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Abstract

Exploring the time-dependent characteristics of AB-type effects holds significant importance in contemporary physics and its prac-
tical applications. Here, we delve into the investigation of time-dependent topological effects emerging in AB-type experimental
setups. We first analyze the topological effects on magnetic dipoles moving in closed trajectories around the time-varying magnetic
field source solenoid, then on electrical dipoles around a time-varying electric field source in 2+1 dimensions without any approxi-
mation. Last, we discuss the characteristics of the topological effects by considering the identity and dualities between phases from
an integrated perspective.

Keywords: Time-Dependent Aharonov Bohm Effect, Aharonov-Casher Effect, He-McKellar-Wilkens Phase, Topological Phases

1. Introduction

Quantum mechanical topological effects are elucidated as
the introduction of the vector or vector potential-like physical
quantities as complex phase factors into the wave functions of
particles moving along the closed trajectories around singular-
ities created by electromagnetic field sources without the ef-
fects of the classical forces. One of the pioneering and first
examples is the Aharonov-Bohm (AB) phase, which demon-
strates the significance of electromagnetic potentials in quan-
tum theory [1–3]. This complex phase exerts a measurable
impact on the interference pattern of wave functions of electric
charges reaching a screen via two distinct trajectories around an
infinitely long solenoid as a static magnetic field source. Sub-
sequently, various topological effects have emerged by consid-
ering Maxwell’s dualities. These include the Aharonov-Casher
(AC) effect arises from the motion of magnetic dipoles around
a linear electric charge distribution [4; 5], the He-McKellar-
Wilkens (HMW) effect from the motion of electric dipoles
around a linear magnetic charge distribution [6–8], and the
dual AB effect (DAB) from the movement of magnetic charges
around an electric field tube [9; 10].

In recent years, studies on AB-type effects have focused on
investigating the time dependence of the effect. Singleton et
al. discussed two covariant generalizations of the AB effect
with time-dependent flux, noting that the AB phase shift is can-
celed by the phase shift of the external electric field associ-
ated with the Lorentz force [11], Bright et al. explored the
time-dependent (TD) AB effect for non-Abelian gauge fields
revealing cancellations between phase shifts from non-Abelian
electromagnetic fields [12], Ababekri et al. examined the
non-relativistic behavior of particles with electric dipoles on
noncommutative space uncovering quantum phase corrections
[13], Singleton et al. developed a covariant expression for
the AC phase, investigating its interaction with electromag-
netic fields [14], Jing et al. re-examined the AB effect in the

background of a time-dependent vector potential, highlighting
alterations in interference patterns [15], Ma et al. explored
noncommutative corrections to the TD-AB effect by revealing
three types of corrections and proposing dimensionless quan-
tities for parameter extraction based on measured phase shifts
[16], Choudhury et al. discovered a frequency-dependent AB
phase shift [17], Jing et al. revisited the TD-AB effects in
noncommutative space-time, finding no noncommutative cor-
rections to the AB effects for both cases up to the first order
of the noncommutative parameter [18], Wang et al. investi-
gated the TD-HMW effect in noncommutative space by con-
firming gauge symmetry, and time-dependent AC effect and its
corrections due to spatial noncommutativity on noncommuta-
tive space [19; 20], Saldanha proposed an electrodynamic AB
scheme challenging the topological nature of the phase [21],
and Wakamatsu et al. analyzed the AB effect’s interaction en-
ergy and its gauge invariance [22].

In this letter, we study the TD-AB type topological effects of
time-varying electromagnetic fields on dipoles in 2+1 dimen-
sions. We begin with a TD solenoidal magnetic field oriented
in the z direction, and the resulting rotational electric field ap-
pearing in the xy plane. To ensure that particles are not subject
to classical forces, we use magnetic dipole carrier chargeless
particles. Accounting for the relativistic electromagnetic effects
arising from the motion of the particles, we give direct calcula-
tions for appearance of a vector-potential-like physical quantity
which enters as a complex observable phase in the wave func-
tions of the particles. We conclude that the resulting phase is
topological. Accordingly, we emphasize that, although there is
no direct interaction, the phase involves the time-rate change of
the energy term, and the interference pattern can be controlled
by means of a changing magnetic field (i.e. flux). Last, we con-
sider the fully dual of this problem and show the topological
effects on electric dipole moment carrier chargeless particles
moving around a time-varying electric field.
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2. Time-Dependent AB-type Effect on Magnetic Dipoles

