, g6) (p5, g5) (p4, g4) (p3, g3) (p2, g2) (p1, g1)

1 1

3

c8 c7 c6 c5 c4 c3 c2 c1

(b) Quantum Slansky.

(p8, g8) (p7, g7) (p6, g6) (p5, g5) (p4, g4) (p3, g3) (p2, g2) (p1, g1)

1 1

c8 c7 c6 c5 c4 c3 c2 c1

(c) Quantum Han-Carlson.

(p8, g8) (p7, g7) (p6, g6) (p5, g5) (p4, g4) (p3, g3) (p2, g2) (p1, g1)

1

c8 c7 c6 c5 c4 c3 c2 c1

(d) Quantum Ladner-Fischer.

(p8, g8) (p7, g7) (p6, g6) (p5, g5) (p4, g4) (p3, g3) (p2, g2) (p1, g1)

c8 c7 c6 c5 c4 c3 c2 c1

(e) Quantum Brent-Kung.

Fig. 2. Quantum Prefix Tree. Gray nodes in the prefix trees represent CNOT operations, with numbers in circles indicating the times
of CNOT operations.

on Brent-Kung structure. The Ling-based propagation and generation structure introduces a more complex
pre- calculation part, thereby incorporating an additional parallel calculation tree in the calculation process,
resulting in a reduction in depth cost. Compared to the traditional approach, the complexity of Toffoli-Depth can

5



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Wang et al.

be further reduced to 𝑂 (log 𝑛
2 ) from 𝑂 (log𝑛) by integrating the Ling expansion and utilizing a slightly different

pre-calculation structure.

4 THE DESIGN OF QUANTUM PREFIX TREE ADDER

In this section, a detailed description of our quantum prefix tree adders is provided.

4.1 Evaluation Metrics

The metrics used in this work are outlined as follows:

• Toffoli-Depth. It represents the number of computational layers that include Toffoli gates, related to the overall
time complexity. Toffoli-Depth can be converted to T-depth using specific decomposition methods, thereby
allowing for the standardized evaluation.

• Toffoli-Count. It measures the total count of Toffoli gates within the circuit, providing an estimate of the gate
complexity and quantum resource consumption. By using specific decomposition methods, it is convertible to
T-count for standardized comparisons.

• Qubit-Count. It denotes the total number of qubits required, which correlates with the size of the quantum
circuit.

These metrics enable a comprehensive evaluation of quantum circuit efficiency and practicality.

4.2 Quantum Prefix Tree Adder

As shown in Figure 8, we construct the Quantum prefix tree adder by combining the steps 1 to 4.

• Step 1. The initial propagation 𝑝𝑖 and generation 𝑔𝑖 are calculated using a single ancilla qubit and one Toffoli
gate.

|ai⟩ • • |ai⟩
|bi⟩ • |pi⟩
|0⟩ |gi⟩

Fig. 3. Quantum circuit for 𝑝𝑖 and 𝑔𝑖 calculation.

Consequently, Toffoli-Depth is 1, Toffoli-Count is 𝑛, and Qubit-Count is (3𝑛 + 1).

𝑝𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 (6)

𝑔𝑖 = 𝑎𝑖 · 𝑏𝑖 (7)

• Step 2.We implement both 𝑃 propagation and 𝐺 propagation (Figure 5) based on the corresponding quantum
prefix tree structures as shown in Figure 4.
The cost of this step depends on the prefix tree structure employed. Specifically, for the quantum Kogge-Stone
adder, this step involves a Toffoli-Depth of (1 + log𝑛), a Toffoli-Count of (𝑛 log𝑛 − 3

2𝑛 + 𝑛 log 𝑛
2 + 2), and an

extra Qubit-Count of (3𝑛 log𝑛 − 7
2𝑛 + 5).

6



Optimal Toffoli-DepthQuantum Adder Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(p4, g4) (p3, g3) (p2, g2) (p1, g1)

c4 c3 c2 c1

(a) Brent-Kung Prefix Tree.

(p4, g4) (p3, g3) (p2, g2) (p1, g1)

1

c4 c3 c2 c1

(b) Slansky Prefix Tree.

(p4, g4) (p3, g3) (p2, g2) (p1, g1)

1 1

c4 c3 c2 c1

(c) Kogge-Stone Prefix Tree.

