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Graph states are key resources for
measurement-based quantum computing
which is particularly promising for pho-
tonic systems. Fusions are probabilistic
Bell state measurements, measuring pairs
of parity operators of two qubits. Fu-
sions can be used to connect/entangle dif-
ferent graph states making them a pow-
erful resource for measurement-based and
the related fusion-based quantum comput-
ing. There are several different graph
structures and types of Bell state mea-
surements, yet the associated graph trans-
formations have only been analyzed for a
few specific cases. Here, we provide a full
set of such graph transformation rules and
we give an intuitive visualization based
on Venn diagrams of local neighborhoods
of graph nodes. We derive these graph
transformations for all fusion types show-
ing that there are five different types of fu-
sion success cases. Finally, we give applica-
tion examples of the derived graph trans-
formation rules and show that they can be
used for constructing graph codes or sim-
ulating fusion networks.

1 Introduction

Graph states are a class of quantum states that
can be represented by a graph where qubits con-
stitute graph nodes and graph edges constitute
entanglement [1]. These states form the key
building block for several quantum computing
schemes where computation is realized by mea-
surement operations [2, 3, 4]. Bell state measure-
ments are a particular class of two-qubit mea-
surements that measure two parity operators and
can be used to engineer such graph states. For
photonic qubits, such measurements can be re-

alized with a fusion, which successfully imple-
ments the two parity measurements with a cer-
tain probability [5]. A successful fusion can be
used to connect different graph states, thereby
creating larger entangled states and transform-
ing the graph state in a way that single-qubit
operations cannot achieve [6, 7, 8, 9]. For this
reason, fusions have various applications includ-
ing quantum repeaters [10, 11], generating cluster
states [12, 13, 14] for measurement-based quan-
tum computing [2], and fusion-based quantum
computing [4, 15].

Despite the relevance of fusions for graph-state-
based quantum computing architectures, graph
transformations associated with these two-qubit
parity measurements have only been investigated
for specific cases. In these cases, it is as-
sumed that fusion qubits are unconnected in
the graph and that their neighborhoods do not
overlap [16, 17, 18, 19]. These assumptions do
not generally hold, for example, in fusion net-
works [13, 4, 14] where several fusions are per-
formed and connected fusion qubits can result
from applying previous fusions. Graph transfor-
mations for fusing connected qubits are there-
fore required for analyzing fusion-based cluster-
state generation [13, 14] or fusion-based quan-
tum computing [4]. Such graph transformations
can also be used for treating so-called stabilizer
states [20] as those are locally equivalent to graph
states [21, 6].

Here, we investigate a complete set of graph
transformations for all relevant fusions and we
also consider the cases where the fusion qubits
are connected1. Upon success, the considered fu-
sions correspond to simultaneous measurements
of two weight-two parity operators from the Pauli

1Graph transformations for single-qubit measurements
can be found in Ref. [7, 8] and can be expressed by local
graph complementations [6, 22, 23] and vertex deletion.
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group. Measurements of this type are of partic-
ular interest as they keep the considered state a
stabilizer state [24].

We find that there are five different cases of
such parity measurements and we derive graph
transformations for all these cases. In Fig. 1(a),
we illustrate with an example consisting of two
linear chain graph states how the different par-
ity measurements lead to different graph trans-
formations. The different two-qubit parity mea-
surements lead to different graph states that
are not local Clifford equivalent [22, 23] even
though the fusion types all fall into the same class
of entangled measurements (Bell state measure-
ments) [25].

An important part of this work is an intu-
itive visualization of these graph transformations
by Venn diagrams where several qubit neighbor-
hoods from the original graph state are superim-
posed. Fig. 1(b) illustrates this method for a spe-
cific parity measurement and shows how the new
neighborhood of a qubit after the measurement is
obtained. Such a visualization gives an intuition
for the graph transformations which helps de-
velop protocols for creating certain target graph
states. We give such an example where only a few
different fusions need to be applied to generate a
small graph code [26] from a linear chain graph
state.

The manuscript is organized as follows: in sec-
tion 2, we introduce the different parity mea-
surements corresponding to a successful fusion.
In section 3, we introduce graph states and the
graph transformations that are caused by the par-
ity measurements. In section 4 we discuss fusion
networks and the construction of graph codes as
potential applications of the derived graph trans-
formation rules.

2 The different parity measurements

We first investigate the number of different Bell-
type measurements corresponding to products of
Pauli operators2. These measurements corre-
spond to simultaneously measuring two pairs of
parities between two qubits A, B yielding two
bits of information. For photonic qubits, such

2Representing the Z-eigenstates |0⟩ and |1⟩ as vectors(
1
0

)
and

(
0
1

)
, respectively, we define the Pauli-matrices as

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
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Figure 1: (a) Fusing linear chain graph states by dif-
ferent parity measurements corresponding to a success-
ful fusion. The state after the fusion is local Clifford
equivalent to a graph state, with the local Clifford gates
H = 1√

2

( 1 1
1 −1

)
, R =

( 1 0
0 i

)
shown in red. Note that

there is some freedom of choice for these local gates
which can lead to a breaking of the symmetry when rep-
resenting the state as a graph. This is, for instance,
the case for the fusion corresponding to the measure-
ment of the two parities XAXB ∧ ZAZB where the
symmetry among the qubits is broken by the choice
of qubit 2 as the so-called special neighbor. Further-
more, the measurement outcomes may give rise to addi-
tional Pauli Z gates that correspond to stabilizer signs.
(b) Graph transformation upon measuring the parities
XAZB ∧ ZAXB . In the original graph state, qubit a1
is connected to the fusion qubit A, not to the fusion
qubit B (the case ai ∈ N(A) \ N(B) in Eq. (8) where
N(A) represents the neighborhood of qubit A). The
new neighborhood of qubit a1 is given by the so-called
symmetric difference of its old neighborhood N(a1)
and the neighborhood N(B) of the fusion qubit B:
N(a1)∆N(B) = (N(a1) \ N(B)) ∪ (N(B) \ N(a1)).
The symmetric difference representing the new qubit
neighborhood is illustrated by the green area in the Venn
diagram.

a measurement is realized by a so-called success-
ful type-II fusion which destructively measures
the two qubits [5] (see Appendices A and B).
With standard fusion circuits, the success of the
type-II fusion is probabilistic meaning that the
two parities are typically measured with a suc-
cess probability of ps = 0.5 yet we show in Ap-
pendix C that there are also boundary cases in
which the fusion is deterministic. The success
probability can be increased by boosting with ad-
ditional photons [27, 28]. A successful fusion re-
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σ
(1)
A σ

(2)
B XX XY XZ Y Z XY Y X

σ
(3)
A σ

(4)
B ZZ Y X ZX ZY Y Z ZY

Table 1: Parity measurements upon fusion success.

sults in new connections between previously de-
tached components of a graph state [5, 16]. In
contrast, fusion failure corresponds to two inde-
pendent single-qubit measurements and does not
make such a connection. The standard fusion
measures the two stabilizers of the Bell states,
the parities XAXB ∧ ZAZB, upon success (see
Appendix A for a setup). The measured parities
can be rotated by applying single-qubit gates be-
fore the standard fusion [17, 13, 14]. Here, we
consider gates from the so-called local Clifford
group [29, 24] which is generated by the gates
H = 1√

2(|0⟩ ⟨0| + |0⟩ ⟨1| + |1⟩ ⟨0| − |1⟩ ⟨1|), R =
|0⟩ ⟨0| − i |1⟩ ⟨1| and normalizes the Pauli group.
Therefore, all the measured operators remain
part of the Pauli group, resp. the considered state
remains a stabilizer state. When a fusion between
two qubits A and B is successful, the measured
parities can thus be expressed as:

σ
(1)
A ⊗ σ

(2)
B

∧ σ
(3)
A ⊗ σ

(4)
B (1)

where σ
(j)
i ∈ {X, Y, Z} is from the Pauli group

and ⊗ denotes the tensor product which we will
not write explicitly in the following. Note that
σ

(1)
A ̸= σ

(3)
A as well as σ

(2)
B ̸= σ

(4)
B needs to be

fulfilled. Otherwise, the two parities would ei-
ther be identical or they would not commute and
therefore could not be measured simultaneously.
This gives 3 · 3 · 2 · 2 = 36 possible combinations
of stabilizers. The order of the stabilizers does
not matter, resp. swapping the parity σ

(1)
A σ

(2)
B

with the parity σ
(3)
A σ

(4)
B is the same measure-

ment. Furthermore, parity measurements such as
XAXB ∧ ZAZB and XAXB ∧ YAYB are identical
because YAYB = (XAXB) · (ZAZB). As a conse-
quence, the 36 pairs of parities can be partitioned
into six sets of the same size3. Each set contains
equivalent pairs of parity measurements and the
pairs of parity measurements from two different
sets are not equivalent. We select one pair of par-

3All sets of parity measurements can be found in our
Python implementation of the graph transformations [30]

ities per set to represent the measurement. These
pairs of parities are shown in Table 1.

Furthermore, the labeling of the fusion qubits,
σ

(1)
A σ

(2)
B ∧ σ

(3)
A σ

(4)
B or σ

(2)
A σ

(1)
B ∧ σ

(4)
A σ

(3)
B , does not

matter for the derivation of graph transformation
rules. Therefore, we consider the two last cases in
Table 1 as one case as the parity pairs are identi-
cal when swapping the labels A, B. The remain-
ing five cases cover all simultaneous two-parity
measurements from the Pauli group. Setups and
circuits that implement these parity measure-
ments (upon fusion success) are given in Appen-
dices A B. Note that there are different setups to
implement the same parity measurements. Even
if two setups give the same measurement upon fu-
sion success, the measurement upon fusion failure
can differ (see Appendix A). All fusion failures
correspond to single-qubit Pauli measurements
and the corresponding graph transformations can
be found in Ref. [1].

3 Graph transformations

In this section, we will derive the graph state
transformation rules for some of the five differ-
ent cases in Table 1. With the help of such rules,
one can find constructions of specific graph states
via fusions.