In an AB-type experimental setup, as a time-dependent mag-
netic field source solenoid oriented in the z-direction is placed
just behind the double-slits (See Fig. 1). The solenoid with
the radius of a, extends to infinity to prevent the presence of
magnetic fields in the region where the particles are allowed to
move. In accordance with the nature of AB-type effects and to
ensure that the particles are not subject to a classical Lorentz
force, we use magnetic dipole moment carrier chargeless parti-
cles. In this scenario, the particles are expected to remain un-
affected, as there is no magnetic field in the region where the
particles are allowed to move (∇ × Er>a = 0) from the classical
perspective. Nevertheless, as the particles are in motion, rela-
tivistic electromagnetic effects arise, and the wave functions of
the particles acquire a measurable geometric/topological phase.
Accordingly, it is appropriate to start with the relativistic La-
grangian describing the motion of magnetic dipoles under elec-
tromagnetic fields,

L = ψ
(
iγµ∂µ − m +

µ

2
σµνFµν

)
ψ (1)

and the corresponding equations of motion derived from this
Lagrangian: (

iγµ∂µ − m +
µ

2
σµνFµν

)
ψ = 0 (2)

Due to the symmetry of the problem, there is invariance un-
der spatial translations along the z-direction, making an ex-
amination in 2+1 dimensions sufficient for the emergence of
quantum mechanical effects. In 2+1 dimensional spacetime
(+,-,-), gamma matrices change from their well-known four-
dimensional representations. Therefore, the σµν term in equa-
tion (2) needs to be redefined. With the selection of the free
Dirac Hamiltonian HD,

HD = αx px + αy py + mβ (3)

the gamma matrices can be defined in two-dimensional space
in two different representations satisfying the Clifford algebra
(s = ±1) for the up and down spin polarization states:

αx = σx β = γ0 = σz γ1 = βαx = iσy

αy = sσy {γ0, γi} = 0 γ2 = βαy = −isσx
(4)

Hence, by considering the magnetic field on the plane is B = 0,
and the transformation Fµν = ηµαFαβηβν, the σµνFµν term can
be written,

σµνFµν = 2σ0iF0i + σ
i jFi j = 2iαiEi = 2i

(
σxEx + sσyEy

)
(5)

Here, σ0i = iαi, σi j = σk. Now, one can multiply (2) by γ0

from the left after seperating the space and time components of
the covariant derivative, it becomes,

[
mβ + αx px + αy py + sµ

(
αyEx − αxEy

)]
ψ = i∂tψ (6)

Figure 1: Schematic representation of moving magnetic dipoles around a time-
dependent magnetic field source solenoid with the radius a in AB-type setup.

In this case, it is evident that the expression inside the paren-
theses on the right-hand side is the total Hamiltonian (H) of the
system.

H =
[
mβ + αx px + αy py + sµ

(
αyEx − αxEy

)]
(7)

Thus, by considering (3), the interaction Hamiltonian ∆H is as
follows,

∆H = sµ
(
αyEx − αxEy

)
(8)

According to the current configuration, in order to ensure com-
putational simplicity and confining the electric field to two di-
mensions, we define a new electric field Ẽ(r, t) = E × ẑ =
x̂Ey−ŷEx. In this case, confined electric field vector can be writ-
ten in terms of its components in the form

(
Ẽx, Ẽy

)
=

(
Ey,−Ex

)
.

Thus, the interaction Hamiltonian can be rearranged as in the
form of,

∆H = −sµ
(
αxẼx + αyẼy

)
= −sµα⊥ · Ẽ (9)

The current stage is crucial as it allows the total Hamiltonian to
be expressed as the sum of the free and interaction terms:

[HD + ∆H]ψ = i∂tψ (10)

In order to eliminate the interaction term ∆H, a series of prepa-
rations are required. By using the definition p = −i∇, we ob-
tain: [

mβ − iα⊥ ·
(
∇ − isµẼ

)]
ψ = i∂tψ (11)

Here, the term sµẼ is vector potential-like quantity for mag-
netic dipoles ((Ã = sµẼ)) [23–25]. Furthermore, in the Lorentz
gauge (−∇ · Ã = ∂tϕ̃), it gives rise to a scalar potential-like term
(ϕ̃ = sµ⃗·B(t)). In this context, considering the motion of charge-
less particles in an electromagnetic field, by incorporating the
transformations of the time (p0) and spatial (p) components of
momentum in 2+1 dimensional spacetime:

p0 −→ p0 − sµ⃗ · B
p −→ p − sµẼ (12)
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we can achieve the covariant derivatives under this configura-
tion:

i∂t −→ i∂t − sµ⃗ · B = i[∂t + isµ⃗ · B] = iD̃t

−i∇ −→ −i∇ − sµẼ = −i[∇ − isµẼ] = −iD̃
(13)

Thus, there is no magnetic field presence in the region where the
particles are allowed to move, following expression is obtained
for moving dipoles,[

mβ − iα⊥ · D̃
]
ψ = iD̃tψ (14)

The form covariance of the Dirac equation requires the invari-
ance of ψ: [

mβ − iα⊥ · D̃′
]
ψ′ = iD̃′tψ

′ (15)