Fig. 4. 4-bit Quantum Prefix Tree. Interestingly, the 4-bit Brent-Kung Prefix Tree is equivalent to the Han-Carlson and Ladner-Fischer
structures.

|px⟩ •
|gx⟩ •
|py⟩ • •
|gy⟩ |Gx:y⟩
|0⟩ |Px:y⟩

Fig. 5. Step 2.

• Step 3. In this step, 𝑃 and the copied 𝐺 are uncomputed based on different prefix tree structures. For example,
considering the Kogge-Stone tree, this process incurs a Toffoli-Depth of (log𝑛 − 1). The corresponding Toffoli-
Count is (2𝑛 log𝑛 − 7

2𝑛 + 5), and no extra qubit.
• Step 4. This step involves sum calculation and 𝑝𝑖 uncomputation without the employment of Toffoli gates.

|ci⟩ |si⟩
|ai⟩ • |ai⟩
|pi⟩ • |bi⟩

Fig. 6. Quantum circuit for computing s from p and c

Besides, here is no extra qubit required.

𝑠𝑖 = 𝑝𝑖 ⊕ 𝑐𝑖 (8)

𝑠𝑛+1 = 𝑐𝑛+1 (9)

• Additional Step. This step is exclusively designed for the quantum Kogge-Stone structure due to its intricate
CNOT operations, necessitating an extra step to ensure the complete uncomputation of all ancillary qubits.

7
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As illustrated in Figure 7, this step involves uncomputing all the copied 𝑔𝑖 using a Toffoli-Depth of 1 and a
Toffoli-Count of (𝑛 − 2). Similar to Step 4, this step does not require any ancilla.

|ai⟩ • |ai⟩
|bi⟩ • |bi⟩
|gi⟩ |0⟩

Fig. 7. Quantum circuit for Uncomputation (only for copied 𝑔𝑖 )

The overall structures are depicted in Figure 8, showcasing three distinct examples of 4-bit addition quantum circuits.
Interestingly, the equivalence of quantum Brent-Kung, Han-Carlson, and Ladner-Fischer structures is evident within
this proposed framework. The comprehensive cost analysis is provided in the subsequent section.

5 EXPERIMENTAL RESULTS AND DISCUSSION

In the previous section, we proposed the general framework and specific quantum implementations of several quantum
prefix tree adders. In this section, we will provide all the details of the results and discussions. Our investigation focuses
on the quantum out-of-place adder due to its direct reflection of the prefix tree’s influence and its lower Toffoli-Depth
compared to the quantum In-place adder. Conversely, while the In-place adder follows a similar workflow, it typically
involves more intricate supplementary steps, resulting in a deeper Toffoli-Depth.

5.1 Identifying the Optimal Depth Adder AmongQuantum Prefix Tree Adders

First of all, we conducted a comprehensive analysis of the costs associated with all proposed quantum prefix tree
adders to determine the optimal depth structure within the quantum realm. In this process, we introduced two distinct
strategies.

5.1.1 Strategy 1. Under Strategy 1, we exclusively employ the Clifford+Toffoli gate set to describe and evaluate the
entire quantum addition circuit. Remarkably, the Quantum Brent-Kung adder here is equivalent to the existing Draper
out-of-place adder[3].

Table 2. Performance analysis of different quantum adders utilizing Strategy 1.

Adder Toffoli-Count Toffoli-Depth Qubit-Count
Brent-Kung 5𝑛 − 3𝜔 (𝑛) − 3 ⌊log𝑛⌋ − 1 4 + ⌊log𝑛⌋ +

⌊
log 𝑛

3
⌋

4𝑛 + 1 − 𝜔 (𝑛) − ⌊log𝑛⌋
Sklansky 3

2𝑛 log𝑛 + 2 ⌈log𝑛⌉ − 𝑛 2 log𝑛 + 1 𝑛 + 𝑛 log𝑛 + ⌈log𝑛⌉ + 2
Kogge-Stone 3𝑛 log𝑛 + 𝑛 log 𝑛