We start with a definition of graph- and
stabilizer states. Assume a graph G(V, E)
where every node from V represents a qubit.
A graph state can be constructively de-
fined as |G⟩ =

∏
(i,j)∈E CZij |+⟩⊗|V | where

CZij = |0i0j⟩ ⟨0i0j |+ |0i1j⟩ ⟨0i1j |+ |1i0j⟩ ⟨1i0j |−
|1i1j⟩ ⟨1i1j | represents an entangling controlled-
Z gate between qubits i, j and |+⟩ =

1√
2 (|0⟩ + |1⟩) [1]. The graph edges E thus rep-

resent the entanglement structure and the graph
state is well-defined as all the gates CZij com-
mute. Graph states are part of the larger class
of stabilizer states [24]. This formalism repre-
sents a so-called stabilizer state by a set S of lin-
early independent and commuting operators from
the Pauli group, the stabilizer generators, fulfill-
ing ∀S ∈ S : S |G⟩ = +1 |G⟩. Every stabilizer
state is locally equivalent to a graph state [21, 6]
meaning that it can be obtained from a graph
state by applying local gates from the Clifford
group [29, 24]. The stabilizer generators of a
graph state can be represented by the set of all
operators of the form Xi

∏
j∈N(i) Zj [3, 1]. Here,
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N(i) represents the graph neighborhood of qubit
i that constitutes all qubits j for which there is
an entangling controlled-Z gate CZij . Defining a
graph state in terms of its stabilizers or its edges
is equivalent.

We initially consider the case where the two
fusion qubits, labeled A, B in the following,
are unconnected and write down the stabilizer
generators before the fusion. First, there are
two stabilizer generators SA, SB which have
a Pauli X-operator on the fusion qubits A, B.
Second, we distinguish four different classes of
qubits/stabilizer generators: if qubit j is con-
nected to A but not B there is a stabilizer gen-
erator containing XjZA (case 1). If j is con-
nected to B but not A, the corresponding sta-
bilizer generator contains the term XjZB (case
2). If j is connected to both A, B, there is a
stabilizer generator containing the term XjZBZA

(case 3). Finally, some qubits are connected to
neither A, B corresponding to stabilizer genera-
tors with no support on A, B (case 4). Listing all
these cases yields4:

SA = ZN(A)XA (2)
SB = ZN(B)XB (3)
∀ai ∈ N(A) \ N(B) : XaiZN(ai)\AZA (4)
∀bi ∈ N(B) \ N(A) : Xbi

ZN(bi)\BZB (5)
∀ci ∈ N(A) ∩ N(B) : XciZN(ci)\A\BZAZB (6)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (7)

The initial graph state’s stabilizers are differ-
ent when the two fusion qubits A, B are con-
nected and we treat this case independently in
Appendix E. Furthermore, note that even for un-
connected fusion qubits not all terms in equa-
tions (4) to (7) always exist. For instance, sta-
bilizers of the form Sai could be missing when
the entire neighborhood of qubit A is a subset of
the neighborhood of qubit B. To derive rules for
the graph transformations, some of these cases
have to be treated separately.

We derive all graph transformation rules in two
main steps. First, we determine how the stabiliz-
ers of the graph state are modified by the parity
measurements [24, 31, 32]. As the resulting state
is not necessarily a graph state, we determine a

4To represent the same single-qubit operator σ acting
on a set of qubits Q, we use the convention σQ :=

∏⊗
q∈Q

σq

local Clifford equivalent graph state and the re-
quired single-qubit Clifford gates to bring it into
the form of a graph state in a second step [6]5.

Modifying the stabilizer generators upon fusion
is done similarly to Ref. [32]. When a measure-
ment is performed, all stabilizer generators that
anti-commute with one of the two measured par-
ities are not measurable simultaneously. A maxi-
mum set of simultaneously measurable stabilizer
generators is obtained in the following way: mul-
tiply one stabilizer generator Si that anticom-
mutes with the first measured parity on all the
other anti-commuting stabilizer generators mak-
ing them commute with the first parity. Ignor-
ing Si, repeat the procedure with a stabilizer Sj

that anticommutes with the second parity mea-
sured by the fusion. The stabilizer generators
Si, Sj are then removed and, in the procedure
from Ref. [32], the measured operators would be
added as new stabilizers. In this case, the support
on the fusion qubits A, B could be removed from
all other stabilizer generators by multiplication of
stabilizer generators (essentially because a mea-
surement detaches the measured qubits from the
rest of the state). The Bell state measurement
is destructive for photonic qubits and they there-
fore cannot be measured again. After dropping
the Sj and Si, we therefore simply remove the
Pauli matrices acting on the fusion qubits from
all other stabilizer generators instead of adding
the measured parities as new stabilizers.6.

A measured parity may commute with all sta-
bilizer generators of the graph state. In this case,
the measured parity is either a stabilizer itself
or, if not, the state after the measurement is ob-
tained by adding the measured parity to the list
of stabilizer generators [32]. As the number of
stabilizer generators of a pure state is equal to
the number of qubits, the commuting parity must
be a stabilizer in our case7. All that needs to
be done is removing the Pauli matrices acting on

5We do not consider the stabilizer signs as those also
depend on the probabilistic measurement result of the
fusion. The provided graph transformations together
with the local Clifford gates therefore give a graph ba-
sis state [33] that is equivalent to a graph state up to local
Pauli Z-gates.

6For single-qubit measurements [7, 1] the procedure is
analogous (see Appendix F).

7This case can correspond to a deterministic fusion (see
Appendix C).
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the destructively measured fusion qubits from the
stabilizer generators and determine a new set of
independent stabilizer generators.

In the following, we illustrate the procedure
by considering two different fusion types corre-
sponding to the pairs of parity measurements
XAZB ∧ ZAXB as well as XAXB ∧ ZAZB. All
other cases for unconnected fusion qubits are con-
sidered in Appendix E, while all cases for con-
nected fusion qubits are treated in Appendix D.
A Python implementation of the graph transfor-
mations can be found in Ref. [30].

3.1 XAZB ∧ ZAXB (A, B detached)
The simultaneous measurement of the pari-
ties XAZB and ZAXB has been considered in
Refs. [16, 17], but only for the special case where
the neighborhoods of the fusion qubits are not
overlapping (N(A) ∩ N(B) = ∅) and the fu-
sion qubits are not connected (A /∈ N(B)).
In the following, we consider the parity mea-
surement XAZB ∧ ZAXB for unconnected fusion
qubits without any further assumptions on the
graph structure, while connected fusion qubits
are treated in Appendix E.

The measured parity XAZB anti-commutes
with the stabilizers in equations (3), (4), and (6)
and we therefore multiply Eq. (3) on the sta-
bilizers in equations (4) and (6). ZAXB anti-
commutes with the stabilizers in equations (2),
(5), and (6) (also after multiplication with Eq. (3)
from treating the first parity). Therefore, we mul-
tiply all stabilizers in equations (5) and (6) with
Eq. (2). As described before, we drop the Pauli-
matrices acting on the measured qubits which
yields the following stabilizer generators

∀ai ∈ N(A) \ N(B) : XaiZN(ai)∆N(B) (8)
∀bi ∈ N(B) \ N(A) : Xbi

ZN(bi)∆N(A) (9)
∀ci ∈ N(A) ∩ N(B) :

XciZN(ci)∆N(A)∆N(B) (10)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (11)

where S1∆S2 denotes the symmetric difference
between the two sets S1 and S2

8. These expres-
sions describe stabilizers of a new graph state

8For two sets S1, S2, the symmetric difference is
S1∆S2 := (S1 \ S2) ∪ (S2 \ S1), i.e. the symmetric differ-
ence consists of the elements which are in one of the sets
and not the other. When S1, S2 represent sets of qubits,
ZS1 ·ZS2 = ZS1∆S2 because Z ·Z = 1. The symmetric dif-

with modified neighborhoods. To simplify the
notation here and in the following sections, we
assume for every stabilizer that A, B are sub-
tracted from all neighborhoods after the fusion
as they have been destructively measured. In
Eq. (10), for instance, one would have to write
N(ci) \ {A, B} instead of N(ci) otherwise.

An example of these graph transformation
rules is given in Fig. 1(a). To understand the
corresponding graph transformation, note that
qubits 2, 3 are in the neighborhood of A (N(A))
and thus Eq. (8) applies. Therefore, their new
neighborhood is the symmetric difference be-
tween their old neighborhood (minus qubit A)
and the neighborhood of qubit B. In turn, neigh-
borhoods of the qubits 6, 7 are transformed using
Eq. (9). Except for the measured fusion qubits
A, B, all other qubits are not in N(A) or N(B)
and thus fulfill the condition in Eq. (11) so that
their neighborhood remains unchanged.

The fusion-induced transformation of a qubit’s
neighborhood can be illustrated by Venn dia-
grams. Fig. 1(b) and Fig. 2(a) show Venn dia-
grams for the parity measurement XAZB∧ZAXB.
In Fig. 1(b), the graph transformation is illus-
trated as an example for a qubit a1 which is in
the neighborhood N(A) of fusion qubit A but not
in the neighborhood N(B) of fusion qubit B. Ac-
cording to Eq. (8), the new neighborhood of a1 is
given by the symmetric difference N(a1)∆N(B)
which is illustrated by the green area in the shown
Venn diagram. Fig. 2(a) shows a Venn diagram
for a qubit ci that is in the neighborhood of both
fusion qubits (ci ∈ N(A) ∩ N(B)). In this case,
Eq. (10) applies and the neighborhood of qubit ci

after the fusion is thus the symmetric difference
N(A)∆N(B)∆N(ci) as illustrated by the green
area in the shown Venn diagram.