Therefore, ψ undergoes a unitary transformation as ψ′ = Uψ,
the covariant derivative defined in (13) must transforms,

Dtψ −→ (Dtψ)′ = D′tψ
′ = U(Dtψ)

Dψ −→ (Dψ)′ = D′ψ′ = U(Dψ) (16)

In order to ensure unitarity, the transformation will be in the
form U = eiχ(r,t), where χ(r, t) is either real or Hermitian. Now,
it is explicit that for (16) to be satisfied, gauge transforma-
tions needs to be made to scalar and vector potential-like phys-
ical quantities. Taking into account the transformed forms of
the time and spatial components of the covariant derivative, we
arrive at the expression Ã′ = Ã + ∇χ(r, t). Finally, after the
gauge-fixing Ã′ = 0, it becomes apparent that the gauge func-
tion ensuring this change must satisfy −∇χ(r, t) = sµẼ, and the
function χ(r, t) is obtained:

χ(r, t) = −sµ
∫ x

Ẽ(r, t) · dl (17)

Hence, the transformed Dirac spinor is,

ψ′ = risµ∂tΦB(t)ψ (18)

This results clearly demonstrate how the variation of the mag-
netic field affects the interference pattern, although there is no
direct interaction of the moving dipoles with the magnetic field
for r > a. Moreover, equations (17) and (18) clearly indicate
that the phase shares the same characteristics as other topologi-
cal effects, albeit with its own distinct features. If the integral on
the right-hand side of (17) yields a linear charge distribution,
the resulting effect would be an AC phase. However, incor-
porating the time variation of the field term indicates it would
be a magnetic flux, thus described as an AB phase performed
with magnetic dipoles. Here, as an illustration, let’s choose the
magnetic field as B(t) = B0 sin wt ẑ. Since the magnetic field
is time-dependent, it induces a rotational electric field in the
xy-plane: E(r, t) = πa2w

2r B0 cos wt(−x̂ sin θ + ŷ cos θ). In this
case, the transformed Dirac spinor can be obtained explicitly as
ψ′ = risµ(πa2wB0 cos wt)ψ.

3. Time-Dependent AB-type Effect on Electric Dipoles

In this section, as a complete dual of the discussion in the
previous section, we consider electric dipole carrier chargeless
particles moving around a time-varying electric field oriented in
the z direction in an infinitely long flux tube with radius a (See
Fig. 2). In the region where particles are permitted to move,
the presence of a time-varying electric field induces a magnetic
field, while no electric field is present. Given that the particles
lack charge, they remain unaffected by classical forces. Never-
theless, relativistic electromagnetic effects manifest, leading to
interaction between the moving dipoles and the magnetic field,
as the field source moves within the inertial reference frame of
the particles. Accordingly, it is appropriate to start with the rel-
ativistic Lagrangian describing the motion of electrical dipoles
under electromagnetic fields:

L = ψ
(
iγµ∂µ − m −

i
2

dσµνγ5Fµν

)
ψ (19)

Here, m and d are the mass and the electric dipole moment of
the chargeless particles, and the γ5 is a representation formed by
products of other gamma matrices defined in Clifford algebra.
The equations of motion that can be derived from equation (19)
are in the form,(

iγµ∂µ − m −
i
2

dσµνγ5Fµν

)
ψ = 0. (20)

The last term in parenthesis, using F̃µν = 1
2 ϵ

µναβFαβ, can be
rearranged as,

i
2

d (σµνγ5) Fµν = −
d
2
σαβF̃αβ. (21)

Similar to the previous section, it is evident that the redefinition
of the term σαβF̃αβ is necessary when the discussion is carried

out in 2+1 dimensions. Thus, by definition Σk =

(
σk 0
0 σk

)
, and

in the region where E = 0 is allowed for the particle motions,
the term σαβF̃αβ can be explicitly written in the form,

σαβF̃αβ = 2iαiF̃0i + ϵi jkΣ
kF̃ i j = 2iα⊥ · B (22)

Therefore, commencing with the initial Hamiltonian in (3) and
its representation in (4), when (22) is multiplied by γ0 from
the left, it becomes,

i∂tψ =
[
mβ + αx px + αy py + d

(
σyBx − sσxBy

)]
ψ (23)

The expression within the parentheses on the right-hand side
represents the total Hamiltonian of the system. For ease of com-
putation and to confine the magnetic field to the plane, we de-
fine B̃ = B × ẑ and

(
B̃x, B̃y

)
=

(
By,−Bx

)
, thereby obtaining the

interaction term as follows:

∆H = −sd
(
αxB̃x + αyB̃y

)
= −sdα⊥ · B̃ (24)

It is clear that this term is fully dual to expression (9).
Thus, the total Hamiltonian of the system is in the form

3



Figure 2: Schematic representation of moving electric dipoles around a time-
dependent electric field source with the radius of a.