2 − 3𝑛 + 5 2 log𝑛 + 2 3𝑛 log𝑛 − 𝑛
2 + 6

Han-Carlson 𝑛 + 3
2𝑛 log𝑛 − 2

⌊
𝑛
2
⌋

2 log𝑛 + 3 3
2𝑛 + 𝑛 log𝑛 −

⌊
𝑛
2
⌋
+ 3

Ladner-Fisher 13𝑛
4 + 3𝑛 log𝑛

4 − 2
⌊
𝑛
2
⌋
− 3 2 log𝑛 + 3 3𝑛 + 𝑛 log𝑛

2 −
⌊
𝑛
2
⌋
+ 1

By applying strategy 1, the corresponding costs are detailed in Table 2. Unfortunately, it is obvious that compared
with the quantum Brent-Kung Prefix Tree adder, the alternative prefix tree structures we proposed do not demonstrate
significant advantages, especially concerning the Toffoli-Depth.
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|c0⟩ |s0⟩
|a0⟩ • • • |a0⟩
|b0⟩ • • • • |b0⟩
|0⟩ • |s1⟩
|a1⟩ • • • |a1⟩
|b1⟩ • • • • • |b1⟩
|0⟩ • • |s2⟩
|a2⟩ • • • |a2⟩
|b2⟩ • • • • • |b2⟩
|0⟩ • |s3⟩
|a3⟩ • • • |a3⟩
|b3⟩ • • • • • |b3⟩
|0⟩ |s4⟩
|0⟩ |0⟩
|0⟩ • |0⟩

(a) Brent-Kung Quantum Adder.

|c0⟩ |s0⟩
|a0⟩ • • • |a0⟩
|b0⟩ • • • • |b0⟩
|0⟩ • |s1⟩
|a1⟩ • • • |a1⟩
|b1⟩ • • • • • |b1⟩
|0⟩ • • • |s2⟩
|a2⟩ • • • |a2⟩
|b2⟩ • • • • • |b2⟩
|0⟩ •
|a3

|s3⟩
⟩ • • • |a3⟩

|b3⟩ • • • • • •
|0⟩
|0⟩ • •
|0⟩
|0⟩
|0⟩ •

|b3⟩
|s4⟩
|0⟩
|0⟩
|0⟩
|0⟩

(b) Slansky Quantum Adder.

|c0⟩ |s0⟩
|a0⟩ • • • |a0⟩
|b0⟩ • • • • |b0⟩
|0⟩ • • |s1⟩
|a1⟩ • • • • |a1⟩
|b1⟩ • • • • • • • |b1⟩
|0⟩ • • |s2⟩
|a2⟩ • • • • |a2⟩
|b2⟩ • • • • • • • • |b2⟩
|0⟩ • |s3⟩
|a3⟩ • • • |a3⟩
|b3⟩ • • • • • |b3⟩
|0⟩ |s4⟩
|0⟩ • • |0⟩
|0⟩ • |0⟩
|0⟩ • • |0⟩
|0⟩ • |0⟩
|0⟩ |0⟩
|0⟩ • |0⟩
|0⟩ • |0⟩

•

(c) Kogge-Stone Quantum Adder.

Fig. 8. 4 bit Quantum Adder Examples. The dashed lines divide the entire circuit into five parts according to steps 1 to 4. In the first
step, purple represents the calculation for initial propagation and generation. In the second step, red represents the copy operation,
orange represents the first layer of propagation, and green and blue represent the first and the rest layers of generation, respectively.
In the third step, orange represents propagation uncomputation, and red represents the uncomputation of the initial propagation
copy 𝑝𝑖 . Next, pink represents the operations of the fourth step. In the final step of Kogge-Stone Adder, we perform uncomputation
on all the initially copied 𝑔𝑖 , represented in red.
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5.1.2 Strategy 2. In 2018, Gidney proposed a more cost-effective logical AND structure for implementing a pair of
Toffoli gates [4]. By utilizing this design, Strategy 2 aims to further optimize quantum adders based on Strategy 1.
Specifically, for the proposed quantum prefix tree adder framework, only the P propagation involves Toffoli pairs.
Hence, we utilize the logical AND structure for all Toffoli gates in both the P computation and P uncomputation stages.
For other unpaired Toffoli gates, we still use Clifford+Toffoli gate set to describe them.

x • x • T †

y • y = • T †

xy |T ⟩ • T • H S

(a) Computation

x • x •
y • y = Z

xy H •
(b) Uncomputation

Fig. 9. Gidney’s Logical-And structure.

Under Strategy 2, the respective costs can be found in Table 3. It is evident that all proposed designs significantly
outperform the original Quantum Brent-Kung adder in terms of Toffoli-Depth. Particularly, the Quantum Slansky adder
exhibits the quantum-optimal Toffoli-Depth, which is only 𝑙𝑜𝑔(𝑛) + 1.