3.2 XAXB ∧ ZAZB (A, B detached)

In the following, we consider the widely-used
fusion measuring the parities XAXB ∧ ZAZB

upon success, corresponding to a standard linear-
optical Bell state analyzer [4, 34, 35, 36]. We
start with the case where both fusion qubits are
detached and assume that all stabilizers in equa-
tions (2) to (4) exist, meaning that there is at

ference is associative. Thus S1∆S2∆...∆Sn is well-defined
and includes all elements that appear in an odd number of
sets Si and we can write ZS1 ZS2 ...ZSn = ZS1∆S2∆...∆Sn .
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new N(ci) new N(qi)

A B
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A

B

N(A) N(B)

a*

qi

N(qi)N(a*)

A

B

new N(qi)

a*

N(a*)
A

B

ci ∈ N(A) ∩ N(B)

   XAZB

∧ ZAXB

A B

ci
condition

example

rule
a* ∈ N(A)\N(B)

   XAXB

∧ ZAZB

A Ba*

qi ∈ [N(A)�N(B)]\a*

  XAXB

∧ ZAZB

A Ba*

qi

qi ∈ [N(A)�N(B)]\a*

   XAXB

∧ ZAZB

A Ba* qi

∧ qi ∉ N(a*) ∧ qi ∈ N(a*)

a*

Figure 2: Venn diagrams representing the graph transformations for different fusion types when the two fusion
qubits A and B are not connected. (a) Graph transformation upon measuring the parities XAZB ∧ ZAXB for
a qubit ci that is connected to both fusion qubits A, B. The Venn diagram represents Eq. (10) (where the a∗
symbol in the figure can be ignored). The depicted Venn diagram also represents the XAXB ∧ ZAZB fusion for
the case ci ∈ N(a∗) in Eq. (17). (b) The new neighborhood of the special neighbor qubit a∗ when doing the
parity measurement XAXB ∧ ZAZB . This Venn diagram corresponds to Eq. (15). (c) Venn diagram representing
the neighborhood transformation for the case qi /∈ N(a∗) in Eq. (16). (d) Venn diagram for the XAXB ∧ ZAZB

fusion in the case qi ∈ N(a∗) in Eq. (16). We show an example for a qubit in the neighborhood of fusion qubit B
(qi ∈ N(B) \ N(A)) but the same rule would apply for qi ∈ N(A) \ N(B).

least one qubit connected to the fusion qubit A
and not to B (N(A) \ N(B) ̸= ∅). The mea-
sured parity XAXB anti-commutes with the sta-
bilizers in equations (4) and (5). To make them
commute we pick the stabilizer associated with
a special neighbor a∗ that is connected to A but
not B, i.e. a∗ ∈ N(A) \ N(B) and multiply it
on the other stabilizers in equations (4) and (5)9.
Next, ZAZB anti-commutes with the stabilizers
in equations (2) and (3) and thus we multiply
Eq. (3) with Eq. (2). After the two multiplica-
tions, the stabilizers are transformed into

Za∗ZN(B)∆N(A)\a∗ (12)
∀qi ∈ (N(A)∆N(B)) \ a∗ :{

qi /∈ N(a∗) : XqiXa∗ZN(qi)∆N(a∗)

qi ∈ N(a∗) : YqiYa∗ZN(qi)\a∗∆N(a∗)\qi

(13)

∀ci /∈ N(A)∆N(B) :{
ci /∈ N(a∗) : XciZN(ci)

ci ∈ N(a∗) : XciZa∗ZN(ci)\a∗

(14)

9Note that choosing a different special neighbor leads
to a different but locally equivalent graph state. This il-
lustrates the fact that there is generally some freedom of
choice in the graph transformation rules: the same stabi-
lizer states can be represented by different locally equiva-
lent graphs [23] with correspondingly different local Clif-
ford gates.

where we have dropped the Pauli-matrices act-
ing on the fusion qubits A, B and explicitly writ-
ten the operators acting on a∗. Furthermore, we
have replaced the labels ai, bi from equations (4)
and (5) by a generic label qi in Eq. (13) as this
qubit can be in either the neighborhood of fusion
qubit A or fusion qubit B.

The new stabilizers do not represent a graph
state. To obtain a local Clifford equivalent graph
state, we proceed by applying H on qubit a∗.
Multiplying the stabilizer in Eq. (12) on the sta-
bilizers qi ∈ N(a∗) in Eq. (13), and ci ∈ N(a∗)
in Eq. (14), we get the stabilizer generators of a
new transformed graph state:

Xa∗ZN(B)∆N(A)\a∗ (15)
∀qi ∈ (N(A)∆N(B)) \ a∗ :{

qi /∈ N(a∗) : XqiZa∗ZN(qi)∆N(a∗)

qi ∈ N(a∗) : XqiZa∗ZN(qi)∆N(A)∆N(a∗)∆N(B)
(16)

∀ci /∈ N(A)∆N(B) :{
ci /∈ N(a∗) : XciZN(ci)

ci ∈ N(a∗) : XciZN(ci)∆N(A)∆N(B)
(17)

This graph transformation rule only requires
N(A) \ N(B) ̸= ∅ (such that a special neigh-
bor a∗ can be chosen) and thus applies to most

6



cases. Since the measured parities are identi-
cal when interchanging the labels A, B, the case
N(A)\N(B) = ∅∧N(B)\N(A) ̸= ∅ is covered by
the above graph transformation after swapping
the labels A, B. In the final case when N(B) \
N(A) = N(A) \ N(B) = ∅ ∧ N(B) ∩ N(A) ̸= ∅
(A, B share all their neighbors), the graph state
is simply updated by removing the fusion qubits
since all stabilizers, except SA and SB, commute
with the measured parities10. This is a particu-
lar case where fusion success and failure coincide
(see Appendix C).

As before, the graph transformations in equa-
tions (15) to (17) can be represented by Venn
diagrams. The case ci ∈ N(a∗) in Eq. (17) is rep-
resented by the Venn diagram in Fig. 2(a) where
the symmetric difference between the neighbor-
hoods of three qubits in the original graph yields
the neighborhood of the qubit after the fusion.
Fig. 2(b) represents Eq. (15) and Fig. 2(c) rep-
resents the new neighborhood of a qubit qi con-
nected to one of the fusion qubits A, B but not
connected to the special neighbor qubit a∗ (qi /∈
N(a∗) in Eq. (16)). Finally, Fig. 2(d) represents
the new neighborhood when the qubit is con-
nected to the special neighbor (qi ∈ N(a∗) from
Eq. (16)).

An example of applying the corresponding
graph transformation rule is given in Fig. 1(a)
where we have chosen qubit number 2 as the
special neighbor (a∗). The Venn diagram in
Fig. 2(a), resp. Eq. (15) give the new neigh-
borhood of this qubit: the symmetric difference
between the neighborhoods of both fusion qubits
minus a∗ itself (N(B)∆N(A)\a∗). The neighbor-
hood of qubit 3 is transformed according to the
Venn diagram in Fig. 2(c), resp. Eq. (16) with
qubit 3 /∈ N(a∗). The new neighborhood of this
qubit is therefore the special neighbor qubit (2,
resp. a∗) plus the symmetric difference between
its old neighborhood and the neighborhood of
qubit 2. The symmetric difference contains qubit
4 (part of the original neighborhood of qubit 3)
as well as a new connection to qubit 1 (part of
the neighborhood of the special neighbor qubit
2). The neighborhood of qubits 6, 7 also trans-
forms according to the Venn diagram in Fig. 2(c)

10Note that we generally do not explicitly mention the
cases where the two fusion qubits A, B are not connected
to any other qubit as, in this case, there is no graph trans-
formation except removing these qubits from the graph.

since the condition qi /∈ N(a∗) from Eq. (16) ap-
plies in both cases. The neighborhood of all other
qubits remains unchanged.

4 Applications

In this section, we discuss some of the pos-
sible applications of the graph transformation
rules derived in the previous section and Ap-
pendix D, E: analyzing/simulating so-called fu-
sion networks [4, 13, 14] and constructing
small graph states which can be used for
error/loss-tolerant encoding in quantum commu-
nication [11, 39] or computing [26].

4.1 Analyzing fusion networks

A fusion network describes a collection of small
graph states (resource states) that are fused in
a lattice topology determining which qubits are
fused with which [4, 13, 14]. An example of
a fusion network with four-qubit ring graphs as
resource states and a square lattice topology is
illustrated in Fig. 3(a). Graph transformation
rules provide an intuitive way of understanding
the evolution of the graph connectivity in fusion
networks, which an analysis based on stabiliz-
ers [31, 32] does not provide directly.

To analyze a general fusion network the graph
transformation rules need to apply to arbitrary
graphs. The reason is that even if fusions are
performed between qubits of initially detached re-
source states, the fusion qubits may share part of
their neighborhood or they might be connected
due to previous fusions as illustrated in Fig. 3(a).

Furthermore, it is necessary to have graph
transformation rules for all cases from Table 1
since a fusion causes a graph transformation
plus potentially additional local Clifford gates on
other qubits (see Sec. 3). These local Clifford
gates can rotate future fusions meaning that dif-
ferent parities are measured upon fusion success
(see Appendix A). Fig. 3(b) illustrates this for
two Clifford gates Cb, Cc. The local Clifford gates
either rotate the fusion (like Cb, Cc) or they act on
other qubits in which case they commute with the
fusion (like Ca, Cd). The effect of the fusion can
therefore be represented as a graph transforma-
tion followed by local Clifford operations (bottom
part of Fig. 3(b)).

Finally, note that a graph state |G⟩ with lo-
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Figure 3: Fusion networks and graph-state construc-
tions. (a) Fusion network with four-qubit rings. If the
first three fusions succeed (marked in green), the fu-
sion qubits of the fourth fusion on the right are con-
nected. (b) A successful fusion measuring XbXc ∧ZbZc

is applied to a stabilizer state (graph state |G⟩ with
local Clifford operations Ci applied to it). The fusion
(green box) is represented here by a circuit diagram in-
cluding a CNOT gate, a H gate, and Z-basis measure-
ments (see Appendix B). The local Clifford operations
on the fusion qubits (Cb, Cc) change the fusion to a
rotated fusion resulting in a different graph transforma-
tion (see Appendix A). For instance, a Hadamard gate
on qubit c, Cc = Hc, would change the measured pari-
ties from XbXc and ZbZc to XbH†

c XcHc = XbZc and
ZbH†

c ZcHc = ZbXc. Since the other Clifford operations
Ca, Cd commute with the fusion circuit, they can be ap-
plied after the graph transformations (top right). There-
fore, fusions applied to stabilizer states can be simulated
by graph transformations (bottom part). Some fusion
types can produce byproduct local Clifford gates (here
C∗

a , C∗
d) and the local Clifford gates must be updated

(here to C̄a, C̄d). (c) Generating the cube graph [26] us-
ing two different types of fusions. The assumed resource
state can be generated deterministically with a single
quantum emitter using the scheme from Refs. [37, 38]
and local complementation [22, 23] (see Appendix G).

cal Clifford gates Ci applied to it (upper left in
Fig. 3(b)) is a representation for an arbitrary sta-
bilizer state [24, 7, 23]. Therefore, graph trans-
formations can be used to analyze the effect of
fusions on any stabilizer state.