(H = HD + ∆HVHMW ) . At this stage, steps (10)- (17) are re-
peated with the electric-magnetic duality transformations µ −→
d, E −→ B and B −→ −E, the phase and the transformed Dirac
spinor are reached:

ξ(r, t) = −sd
∫ x

B̃(r, t) · dl

ψ′ = risd∂tΦE (t)ψ. (25)

The topological phase of an electric dipole under varying elec-
tric field is revealed. The electric field variation without any in-
teraction has entered the wave function of the particles and has
measurable effects on the interference pattern. The equation
(25) exhibits a complete duality with (19). It also shows de-
pendence on the orientation of the spin polarizations of the par-
ticles. If the integral for the function ξ(r, t) given by (25) were
to give a magnetic charge distribution, then the HMW phase
would appear. However, this topological phase is completely
dual to the AB-type phase introduced in the first section. In this
respect, a review of the identity duality relations between the
phases is left for the last section.

4. Discussion and Conclusion

AB-type effects can be addressed in 2+1 dimensions due to
the symmetry of the problems. Such an investigation, con-
ducted without approximations, illuminates the duality and
identity relationships between the phases clearly. Accordingly,
in two-dimensional space, the AB phase can be thought of as
emerging from the motion of electrons along closed trajecto-
ries around polarized magnetic dipoles, since a solenoid can be
regarded as a coherent array of magnetic dipoles (See Fig. 3).
Similarly, since the electric and magnetic linear charge distribu-
tions can be considered as electric and magnetic charges in two
dimensions, the AC and HMW phases emerge as a result of the
motion of unpolarized magnetic dipoles around electrons and
unpolarized electric dipoles around magnetic charges in closed
orbits, respectively. From this perspective, one can describe an

Figure 3: Schematic representations of topological phases in 2+1 dimensions.
Here, the moving dipoles do not need to be polarized. This notation is utilized to
reinforce the notation, and the polarization of the particles can be controlled by
s. The above four phases are the four topological phases known in the literature
as AB-type effects. There is a kind of identity between the AB-AC and DAB-
HMW phases, provided that the moving dipoles are polarized. There is a duality
relation between the left and right groups. These relations between the phases
are explicit in the Hamiltonians obtained in 2+1 dimensions. Two setups given
in the lower part represent schematizations of the topological phases proposed
in this work. Unlike the other phases, in the condition of time dependence of
the field sources, it arises as a result of the motion of the dipoles around the
dipoles. Again, there is a complete duality between the two phases.

identity - rather than a duality - that emerges in the stationary
reference frames of moving electrons (or polarized dipoles) be-
tween the AB and AC phases (the same relationship holds true
between the DAB and HMW). However, it is clear that the AB
and AC phases grouped on the left are fully dual to the DAB and
HMW phases. On the other hand, AC and HMW effects depend
on the polarization directions of the moving dipoles and have
the same character. The AB and DAB effects do not depend on
the spin orientation of the incoming electrons. All these rela-
tions can also be clearly seen from the interaction Hamiltonians
describing the dynamics of the systems.

In this context, considering the scenarios proposed in the
preceding sections, it becomes apparent that they correspond
to topological phase structures consistent with the characteris-
tics outlined for AB-type effects. Accordingly, the first phase,
which is a combination of the AB and AC effects, is described
by the motion of the moving magnetic dipoles around a vari-
able magnetic field source. Moving particles are not required
to be polarized. Their polarization can be controlled by us-
ing s, derived from representations of the Clifford algebra in
2+1 dimensions. It enters the phase factor (Ã = sµẼ) as a
vector potential-like physical quantity through the electric field
present region where the particles are allowed to move and the
resulting relativistic effects. Thus, although there is no direct in-
teraction, the interference pattern is measurably affected by the
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time-dependent variation in magnetic flux. In complete duality,
a similar effect arises if electric dipoles are moved around time-
dependent electric field source. Hence, the topological phase
that emerges in the scenario discussed in the third section de-
pends on the polarization states of moving particles and can
be considered a combination of the HMW-DAB phases. Re-
sultant phases align with the characteristics of AB-type effects,
exhibiting complete duality between them. Furthermore, the
phases are contingent upon the polarization state of the moving
dipoles, and the interaction Hamiltonians take the form of AB-
type effects. This opens up avenues for future studies, such as
investigating the effects on entangled quantum states through
the determination of instantaneous eigenvectors using matrix
formalism [26].

In conclusion, the results obtained by studying the time-
dependent topological effects on dipoles, in accordance with the
characteristics of AB-type effects, support the complex interac-
tions of the systems considered in the 2+1 dimension and the
experimental and theoretical investigation of these interactions.
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