Table 3. Performance analysis of different quantum adders utilizing Strategy 2.

Adder Extra T Count Toffoli Count Extra T Depth Toffoli Depth Qubit Count
Brent-Kung 8𝑛 − 4 log𝑛 − 8 − 4

⌊
𝑛
2
⌋

2𝑛 − log𝑛 − 2 2 2 log𝑛 − 1 4𝑛 + 1 − 𝜔 (𝑛) − ⌊log𝑛⌋
Sklansky 2𝑛 log𝑛 − 4𝑛 + 4 ⌈log𝑛⌉) 𝑛 log𝑛

2 2 log𝑛 + 1 𝑛 + 𝑛 log𝑛 + ⌈log𝑛⌉ + 2
Kogge-Stone 8𝑛 log𝑛 − 14𝑛 + 20 𝑛 log𝑛 − 1 2 log𝑛 + 2 3𝑛 log𝑛 − 𝑛

2 + 6
Han-Carlson 2𝑛 log𝑛 − 4

⌊
𝑛
2
⌋ 𝑛 log𝑛

2 2 log𝑛 + 2 3
2𝑛 + 𝑛 log𝑛 −

⌊
𝑛
2
⌋
+ 3

Ladner-Fisher 3𝑛 − 4 + 𝑛 log𝑛 − 4
⌊
𝑛
2
⌋ 3𝑛

4 − 1 + 𝑛 log𝑛
4 2 log𝑛 + 2 3𝑛 + 𝑛 log𝑛

2 −
⌊
𝑛
2
⌋
+ 1

After comparing all the proposed designs, we confirm that the Quantum Slansky + Strategy 2 is the optimal depth
design choice in this work. This is attributed to its minimal Toffoli-Depth and fewer CNOT operations involved,
especially considering that Slansky only requires P-CNOT operations during CNOT operations, without the need for
G-CNOT operations.

5.2 Comparative Analysis: Optimal Depth Adder Vs. ExistingQuantum adders

In this subsection, we assess our proposed Optimal Depth Adder against existing quantum adder designs, as detailed in
Table 4.

The proposed optimal Toffoli-Depth adder achieves the lowest Toffoli-Depth in the quantum computing, with a
harmonious balance in Toffoli Count and Qubit Count. Specifically, our optimal depth adder with strategy 2 significantly
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Table 4. Performance analysis of different quantum adders.
The formula for 𝜔 (𝑛) is 𝜔 (𝑛) = 𝑛 − ∑∞

𝑦=1
⌊
𝑛
2𝑦

⌋
and 𝑟 represents the radix, with a range of 2 < 𝑟 ≤ 𝑛.

Adder Year Toffoli Count Toffoli Depth Qubit Count

VBE RCA [14] 1995 4𝑛 − 2 4𝑛 − 2 3𝑛 + 1

Cuccaro RCA [2] 2004 2𝑛 − 1 2𝑛 − 1 2𝑛 + 2

Draper In-place CLA [3] 2004 10𝑛 − 3𝜔 (𝑛) − 3𝜔 (𝑛 − 1)
−3 ⌊log𝑛⌋ − 3 ⌊log(𝑛 − 1)⌋ − 7

8 + ⌊log𝑛⌋ + ⌊log(𝑛 − 1)⌋
+
⌊
log 𝑛

3
⌋
+
⌊
log 𝑛−1

3
⌋ 4𝑛 − 𝜔 (𝑛) − ⌊log𝑛⌋

Draper Out-of-place CLA [3] 2004 5𝑛 − 3𝜔 (𝑛) − 3 ⌊log𝑛⌋ − 1 4 + ⌊log𝑛⌋ +
⌊
log 𝑛

3
⌋

4𝑛 + 1 − 𝜔 (𝑛) − ⌊log𝑛⌋

Takahashi Adder [12] 2008 28𝑛 30 log𝑛 2𝑛 + 3𝑛
log𝑛

Takahashi RCA [13] 2009 2𝑛 − 1 2𝑛 − 1 2𝑛 + 1

Takahashi Combination [13] 2009 7𝑛 18 log𝑛 2𝑛 + 3·𝑛
log𝑛

Wang RCA[15] 2016 𝑛 𝑛 3𝑛 + 1

Gidney RCA[4] 2018 2𝑛 − 2 𝑛 3𝑛 − 1

Gayathri RCA[9] 2021 𝑛 𝑛 3𝑛 + 1

Higher Radix Adder [16] 2023
8𝑛 − 𝑛

𝑟 − (𝑛 − 1) (mod 𝑟 )