4.2 Efficient simulation of fusion networks

As a stabilizer state can be represented as a graph
state and local Clifford gates, a graph represen-
tation can be used for simulating Clifford cir-
cuits [20, 40, 41, 42]. For most applications, the
corresponding graphs are sparse such that the av-
erage vertex degree d̄ of the graph is much smaller
than the number of qubits N . The required mem-
ory for describing the graph is thus reduced to
d̄ · N [20] compared to O(N2) for representing
stabilizers as a non-sparse matrix over F2 [31].
Furthermore, the time complexity for simulating
gates and measurements reduces to O(d̄2) [20].
The Clifford circuit simulator from Ref. [20] is
not explicitly made for fusions but could simu-
late the graph transformation upon a fusion by
decomposing the fusion into corresponding gates
and single-qubit measurements (see Appendix B).

Our graph transformations provide the new
graph neighborhoods after a fusion in an explicit
form without decomposing it into a sequence of
graph transformations. Compared to Ref. [20],
our graph transformations thus could be more ef-
ficient for simulating fusion networks, although
we expect the same scaling of the time complex-
ity11. An issue is that fusion operations can be
deterministic in some boundary cases (see Ap-
pendix C.2) where the fusion success probability
can either be one or zero depending on a stabi-
lizer sign. Including stabilizer signs in our graph
transformations would thus be relevant to build-
ing a full fusion network simulator.

4.3 Constructing graph codes

Small graph states representing graph codes can
be used for all-photonic quantum communica-
tion [11] as well as modular architectures for
fault-tolerant photonic quantum computing [4,
26]. Certain graph states such as linear chains
can be generated deterministically using a single
quantum emitter with a spin [37, 38]. Recent ex-
perimental progress has been made [43, 44, 45, 46]
but generating loss- and error-tolerant graph
codes [26] is more challenging as the determin-
istic generation of such states typically requires

11Identical to the time complexity for gates and single-
qubit measurements in Ref. [20], we also expect that the
time complexity of our graph transformations is O(d̄2)
since, in such an operation, d̄ different qubits get a new
neighborhood and this neighborhood is of the size d̄.
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the ability to apply gates between quantum emit-
ters [47]. A promising alternative is to make small
graph states deterministically with a quantum
emitter [37] and then create additional connec-
tions via fusions [18, 48].

Fig. 3(c) shows a corresponding construction
of a cubic graph state that can be used for loss-
and error-tolerant encoding [26]. Equipped with
the transformation rules for various fusion types,
we employ three fusions of two different types
to construct the cube graph state from an input
state that can be generated with a single quan-
tum emitter and local gates (see Appendix G).
Using different fusion types may be a degree of
freedom that can be used to reduce the number
of local gates or adapt the construction to exper-
imental boundary conditions. Without fusions,
three quantum emitters and the ability to ap-
ply gates between them would be required (see
Appendix G). In our construction, only three fu-
sions are applied and this small number of fu-
sions is advantageous as fusions are probabilistic,
and fusion photons can suffer loss. More fusions
mean more photons to start with and the loss of
the additional fusion photons would diminish the
loss- and error-tolerance of the graph code. Fur-
thermore, the probabilistic nature of the fusions
means that the overall chance of successfully gen-
erating the graph code is lowered by a factor of
two with every additional fusion.

5 Outlook/Summary

We have derived graph transformation rules for
graph states subject to all pairs of parity mea-
surements from the Pauli group. These parity
measurements correspond to the success case of
probabilistic Bell state measurements (fusions).
The derived graph transformations are relevant
for the field of measurement-based [2] and fusion-
based [4] quantum computing, which both rely
on graph state transformations by measurements.
The graph transformations are particularly use-
ful for searching strategies for building dedicated
graph states such as repeater graph states [11] or
graph codes [26] with minimal effort using fusion
operations.

Parity measurements are not restricted to two
qubits and a natural extension of our work is
therefore investigating parity measurements in-
volving more qubits [49] (e.g. measuring three

qubits and extracting three parities). Further-
more, similar work could be performed for differ-
ent classes of quantum states. For the class of
hypergraph states [50], for instance, correspond-
ing hyper-graph transformation rules could po-
tentially be developed.
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Appendices
A Modified fusion setups
Here we show that all parity measurements from Table 1 can be performed by modifying the standard
fusion setups from Figs. A4(a) with local Clifford gates UA, UB. The standard fusion setups measure
XAXB ∧ ZAZB upon success. A gate UA transforms a state |G⟩ into UA |G⟩ and thus its stabilizers
{Si} are transformed as Si → UASiU

†
A (because (UASiU

†
A)UA |G⟩ = UASi |G⟩ = UA |G⟩). Rotating the

measured parity as well as the state by applying a basis rotation U †
A to both yields the same final state

up to this basis rotation and the same measurement result. Since we are not interested in the state of
the measured qubit but only in how the rest of the graph transforms, we do not have to explicitly apply
the opposite basis rotation after the fusion. The Bell state measurement with UA applied before can
be interpreted this way: keep the stabilizers the same (U †

AUASiU
†
AUA = Si) and rotate the Bell state

measurement (U †
AXAUA ⊗ XB ∧ U †

AZAUA ⊗ ZB) [14]. Alternatively, one can consider the measured
parities in the Heisenberg picture where they are changed as U †

AXAUA ⊗ XB ∧ U †
AZAUA ⊗ ZB, leaving

the state unchanged.
By applying single-qubit Clifford gates from Table A2 the measurement pattern corresponding to

the setup in Fig. A4(a) can be transformed into all the different parity measurements from Table 1.
Possible gate choices are given in Table A3 together with the corresponding failure modes in which
case two single-qubit measurements are performed. Even if the parity measurement upon success is
the same, the single-qubit measurements upon failure can differ as one can see for the two rightmost
cases in Table A3. Furthermore, the choice of the used Clifford gates in Table A2 is not unique, and
other choices can be found in Table 1 of Ref. [1].

B Circuit-based model of fusions
In the circuit-based quantum computing model, a fusion can be represented by local Clifford gates, a
controlled-Z gate, and single-qubit measurements. These operations can be represented as the following
graph transformations: local graph complementation, adding extra local Clifford gates to the graph
nodes, and adding links to the graph (controlled-Z gate) [1, 20] where the latter makes the fusion
different from local operations and classical communication [8]. A fusion can therefore be decomposed
into such operations which may also give an intuition for the graph transformations in some cases.

Figs. A4(b,c) show a representation of two Bell state measurements as a quantum circuit. A suc-
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Gate H = X+Z√
2 (

√
Y ) R =

√
Z Q =

√
X K = RH K† = HR†

Matrix
representation 1√

2

[
1 1
1 −1

] [
1 0
0 i

]
1
2

[
1 − i 1 + i
1 + i 1 − i

]
1√
2

[
1 1
i −i

]
1√
2

[
1 −i
1 i

]

Pauli
transformation X ↔ Z X ↔ Y Y ↔ Z X → Z → Y → X X → Y → Z → X

Table A2: Local Clifford operators and their effect on the Pauli group. For the different operators, a matrix represen-
tation is shown, and which Pauli operators they interchange. Generally, the Pauli matrix √

σi interchanges the other
two Pauli matrices while leaving σi the same. For instance, X, Z are interchanged by

√
Y which could be chosen

instead of the Hadamard gate H. A full version of this table including stabilizer signs can be found in Ref. [1].

Gates 1A1B 1AHB QAKB RAK†
B QARB QAQB HAHB

Success XAXB XAZB XAYB YAZB XAYB XAXB ZAZB

ZAZB ZAXB YAXB ZAYB YAZB YAYB XAXB

Failure ZA1B ZA1B YA1B ZA1B YA1B YA1B XA1B

1AZB 1AXB 1AXB 1AYB 1AZB 1AYB 1AXB

Table A3: Gates that need to be applied before the fusion circuit in Fig. A4(a) to implement the parity measurements
in Table 1. The last two columns represent standard fusion upon success but have different failure modes.

cessful standard fusion is implemented by a CNOT-gate, a Hadamard, followed by two single-qubit
measurements in the Z-basis, a configuration which measures the stabilizers XAXB and ZAZB of the
Bell state |Φ+⟩. The circuit is equivalent to a Hadamard gate, followed by a controlled-Z gate, and
then two measurements in the X-basis (see Fig. A4(b)). Applying another Hadamard gate thus leads
to a circuit with just a controlled-Z gate followed by two single-qubit X-basis measurements of the
fusion qubits (see Fig. A4(c)) [11]. This gives an intuitive interpretation of the parity measurement
XAZB ∧ ZAXB: draw a connection between the two unconnected fusion qubits, respectively remove
an already existing connection (controlled-Z gate), then do the graph transformations corresponding
to the two X-basis measurements (see Ref. [1] and Appendix F for the graph transformation induced
by single-qubit measurements). Note that the first X-basis measurement introduces a byproduct H
gate on one qubit, which can change the second X-basis measurement to a Z-basis measurement.
Generally, expressing a fusion by concatenating graph transformations may give some intuition, yet
does not explicitly provide the new neighborhood of every qubit. Our fusion rules from the main text
and Appendices D, E do exactly that which is advantageous from a practical point of view.

C Fusion success probability

In this section, we discuss the fusion success probability for unboosted type-II fusions [5, 51]. We show
that unboosted fusions succeed with probability ps = 0.5 in most cases, but that there are edge cases
where success or failure is deterministic. A trivial example of such a deterministic fusion would be the
case where the input state is a Bell state that is detached from the rest of the graph, e.g. if |Ψ+⟩ is sent
to the standard fusion setup in Fig. A4(a), fusion deterministically succeeds and yields ZAZB = −1
and XAXB = +1. However, we will show that there are a few other examples where a deterministic
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Figure A4: (a) Standard setup of photonic fusion using dual-rail encoding (photon-number resolving detectors
assumed). When detecting two photons at two different detectors, one projects in the subspace spanned by the two
Bell states |Ψ±⟩ = 1√

2 (|01⟩ ± |10⟩) as the other two Bell states |Φ±⟩ = 1√
2 (|00⟩ ± |11⟩) yield a different detection

pattern. Therefore, ZAZB = −1 is measured as this is a stabilizer of both states |Ψ±⟩ (see table on the right).
Furthermore, |Ψ±⟩ can be distinguished by the measurement pattern leading to a measurement of XAXB = +1
when projecting on |Ψ+⟩ and XAXB = −1 when projecting on |Ψ−⟩. Since both stabilizers XAXB and ZAZB are
measured, these cases correspond to fusion success. When detecting two photons on the same detector, one projects
into the subspace spanned by the other two Bell states |Φ±⟩ = 1√

2 (|00⟩ ± |11⟩) which measures ZAZB = +1.
A measurement of the stabilizer XAXB is not obtained (fusion failure) as the two states |Φ±⟩ yield the same
detection pattern and thus cannot be distinguished. Instead, the detection pattern corresponds to two single-qubit
measurements ZA ∧ ZB with ZA = ZB = ±1. (b) Quantum circuit corresponding to a successful fusion for the
setup in (a). (c) The parity measurements can be modified by single-qubit gates before the setup from (a). Applying
H in front of the setup in (a) corresponds, upon fusion success, to a controlled-Z gate followed by two single-qubit
X-basis measurements. This setup measures the parities XAZB ∧ ZAXB .

outcome can occur.
Given a graph state |G⟩ and two fusion qubits A and B, the state |G⟩ can be decomposed as12:

|G⟩ = 1
2(|00⟩AB |θ⟩ + |01⟩AB ZN(B)\A |θ⟩ + |10⟩AB ZN(A)\B |θ⟩ ± |11⟩AB Z(N(A)\B)∆(N(B)\A) |θ⟩)

= 1
2(|00⟩AB |θ1⟩ + |01⟩AB |θ2⟩ + |10⟩AB |θ3⟩ ± |11⟩AB |θ4⟩)

(A18)

where |θ⟩ is the induced subgraph of |G⟩ with the qubits A and B removed, and |θi⟩ are associated
graph basis states [1, 33] with a Z-gate applied to some qubits (|θ1⟩ = |θ⟩, |θ2⟩ = ZN(B)\A |θ⟩, |θ3⟩ =
ZN(A)\B |θ⟩, |θ4⟩ = Z(N(A)\B)∆(N(B)\A) |θ⟩). The ± sign depends on whether A and B are connected
(−) or not (+). A stabilizer state |S⟩ is local-Clifford equivalent to at least one graph state |G⟩ [1] and
we can thus use Eq. (A18) to express a general stabilizer state as:

|S⟩ = C l |G⟩ = 1
2(C l

AB |00⟩AB C̃ l |θ1⟩ + C l
AB |01⟩AB C̃ l |θ2⟩ + C l

AB |10⟩AB C̃ l |θ3⟩ ± C l
AB |11⟩AB C̃ l |θ4⟩)

(A19)

with C l = C1 ⊗C2 · ·⊗CN being a product of local Clifford gates on qubits 1 to N , where C l
AB are those

gates acting on the fusion qubits A, B and C̃ l are those gates acting on other qubits. Note that in this
section it will mostly be more convenient to think of the gates C l

AB rotating the states (Schrödinger
picture) rather than the fusions as we have done in most of the manuscript.

In the graph |G⟩, assume that the fusion qubits A, B do not share their entire neighborhood (N(A)\
B ̸= N(B)\A) and are connected to more than just its fusion partner (N(A)\B ̸= ∅∧N(B)\A ̸= ∅).
In this case, all states {|θi⟩} are orthogonal graph basis states [1, 33]. Then, the projection probability
when projecting on |G⟩ or |S⟩ is 1/4 for all Bell basis states as the reduced density matrix obtained
by tracing out all qubits except A, B is ρA,B = 1

41. Therefore, the fusion success probability is
ps = 2× 1

4 = 0.5 as only two of the Bell states can be distinguished by the Bell state analyzer (success)
and two cannot (failure).

12The relation follows by using twice that a graph state can be written as |G⟩ = 1√
2

(
|0⟩A |Ω⟩ + |1⟩A ZN(A) |Ω⟩

)
, where

|Ω⟩ is the graph state without qubit A.
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Figure A5: (a) All graph boundary cases in which the fusions, illustrated by the green ellipses, can be deterministic
(excluding isolated two-qubit states). In these cases, there is exactly one stabilizer S̃AB with just support on A, B
that is shown on the right. (b) The stabilizer S̃AB can be rotated by local Clifford gates to ±XAXB or ±ZAZB .
When one of these operators is a stabilizer, the considered state |S⟩ only contains two Bell states |b(1)⟩AB , |b(2)⟩AB

out of the four Bell states |Ψ±⟩AB = 1√
2 (|01⟩ ± |10⟩)AB , |Φ±⟩AB = 1√

2 (|00⟩ ± |11⟩)AB , meaning ⟨b(i)
AB | S⟩ = 0

for the other Bell states. (c) Assuming a standard fusion setup (see Fig. A4(a)), deterministic fusion arises when
±ZAZB is a stabilizer of the input state (upper part of the table). When ±XAXB is a stabilizer, fusion success and
failure are equivalent as they result in the same state up to stabilizer signs. For a rotated fusion with HAHB applied
before the standard fusion setup, the roles of ±XAXB and ±ZAZB are interchanged (lower part).

C.1 Boundary case graph structures

There are cases where the states {|θi⟩} in Eq. (A18) do not form an orthonormal basis and the previous
derivation for the fusion probability ps = 0.5 thus does not apply. These cases correspond to fusion
qubits with identical neighborhoods (N(A)\B = N(B)\A) or a fusion qubit that is at most connected
to its fusion partner (N(A) \ B = ∅, or N(B) \ A = ∅). All these cases are illustrated in Fig. A5(a).
We assume in the following that only one of the above conditions is fulfilled meaning that the qubits
A, B are not a subgraph that is detached from the rest of the graph. In terms of stabilizers, this
restriction means that there is only one stabilizer S̃AB that only has support on A, B. To identify
cases of deterministic fusion, we note that the following three statements are equivalent:

1. The stabilizer state |S⟩ is locally equivalent to a graph state fulfilling one or more of the following
conditions: N(A) \ B = N(B) \ A, N(A) \ B = ∅, N(B) \ A = ∅

2. In Eq. (A19), some of the rotated graph basis states C̃ l |θi⟩ coincide.

3. |S⟩ is stabilized by a stabilizer S̃AB ̸= 1 with support on only qubits A, B.

Proof − The first and the second statement are equivalent since two graph basis states ZQ |θ⟩ and
ZP |θ⟩ (with two subsets P, Q of qubits from |θ⟩) are orthogonal, except if Q = P [1, 33] as also
mentioned in the previous section. Further, the third statement follows from the first one: if A, B are
not isolated (have a neighbor), a graph state with N(A) \ B = ∅ has a stabilizer XAZB, a graph state
with N(B)\A = ∅ has a stabilizer ZAXB, and a graph state with N(A)\B = N(B)\A has a stabilizer
YAYB or XAXB depending on whether A, B are connected or not. If either A or B are isolated, there
is a stabilizer XA or XB. Local gates do not change that all these stabilizers only have support on
A, B. Finally, assume that the third statement is true so that there is at least one stabilizer S̃AB ̸= 1

with support on just A, B. Then, some of the terms {|θi⟩} in Eq. (A19) must coincide. The reason
is that if all states {|θi⟩} were different (in which case they are orthogonal graph basis states), S̃AB

could only be a stabilizer if it stabilizes all basis states C l
AB{|00⟩AB , |01⟩AB , |10⟩AB , |11⟩AB} in which

case S̃AB = 1. So the existence of a stabilizer S̃AB ̸= 1 with support on just A, B implies that some
of the states {|θi⟩} are identical (second statement). Thus, all statements are equivalent13.

13A stabilizer state can be locally Clifford equivalent to several graph states [7, 23]. If one of these graph states fulfills
N(A) \ B = N(B) \ A, N(A) \ B = ∅, or N(B) \ A = ∅, this applies to all other locally Clifford equivalent graph states
as well (although local complementations can change which of the three conditions applies). The reason is that a graph
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C.2 Deterministic fusion
From the previous sections, we know that the fusion is probabilistic with ps = 0.5 if there is no stabilizer
with support on only the fusion qubits A, B. We are therefore interested in the case where there is one
stabilizer S̃AB with support on only A, B implying that one of the conditions N(A) \ B = N(B) \ A,
N(A) \ B = ∅, N(B) \ A = ∅ is fulfilled. We explain here under which condition the fusion is
deterministic in such a case, either failing or succeeding with ps = 0 or ps = 1.

We assume the standard fusion setup (Fig. A4(a)) which measures the parities XAXB, ZAZB upon
success (rotated fusions are discussed at the end of the section). The standard fusion can distinguish
the Bell states |Ψ±⟩ by the detection pattern but cannot distinguish |Φ±⟩. The states |Φ±⟩A,B are
stabilized by +ZAZB whereas |Ψ±⟩A,B are stabilized by −ZAZB. +ZAZB being a stabilizer of the
input state is therefore equivalent to only terms |Φ±⟩A,B being present when expanding the state in
the Bell basis over A, B (Fig. A5(b)). In this and only in this case, the fusion fails deterministically
(ps = 0) as the Bell state analyzer cannot distinguish |Φ+⟩A,B from |Φ−⟩A,B (Fig. A5(c)). In turn,
−ZAZB being a stabilizer of the input state is equivalent to only terms of type |Ψ+⟩A,B , |Ψ−⟩A,B being
present (which the standard Bell state analyzer can distinguish). In this and only in this case, the
fusion succeeds deterministically (ps = 1). The stabilizers ±ZAZB thus herald deterministic fusion,
meaning that fusion deterministically fails (succeeds) if and only if +ZAZB (−ZAZB) is a stabilizer
(see Fig. A5(c)).