−3𝜔 ( 𝑛𝑟 ) − 3 log𝑛 + 3 log 𝑟 − 3

4 log𝑛 + 3𝑟 − 2 log 𝑟

−2 log 3𝑟 + 2 log(𝑟 − 2) + 2

4𝑛 − log𝑛 + 𝑛
𝑟

−𝜔 ( 𝑛𝑟 ) + log 𝑟 − 1

Quantum Ling Adder [17] 2023 13𝑛 − 6𝜔 ( 𝑛2 ) − 6⌊log 𝑛
2 ⌋ − 14 9 + 2⌊log 𝑛

2 ⌋ + 2⌊log 𝑛
6 ⌋ 12𝑛 − 6𝜔 ( 𝑛2 ) − 6⌊log 𝑛

2 ⌋ − 10

Optimal Depth Adder+ Strategy 1 − 3
2𝑛 log𝑛 + 2 ⌈log𝑛⌉ − 𝑛 2 log𝑛 + 1 𝑛 + 𝑛 log𝑛 + ⌈log𝑛⌉ + 2

Optimal Depth Adder+ Strategy 2 − 𝑛 log𝑛
2 log𝑛 + 1 𝑛 + 𝑛 log𝑛 + ⌈log𝑛⌉ + 2

reduces the computational time by halving the Toffoli-Depth to log𝑛 + 1, a roughly 50% improvement over the best
existing quantum adders. Following closely is our optimal adder with strategy 1, achieving a competitive Toffoli-Depth
of 2 log𝑛 + 1.

Interestingly, Figure 10 illustrates that the quantum adders with the lowest Toffoli-Depth prior to our work, specifically
the Draper In-place and Out-of-place CLAs[3] and the Quantum Ling adder[17], demonstrate a higher Toffoli-Depth
compared to our designs. Nevertheless, despite these existing work have slightly lower Toffoli-Count and Qubit-Count
compared to our adders, they do not compensate for the longer time cost associated with their higher Toffoli-Depth.

Overall, our designs substantially enhance Toffoli-Depth while wisely managing quantum resources, thereby repre-
senting a considerable enhancement in both the efficiency and practicality over current quantum adders.

5.3 Extension 1: Ling-based Optimal Toffoli-Depth adder

Inspired by the innovative quantum Ling adder proposed by Wang et al. [17], we introduce a novel quantum Ling
structure based on the prefix tree adders proposed in this paper. In Figure 11, a Ling-based adder using the quantum
Kogge-Stone is presented as an example, which introduces two parallel prefix computation trees based on the quantum
Kogge-Stone computation tree.

11
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Fig. 10. Comparative Cost Analysis of Quantum Optimal Toffoli-Depth Adder and Other top 3 ProminentQuantum CLA Adders.
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Fig. 11. Kogge-Stone Prefix Tree using Ling Expansion.

This design significantly reduces the Toffoli-Depth of the quantum Ling adder by half. However, this improvement is
accompanied by an acceptable increase in Toffoli-Count and Qubit-Count. Specifically, the Toffoli-Depth of our Ling-
based Kogge-Stone adder is 2 log 𝑛

2 + 8, reflecting innovative adaptations in generation and propagation computations,
thereby significantly optimizing the depth of the initial quantum Ling adder [17]. This proposed extension structure
demonstrates commendable performance in enhancing the efficiency of Ling-based quantum adders, thereby confirming
the flexibility and portability of the adders proposed in our paper.

Table 5. Performance analysis of Ling-based quantum Kogge-Stone adders utilizing Strategy 1.

Adder Toffoli Count Toffoli Depth Qubit Count
Quantum Ling Adder [17] 13𝑛 − 6𝜔 ( 𝑛2 ) − 6⌊log 𝑛

2 ⌋ − 14 9 + 2⌊log 𝑛
2 ⌋ + 2⌊log 𝑛

6 ⌋ 12𝑛 − 6𝜔 ( 𝑛2 ) − 6⌊log 𝑛
2 ⌋ − 10

K-S 3𝑛 log𝑛 + 𝑛 log 𝑛
2 − 3𝑛 + 5 2 log𝑛 + 2 3𝑛 log𝑛 − 𝑛

2 + 6
K-S+ Ling 3𝑛 log𝑛 + 𝑛 4 log𝑛 + 6 3𝑛 log𝑛 + 2𝑛 log 𝑛

2 + 𝑛
2 + 3

Table 6. Performance analysis of Ling-based quantum Kogge-Stone adders utilizing Strategy 2.