In the probabilistic fusion that is considered in most of this article, success and failure result in
different graph transformation rules. As we will now show, this is also the case for the deterministic
fusion. To this end, we consider two examples where we will apply local gates to make ±ZAZB a
stabilizer and then apply the standard fusion (Fig. A4(a)) that upon success measures the parities
XAXB ∧ ZAZB.

First, assume a graph state where the fusion qubits A and B are not connected and share their entire
neighborhood (N(A) \ N(B) = N(B) \ N(A)). We call the original graph state |G⟩ and apply the
gate HAZA ⊗ HB to it. (The corresponding rotated fusion measures ZAZB ∧ −XAXB on the original
graph state, with fusion success being deterministic for a stabilizer +XAXB.) In the considered case,
Eq. (A18) becomes:

HAZA ⊗ HB |G⟩ = HAZA ⊗ HB
1√
2

(|Φ+⟩AB |θ⟩ + |Ψ+⟩AB ZN(B) |θ⟩) =

1√
2

(|Ψ+⟩AB |θ⟩ + |Ψ−⟩AB ZN(B) |θ⟩) (A20)

This state only contains the two Bell states |Ψ±⟩AB and −ZAZB is therefore a stabilizer of the state.
The standard fusion setup (see Fig. A4(a)) can distinguish both states and fusing qubits A, B will thus
succeed with ps = 1. After the fusion, one obtains the states |θ⟩ or ZN(B) |θ⟩, depending on whether
one projects on |Ψ+⟩AB or |Ψ−⟩AB, respectively. The graph transformation corresponds to removing
A, B from the original graph state |G⟩ by two Z-basis measurements.

Now we instead apply HA ⊗ HB such that the corresponding rotated fusion measures ZAZB ∧
XAXB on the original graph state, with fusion failure being deterministic for a stabilizer +XAXB.
Equivalently, rotating the graph state by the gate HA ⊗ HB gives:

1√
2

(|Φ+⟩AB |θ⟩ + |Φ−⟩AB ZN(B) |θ⟩) (A21)

This state only contains the two Bell states |Φ±⟩AB and +ZAZB is therefore a stabilizer of the state.
Since the standard fusion setup cannot distinguish the Bell states |Φ±⟩AB the fusion deterministically
fails (ps = 0). This corresponds to measuring ZA and ZB yielding the state |θ⟩ − ZN(B) |θ⟩ or |θ⟩ +

state stabilizer with support on just A, B is equivalent to the graph state fulfilling at least one of the above conditions,
and it thus would be a contradiction if a local operation (that does not change the support of the stabilizers) would
change whether one of the three conditions is fulfilled.
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ZN(B) |θ⟩ which would also be obtained by measuring XA and XB on the original graph state |G⟩.
(Note that in this boundary case, it would also be sufficient to measure just one of the qubits of |G⟩
in the X-basis and the other one in any basis because the first measurement detaches the second
fusion qubit from the rest of the graph.) Importantly, the corresponding graph transformation differs
from the previous case where −ZAZB is a stabilizer which shows that the graph transformations for
deterministic success and deterministic failure will in general be different.

So far we have assumed the standard fusion that, upon success, measures the parities XAXB ∧
ZAZB. For rotated fusions, the stabilizers that herald deterministic fusion success and failure are
correspondingly rotated. When applying, for instance, HAHB before the fusion setup as above, then a
stabilizer +XAXB would herald deterministic failure and −XAXB deterministic success (see the lower
part of Fig. A5(c)). Instead, if the fusion rotated with only HA, then +XAZB heralds deterministic
failure, and −XAZB deterministic success.

Finally, assume that one of the fusion qubits A, B is isolated but A, B are not an isolated graph
component (say qubit A is isolated, B is connected to some other qubits). Then the fusion will always
be probabilistic. The reason is the following: since A is detached, there is a stabilizer SA with just
support on A. Assume the fusion was deterministic and so there would be another stabilizer ±ZAZB.
The two stabilizers ±ZAZB and SA would have full rank on A, B, and so A, B would be detached from
the rest of the graph which contradicts the initial assumption that they are not.

C.3 Different stabilizers with support on only the fusion qubits

In this section, we first argue that a stabilizer with support on only the fusion qubits implies that
fusion success corresponds to two single-qubit measurements. Then, we show that if not ±ZAZB but
the other parity measured by a successful fusion, namely ±XAXB, is a stabilizer, fusion success and
failure give the same graph state (again assuming the standard fusion setup from Fig. A4(a)). In the
corresponding cases, the fusion outcome is probabilistic since Bell states of type |Φ±⟩A,B and |Ψ±⟩A,B

are present but, since success and failure give the same graph, it can be interpreted as deterministic.
One may have recognized that all the derived graph transformations for successful fusion correspond

to single-qubit measurements for the boundary cases from Fig. A5(a) where there is a stabilizer S̃AB

with just support on A, B. In the following we explain why this is the case: in the first boundary
graph structure, N(A) \ B = N(B) \ A, Eq. (A19) becomes

1√
2

C l
ABC̃ l

(
|Φ±⟩AB |θ⟩ + |Ψ+⟩AB |θ̃⟩

)
, (A22)

where the ± sign depends on whether A, B are connected (|Φ−⟩) or not (|Φ+⟩) and |θ̃⟩ = ZN(A)\B |θ⟩.
In the second possible case, N(B) \ A = ∅ (the case N(A) \ B = ∅ is analogous), Eq. (A19) becomes:

1√
2

C l
ABC̃ l

(
|0⟩A |+⟩B |θ⟩ + |1⟩A |−⟩B |θ̃⟩

)
(A23)

where we have assumed that A, B are connected as qubit B would be isolated otherwise. In both cases,
projecting on |Ψ+⟩ or |Ψ−⟩ upon fusion success can, up to a global phase, only yield stabilizer states
of the form |θ⟩ , |θ̃⟩ , 1√

2(|θ⟩ + ik |θ̃⟩) with k ∈ N0 (we derive this later in this paragraph). All these
states also can be obtained from the corresponding graph state (with C l

AB = 1, C̃ l = 1) by measuring
qubit B in the Z-basis and doing another Pauli-basis measurement on qubit A14. When C l

AB ̸= 1,
these single-qubit Pauli measurements need to be rotated correspondingly. This shows that fusion
success corresponds to single-qubit measurements in the mentioned boundary cases. We now prove
the assumption that fusion success can only result in the mentioned states |θ⟩ , |θ̃⟩ , 1√

2(|θ⟩ + ik |θ̃⟩):

14If single-qubit measurements in arbitrary bases were allowed, one could get any state of the form 1√
2 (|θ⟩ + eiϕ |θ̃⟩) by

single-qubit measurements since the two qubits A, B are in a two-dimensional subspace for the corresponding boundary
cases. However, we are restricted to measurements from the Pauli group here.
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we first note that the inner product between two stabilizer states can only have absolute values of
0, (1/

√
2)s with s ∈ N0 being smaller or equal to the number of qubits [31, 52]. For a two-qubit

system, the absolute value of projections such as | ⟨Ψ+ | C l
ABΨ+⟩ | can therefore only be 0, 1/

√
2, 1/2, 1

which restricts the possible states when projecting Eqs. (A22), (A23) on ⟨Ψ±| upon fusion success
to a finite number of states15. Furthermore, post-fusion states where |θ⟩ and |θ̃⟩ have prefactors of
different nonzero amplitudes (e.g. 1√

3 |θ⟩±
√

2
3ZN(A)\B |θ⟩) are not possible because such states cannot

be stabilizer states: projecting them on one of the orthogonal stabilizer states |θ⟩, |θ̃⟩ would yield
an inner product that is neither 0 nor (1/

√
2)s. Finally, states of the form 1√

2(|θ⟩ + eiϕ |θ̃⟩) with
ϕ ̸= z · π/2, z ∈ Z cannot be stabilizer states either: projecting all qubits, except for one in N(A) \ B,
on |0⟩ by Pauli Z-measurements would yield 1√

2(|+⟩ + eiϕ |−⟩). If ϕ ̸= z · π/2, z ∈ Z, this is not an
eigenstate of the Pauli operators X, Y, Z and thus not a stabilizer state. As only Pauli measurements
were used, the original state cannot be a stabilizer state.

Now, we consider the case where the stabilizer with support on the fusion qubits is ±XAXB, the
other stabilizer measured by the standard fusion upon success. Then, the state contains only two
Bell states: either |Φ+⟩A,B , |Ψ+⟩A,B (for a stabilizer +XAXB) or |Φ−⟩A,B , |Ψ−⟩A,B (for a stabilizer
−XAXB) as illustrated in Fig. A5(b). In the case of fusion success, the parities XAXB ∧ ZAZB are
measured by the standard fusion but since ±XAXB is a stabilizer, a measurement of the first parity
XAXB does nothing to the state. Measuring the second parity ZAZB yields a state where just one Bell
state is left (|Φ±⟩A,B ⊗ |S1⟩ or |Ψ±⟩A,B ⊗ |S2⟩). The fusion destructively measures the fusion qubits
A, B and the final state is thus |S1⟩ or |S2⟩ with no support on A, B. In the failure case of the standard
fusion, ZA and ZB are measured which is identical to measuring ZAZB and ZB. However, measuring
ZAZB gives again |Φ±⟩A,B ⊗ |S1⟩ or |Ψ±⟩A,B ⊗ |S2⟩ as in the fusion success case. This is a product
state between qubits A, B and the other qubits, and it is thus irrelevant what other measurement (like
ZB in the failure case or XAXB in the success case) is performed on A, B since the fusion destructively
measures these qubits. Therefore, when ±XAXB is a stabilizer, one obtains the same states |S1⟩ or
|S2⟩ for fusion success and fusion failure. Assuming deterministic fusion success would thus give the
correct graph transformation for the case of fusion failure. The graph transformation corresponds to
removing the nodes A, B from the graph by measuring ZA and ZB.

Note that if the standard fusion is rotated by some local gate, the stabilizer for which fusion success
and failure coincide will be ±XAXB rotated correspondingly. This is illustrated in Fig. A5(c) where
for a fusion rotated by two gates HA, HB, the stabilizer ±ZAZB becomes the one for which fusion
success and failure coincide.

Finally, assume the only stabilizer S̃AB with support on just A, B is not ±XAXB. In this case, fusion
success and failure can differ. An example is the case C l

AB = HA in Eq. (A22) giving the following
state with stabilizer +ZAXB (assuming unconnected fusion qubits, resp. |Φ+⟩):

1
2 C̃ l

(
(|Φ−⟩ + |Ψ+⟩)AB |θ⟩ + (|Φ+⟩ + |Ψ−⟩)ABZN(A)\B |θ⟩

)
(A24)

In this case, fusion success has the effect of Z-basis measurements (node removal) on the associated
graph state (state without the gate C l

AB = HA gate). Fusion failure has the effect of measuring XA

and ZB on the associated graph state. Since X- and Z-basis measurements correspond to different
graph transformations (see Ref. [1], Appendix F), the graph states are generally different for success
and failure even if there is a stabilizer S̃AB with support on just A, B.

C.4 Consequences of deterministic fusion
We have seen that deterministic fusion can occur when ±ZAZB is a stabilizer (for the standard fu-
sion). Deterministic fusion success occurs when −ZAZB is a stabilizer, deterministic failure occurs

15This also implies that the fusion success probability can only have discrete values for the mentioned boundary cases.
By evaluating the sum of the projection probabilities of equations such as Eq. (A22), (A23) on |Ψ+⟩ and |Ψ−⟩, one finds
that only 0, 0.5, 1 are possible fusion success probabilities.
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when +ZAZB is a stabilizer and we found in the examples in section C.2 that the graph transfor-
mation upon deterministic success and deterministic failure can differ. For a precise simulation of
arbitrary fusion networks where multiple graph states are fused, stabilizer signs should therefore be
considered. Note, however, that there is no consequence for the validity of our graph transformations
as a deterministic fusion failure case can be made a deterministic success by flipping a stabilizer sign
with a local Pauli gate and our graph transformations do not specify this stabilizer sign. Thus, the
derived graph transformations always correspond to possible operations, also in the boundary cases
from Fig. A5(a). Applying single-qubit Pauli gates before a deterministic fusion might be a potential
resource for making fusions deterministically successful in a fusion-based quantum computing archi-
tecture [4, 34, 53]. Furthermore, deterministic fusion only presents a boundary case, and applying the
graph transformation rules without signs may thus provide a good approximation for the connectivity
in a fusion network. In other words, ps = 0.5 typically applies on average for every single fusion, but
conditioned on the outcome of other fusions, it might become deterministic resulting in correlations
between the fusion outcomes [53]. The right strategy for dealing with a deterministic fusion depends
on the exact physical situation and in our implementation [14] we therefore only give a warning in our
source code [30] when a fusion can potentially be deterministic.

D Further graph transformations for unconnected fusion qubits

In the main text, we have derived some graph transformation rules for two fusion types from section 2.
Here, we derive the graph transformations corresponding to the remaining cases. Fig. A6 shows the
Venn diagrams describing the corresponding neighborhood transformations. We do not consider the
case N(A) \ B = N(B) \ A = ∅ (meaning A and B are disconnected from the rest of the graph) as the
measurement of the fusion qubits has no effect on the rest of the graph in this case.

D.1 XAYB ∧ YAXB (A, B detached)

We start by considering the case where all the stabilizers in equations (2) to (6) exist. The first
measured parity, XAYB, anti-commutes with the stabilizers in equations (3) to (5) and therefore
Eq. (3) is multiplied with the other two sets of stabilizers. The second parity, XAYB, anti-commutes
with the stabilizers in equations (2), (4), and (5). Thus we multiply Eq. (2) on equations (4) and (5).
Disregarding the Pauli operators acting on the measured qubits A, B yields the transformed stabilizers:

∀ai ∈ N(A) \ N(B) : YaiZN(ai)ZN(B)ZN(A)\ai
(A25)

∀bi ∈ N(B) \ N(A) : Ybi
ZN(bi)ZN(A)ZN(B)\bi

(A26)
∀ci ∈ N(A) ∩ N(B) : XciZN(ci) (A27)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (A28)

Applying R on all qubits bi and ai yields a graph state:

∀qi ∈ N(A)∆N(B) : XqiZN(qi)∆(N(A)\qi)∆(N(B)\qi) (A29)
∀ci /∈ N(A)∆N(B) : XciZN(ci) (A30)

Note that only the stabilizers S(A) and S(B) are used to make anti-commuting stabilizers commute
and thus the above update rule is valid for any neighborhood configuration.

D.2 XAYB ∧ YAZB (A, B detached)

Multiplying SA from Eq. (2) on the stabilizers in equations (5) and (6) and multiplying SB from Eq. (3)
on the stabilizers in equations (4) and (5) yields stabilizers that commute with both measured parities.
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Figure A6: In subfigures (1)-(14) Venn diagrams for the remaining neighborhood transformations for the different
fusion types with disconnected fusion qubits are illustrated. The subfigures represents the following equations: (1)
equations (A29), (A31), and (A32) (2) Eq. (9), (3) Eq. (A33), (4) Eq. (10), (5) Eq. (A53), (6) Eq. (A29) for the
case qi = ai ∈ N(A) \ N(B), (7) Eq. (8), (8) Eq. (A47), (9) Eq. (A49), (10) Eq. (A52), (11) Eq. (A50) , (12)
Eq. (A45), (13) Eq. (A46), (14) Eq. (A48).

After applying single-qubit R-gates (transforming Pauli Y to Pauli X) to the qubits bi in Sbi
and ci

in Sci , these equations become the stabilizer generators of a new graph state:

∀ai ∈ N(A) \ N(B) : Sai = XaiZN(ai)∆N(B) (A31)
∀bi ∈ N(B) \ N(A) : Sbi

= Xbi
ZN(bi)∆(N(B)\bi)∆N(A) (A32)

∀ci ∈ N(A) ∩ N(B) : Sci = XciZN(ci)∆(N(A)\ci) (A33)
∀di /∈ N(B) ∪ N(A) : Sdi

= Xdi
ZN(di) (A34)
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Where we have dropped SA, SB as well as the operators on the measured qubits A, B in the other
stabilizers. The associated Venn diagrams are very similar to Figs. 2(a) and 1(b).

D.3 YAZB ∧ ZAYB (A, B detached)

D.3.1 N(B) \ N(A) ̸= ∅

We start by considering the case when at least all the stabilizers in equations (2), (3), and (5). Then
the first measured parity, YAZB, anti-commutes with the stabilizers in equations (2) to (4) and (6)
and thus we multiply the stabilizer SB in Eq. (3) on the other three sets of stabilizers. After the
multiplication and dropping SB the stabilizers given in Eq. (4), Eq. (5) anti-commute with ZAYB.
Therefore, we pick one stabilizer in Eq. (5), which we denote Sb∗ , multiply it with the rest, and then
drop it. Without the measured fusion qubits A, B, the stabilizers in equations (2), (4), (6), and (7)
are transformed as:

ZN(A)∆N(B) (A35)
∀ai ∈ N(A) \ N(B) :

if ai /∈ N(b∗) : XaiYb∗ZN(ai)∆(N(B)\b∗)∆N(b∗) (A36)
else : YaiXb∗ZN(ai)∆N(B)∆(N(b∗)\ai) (A37)

∀bi ∈ N(B) \ N(A) \ b∗ :
if bi /∈ N(b∗) : Xbi

Xb∗ZN(bi)∆N(b∗) (A38)
else : Ybi

Yb∗Z(N(bi)\b∗)∆(N(b∗)\bi) (A39)
∀ci ∈ N(A) ∩ N(B) :

if ci /∈ N(b∗) : YciZb∗ZN(ci)∆(N(B)\b∗\ci) (A40)
else : YciZN(ci)∆(N(B)\ci) (A41)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(b∗) : Xdi

ZN(di) (A42)
else : Xdi

Zb∗ZN(di)\b∗ (A43)

We proceed by 1) applying H on b∗, 2) multiplying Eq. (A35) to all stabilizers containing a Xb∗ or Yb∗

(after applying H on b∗), and 3) applying R on the qubits ai and ci in equations (A36), (A37), (A40),
and (A41). This yields the stabilizer generators representing the transformed graph state:

Xb∗ZN(A)∆(N(B)\b∗) (A44)
∀ai ∈ N(A) \ N(B) :

if ai /∈ N(b∗) : XaiZb∗ZN(ai)∆(N(A)\ai)∆N(b∗) (A45)
else : XaiZb∗ZN(ai)∆N(B)∆(N(b∗)\ai) (A46)

∀bi ∈ N(B) \ N(A) \ b∗ :
if bi /∈ N(b∗) : Xbi

Zb∗ZN(bi)∆N(b∗) (A47)
else : Xbi

Zb∗ZN(bi)∆N(A)∆N(B)∆N(b∗) (A48)
∀ci ∈ N(A) ∩ N(B) :

if ci /∈ N(b∗) : XciZN(ci)∆(N(A)\ci) (A49)
else : XciZN(ci)∆(N(B)\ci) (A50)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(b∗) : Xdi

ZN(di) (A51)
else : Xdi

ZN(di)∆N(B)∆N(A) (A52)
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D.3.2 N(B) \ N(A) = ∅ ∧ N(A) \ N(B) ̸= ∅

For N(B) \ N(A) = ∅ the special neighbor b∗ in the previous section has to be changed to a∗. Since
the measured parities YAZB ∧ ZAYB are symmetric concerning interchanging A, B, the relevant trans-
formation rules can be obtained by swapping the labels A, B in the previous section.