Adder Extra T Count Toffoli Count Extra T Depth Toffoli Depth Qubit Count
K-S 8𝑛 log𝑛 − 14𝑛 + 20 𝑛 log𝑛 − 1 2 log𝑛 + 2 3𝑛 log𝑛 − 𝑛

2 + 6
K-S+Ling 4𝑛 log𝑛 − 8𝑛 + 8 2𝑛 log𝑛 − 4𝑛 + 4 2 2 log𝑛 + 8 3𝑛 log𝑛 + 2𝑛 log 𝑛

2 + 𝑛
2 + 3

However, as shown in Table 5 and Table 6, we also find that replacing traditional propagation and generation with
Ling base is not beneficial for the prefix tree adders we propose. This is because the Ling structure introduces OR logic,
requiring two Toffoli gates at each calculation node for propagation and generation. Overall, using Ling base almost
doubles the Toffoli-Depth of the prefix tree adders.

5.4 Extension 2: Optimal Toffoli-depth Modular Adder

In this extension, we utilized the VBE modular addition framework mentioned in the paper [14], which incorporates
the quantum prefix tree adders proposed in this paper, as illustrated in Figure 12.
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|N⟩ /n × × |N⟩
|a⟩ /n

QPA

×
QPS

0

QPA

0 ×
QPS QPA

|a⟩
|b⟩ /n |S0:n⟩

|bh⟩ /1 • • |Sn+1⟩
|t⟩ /1 • • |t⟩

Fig. 12. Quantum VBE Modular Addition Framework [14]. Besides, the ’Set 0’ gate in the framework can be implemented using
several CNOTs.

Our quantum modular addition framework primarily contains two important parts: the quantum prefix tree adder
and the quantum prefix tree subtractor, with the latter being an altered version of the former. As illustrated in Figures
13(a) and 13(b), these two structures are very similar to each other.

|a⟩ /n

QPA

|a⟩
|b⟩ /n+1 |S⟩ = |a+ b⟩

|ancillae⟩
(a) Quantum Prefix Tree Adder

|a⟩ /n

QPS

|a⟩
|b⟩ /n+1 |S⟩ = |a− b⟩

|ancillae⟩
(b) Quantum Prefix Tree Subtractor

Fig. 13. Two important sub-modules of the proposed modular addition framework.

The implementation of the quantum subtractor is based on certain modifications to the quantum adder, as indicated
by Equation (10). Specifically, we begin to take the bit-wise complement of 𝑎, then add 𝑏 to obtain the result 𝑎′ + 𝑏.
Finally, we take the two’s complement of the qubits of 𝑎 and the output qubits. Remarkably, this process can be easily
accomplished using a series of quantum NOT gates. Hence, the cost of the quantum prefix tree subtractor is very close
to the cost of the corresponding adder.

𝐴 − 𝐵 = (𝐴′ + 𝐵)′ (10)

In Table 7, we demonstrate the performance of our designed modular adders compared to other existing quantum
modular adders. Our designs exhibits superior Toffoli-Depth, particularly the Quantum Sklansky with Strategy 2 design
achieving an optimal Toffoli-Depth of 5 log𝑛 + 5. However, this achievement comes at the cost of a higher Qubit-Count
and Toffoli-Count.

Above all, our design achieves optimal depth in the quantum world, maintaining an exceptionally low Toffoli-Depth.
This accomplishment provides a crucial foundation for efficient arithmetic in quantum computing, unlocking new
possibilities for high-performance quantum algorithms and enhancing the overall scalability and practicality of quantum
computing.

6 CONCLUSION

In conclusion, this paper has presented a novel architecture for enhancing the efficiency of quantum adders. By
integrating the different prefix tree into the quantum domain, we have achieved a groundbreaking optimal Toffoli-Depth
quantum adder, which marks a parallel to the development of classical adder analysis. Furthermore, our work includes
a significant quantum Ling expansion, which substantially improves the quantum Ling adder’s performance by using
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Table 7. Performance analysis of different VBE-based quantum modular adders.
The formula for 𝜔 (𝑛) is 𝜔 (𝑛) = 𝑛 − ∑∞

𝑦=1
⌊
𝑛
2𝑦

⌋
, where 𝑛 denotes the bit-width of the addend.

Modular Adder Year Toffoli Count Toffoli Depth Qubit Count

VBE[14] 1995 20𝑛 − 10 20𝑛 − 10 4𝑛 + 2

Cucarro [2] 2004 10𝑛 − 5 10𝑛 − 5 3𝑛 + 3

Draper In-place [3] 2004 50𝑛 − 15𝜔 (𝑛) − 15𝜔 (𝑛 − 1)
−15 ⌊log𝑛⌋ − 15 ⌊log(𝑛 − 1)⌋ − 35

40 + 5 ⌊log𝑛⌋ + 5 ⌊log(𝑛 − 1)⌋
+5

⌊
log 𝑛

3
⌋
+ 5

⌊
log 𝑛−1

3
⌋ 5𝑛 − 𝜔 (𝑛) − ⌊log𝑛⌋ + 1

Brent-Kung+Strategy 1 - 25𝑛 − 15𝜔 (𝑛) − 15 ⌊log𝑛⌋ − 5 20 + 5 ⌊log𝑛⌋ + 5
⌊
log 𝑛

3
⌋

5𝑛 + 2 − 𝜔 (𝑛) − ⌊log𝑛⌋

Sklansky+Strategy 1 - 15
2 𝑛 log𝑛 + 10 ⌈log𝑛⌉ − 5𝑛 10 log𝑛 + 5 2𝑛 + 𝑛 log𝑛 + ⌈log𝑛⌉ + 3

Kogge-Stone+Strategy 1 - 15𝑛 log𝑛 + 5𝑛 log 𝑛
2 − 15𝑛 + 25 10 log𝑛 + 10 3𝑛 log𝑛 + 𝑛

2 + 7

Han-Carlson+Strategy 1 - 5𝑛 + 15
2 𝑛 log𝑛 − 10

⌊
𝑛
2
⌋

10 log𝑛 + 15 5
2𝑛 + 𝑛 log𝑛 −

⌊
𝑛
2
⌋
+ 4

Ladner-Fisher+Strategy 1 - 65𝑛
4 + 15𝑛 log𝑛

4 − 10
⌊
𝑛
2
⌋
− 15 10 log𝑛 + 15 4𝑛 + 𝑛 log𝑛

2 −
⌊
𝑛
2
⌋
+ 2

Brent-Kung+Strategy 2 - 10𝑛 − 5 log𝑛 − 10 10 log𝑛 − 5 5𝑛 + 2 − 𝜔 (𝑛) − ⌊log𝑛⌋

Sklansky+Strategy 2 - 5𝑛 log𝑛
2 5 log𝑛 + 5 2𝑛 + 𝑛 log𝑛 + ⌈log𝑛⌉ + 3

Kogge-Stone+Strategy 2 - 5𝑛 log𝑛 − 5 5 log𝑛 + 10 3𝑛 log𝑛 + 𝑛
2 + 7

Han-Carlson +Strategy 2 - 5𝑛 log𝑛
2 5 log𝑛 + 10 5

2𝑛 + 𝑛 log𝑛 −
⌊
𝑛
2
⌋
+ 4

Ladner-Fisher+Strategy 2 - 15𝑛
4 − 5 + 5𝑛 log𝑛

4 5 log𝑛 + 10 4𝑛 + 𝑛 log𝑛
2 −

⌊
𝑛
2
⌋
+ 2

our innovative structure. Moreover, our work also incorporates a modular addition extension. The proposed quantum
optimal depth adder achieves a Toffoli-Depth of log𝑛 + O(1), which represents a significant improvement over all
the previous quantum adders, which had a Toffoli-Depth of at least 2 log𝑛 + O(1). Our work marks a significant
advancement in the field of quantum computing, addressing the challenge of depth optimization in the area of quantum
addition.

In future, several research directions hold substantial promise. For instance, one of these directions is exploring
the optimal adder structure on the real quantum computers. Moreover, Quantum Error Correction (QEC) also plays a
crucial role in improving the adder’s fault tolerance and reliability.

CODE AVAILABILITY

The relevant code will be available as a public repository online upon this paper’s acceptance.
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