D.3.3 N(B) \ N(A) = ∅ ∧ N(A) \ N(B) = ∅ ∧ N(B) ∩ N(A) ̸= ∅

Here, A and B completely share their neighborhood, i.e. the stabilizers in equations (4) and (5) do not
exist but the stabilizers in Eq. (6) do. The graph transformation is however analogous to section D.3.1
as the derivation coincides (up to choosing a special neighbor b∗). As for the case above, the stabilizers
in equations (2), (3), and (6) anti-commutes with YAZB and thus we multiply Eq. (3) on the other
three sets of stabilizers. After the multiplication, all the stabilizers commute with ZAYB. We apply R
on all qubits ci ∈ N(A) ∩ N(B) to transform Yci −→ Xci . Dropping the measured qubits A, B yields
graph state stabilizers:

∀ci ∈ N(A) ∩ N(B) : XciZN(ci) ∆(N(B)\ci) (A53)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (A54)

E Graph transformations for connected fusion qubits

In the main text and Appendix D, we have derived graph transformation rules when both fusion qubits
are detached. In this section, we derive the corresponding rules for connected fusion qubits. When the
fusion qubits A and B of the graph state are connected, the different stabilizer generators read:

SA = XAZBZN(A)\B (A55)
SB = XBZAZN(B)\A (A56)
∀ai ∈ N(A) \ B \ N(B) : Sai = XaiZN(ai)\AZA (A57)
∀bi ∈ N(B) \ A \ N(A) : Sbi

= Xbi
ZN(bi)\BZB (A58)

∀ci ∈ N(A) ∩ N(B) : Sci = XciZN(ci)\A\BZAZB (A59)
∀di /∈ N(B) ∪ N(A) : Sdi

= Xdi
ZN(di) (A60)

E.1 XAZB ∧ ZAXB (A, B connected)

In the main text, we have considered the fusion type XAZB ∧ ZAXB for the case that the two fusion
quits are not connected. The case that the two fusion qubits are connected is more involved as Eq. (A55)
and Eq. (A56) both commute with the measured parities and therefore multiplication with none of
them can be used to make anticommuting stabilizers commuting. Starting from equations (A55)
to (A60), we derive the corresponding rules when the fusion qubits A, B are connected. Depending on
the neighborhood of the fusion qubits not all these types of stabilizers may exist leading to different
transformations of the stabilizers/graphs. These cases are considered in the following.

E.1.1 (N(B) \ A = ∅ ∧ N(A) \ B ̸= ∅) ∨ (N(A) \ B = ∅ ∧ N(B) \ A ̸= ∅)

Assume that qubit B is only connected to qubit A and qubit A has at least one additional neighbor
(N(B) \ A = ∅ ∧ N(A) \ B ̸= ∅). The case N(A) \ B = ∅ ∧ N(B) \ A ̸= ∅ is analogous by interchanging
the labels A, B. In this case, the stabilizer SB in Eq. (A56) is just one of the measured parities and can
be removed. Furthermore, stabilizer of type Sbi

in Eq. (A58) and Sci in Eq. (A59) do not exist. Going
through the list of stabilizers, Sai in Eq. (A57) is the first one that anticommutes with the measured
parity XAZB. Therefore, we chose a special neighbor a∗ ∈ N(A) \ B \ N(B) and multiply Sa∗ on
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all other stabilizers that anticommute with Sa∗ . The remaining stabilizers commute with the second
measured parity ZAXB and we drop the part of them acting on the measured qubits A, B. This gives:

ZN(A) (A61)
∀ai ∈ N(A) \ B \ N(B) : XaiXa∗ZN(ai)∆N(a∗) (A62)
∀di /∈ N(B) ∪ N(A) : Sdi

= Xdi
ZN(di) (A63)

Writing the support on qubit a∗ explicitly and using N(B) = A /∈ N(A) yields:

Za∗ZN(A)\a∗ (A64)
∀ai ∈ N(A) \ B \ a∗ :

if ai /∈ N(a∗) : XaiXa∗ZN(ai)∆N(a∗) (A65)
else : YaiYa∗Z(N(ai)\a∗)∆(N(a∗)\ai) (A66)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(a∗) : Xdi

ZN(di) (A67)
else : Xdi

Za∗ZN(di)\a∗ (A68)

Applying Ha∗ , then multiplying Eq. (A64) on all other stabilizers including Xa∗ or Ya∗ gives:

Xa∗ZN(A)\a∗ (A69)
∀ai ∈ N(A) \ B \ a∗ :

if ai /∈ N(a∗) : XaiZa∗ZN(ai)∆N(a∗) (A70)
else : XaiZa∗ZN(ai),N(a∗),N(A) (A71)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(a∗) : Xdi

ZN(di) (A72)
else : Xdi

ZN(di)∆N(A) (A73)

which are the stabilizers of a graph state. In this particular case, the graph transformation is identical
to measuring qubit A in the X-basis (see section F) which follows from the discussion in section C.3.
For simplicity, we do not explicitly draw Venn diagrams for the different cases of connected fusion
qubits in the following. However, all graph transformations can still be directly translated into a Venn
diagram picture as before.

E.1.2 N(A) \ B \ N(B) = N(B) \ A \ N(A) = ∅ ∧ N(A) ∩ N(B) ̸= ∅

Here, qubits A, B share their entire neighborhood (not considering A, B themselves). Consequently,
stabilizer of type Sai from Eq. (A57) and Sbi

from Eq. (A58) do not exist (and so no special neighbor
a∗ can be selected as in the previous sub-section). Since the stabilizers in equations (A55) and (A56)
are identical except for the operators on the measured qubits A, B and commute with both measured
parities, we just keep Eq. (A55) and discard Eq. (A56) upon the fusion. We chose a special neighbor
c∗ ∈ N(A)∩N(B) and multiply Sc∗ on all the other stabilizers of type Sci which makes them commute
with both measured parities. Dropping the operators on the measured qubits A, B yields:

ZN(A) (A74)
∀ci ∈ N(A) ∩ N(B) : XciXc∗ZN(ci)∆N(c∗) (A75)
∀di /∈ N(B) ∪ N(A) : Sdi

= Xdi
ZN(di) (A76)

These equations are very similar to equations (A61) to (A63) from the previous section (with stabilizers
of type Sci instead of type Sai). After applying the gate Hc∗ , the graph transformation rules are,
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therefore, identical with neighbors of type ci rather than type ai:

Xc∗ZN(A)\c∗ (A77)
∀ci ∈ (N(A) ∩ N(B)) \ c∗ :

if ci /∈ N(c∗) : XciZc∗ZN(ci)∆N(c∗) (A78)
else : XciZc∗ZN(ci),N(c∗),N(A) (A79)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(c∗) : Xdi

ZN(di) (A80)
else : Xdi

ZN(di)∆N(A) (A81)

E.1.3 N(A) \ B \ N(B) ̸= ∅ ∧ N(B) \ A \ N(A) ̸= ∅

Here, we consider the most typical case that both fusion qubits have at least one neighbor that is not
connected to the other fusion qubit, and thus stabilizers of type Eq. (A57) and Eq. (A58) do exist.
The cases considered in this and the following section are lengthy as two special neighbors have to be
chosen to make all other stabilizers commute with the measured parities via multiplication. This is
necessary since the stabilizers in equations (A55) and (A56) commute with both measured parities.

All stabilizers in Eq. (A57) as well as Eq. (A59) do not commute with the first measured parity
XAZB. We chose a special neighbor a∗ ∈ N(A) \ B \ N(B), and we multiply all the other stabilizers
in equations (A57) and (A59) with Sa∗ . Furthermore, all stabilizers in equations (A58) and (A59) do
not commute with the second parity ZAXB (also after multiplication with Sa∗). Therefore, we chose a
special neighbor b∗ ∈ N(B) \ A \ N(A) and multiply Sb∗ on all the other stabilizers that anti-commute
with ZAXB. Dropping the non-measurable stabilizers Sa∗ , Sb∗ yields the stabilizers after the fusion:

Za∗ZN(A)\a∗ (A82)
Zb∗ZN(B)\b∗ (A83)
∀ai ∈ N(A) \ N(B) \ B \ a∗ : XaiXa∗ZN(ai)∆N(a∗) (A84)
∀bi ∈ N(B) \ N(A) \ A \ b∗ : Xbi

Xb∗ZN(bi)∆N(b∗) (A85)
∀ci ∈ N(A) ∩ N(B) : XciXa∗Xb∗ZN(ci)∆N(a∗)∆N(b∗) (A86)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (A87)

To obtain a graph state, we apply two single-qubit Hadamard gates Ha∗ , Hb∗ . Using the
definitions K∗

ai
:= (N(ai)∆N(a∗)) \ {ai, a∗, b∗}, L∗

bi
:= (N(bi)∆N(b∗)) \ {bi, a∗, b∗}, M∗

ci
:=
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(N(ci)∆N(a∗)∆N(b∗)) \ {ci, a∗, b∗} yields the following stabilizers:

Xa∗ZN(A)\a∗ (A88)
Xb∗ZN(B)\b∗ (A89)
∀ai ∈ N(A) \ N(B) \ B \ a∗ :

if: ai /∈ N(a∗) :
if: b∗ /∈ N(ai)∆N(a∗) : XaiZa∗ZK∗

ai
(A90)

else: XaiZa∗Xb∗ZK∗
ai

(A91)

else:
if: b∗ /∈ N(ai)∆N(a∗) : YaiYa∗ZK∗

ai
(A92)

else: YaiYa∗Xb∗ZK∗
ai

(A93)

∀bi ∈ N(B) \ N(A) \ A \ b∗ :
if: bi /∈ N(b∗) :

if: a∗ /∈ N(bi)∆N(b∗) : Xbi
Zb∗ZL∗

bi
(A94)

else: Xbi
Xa∗Zb∗ZL∗

bi
(A95)

else:
if: a∗ /∈ N(bi)∆N(b∗) : Ybi

Yb∗ZL∗
bi

(A96)

else: Ybi
Xa∗Yb∗ZL∗

bi
(A97)

∀ci ∈ N(A) ∩ N(B) :
if: (ci /∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ /∈ N(a∗)) ∨ (ci ∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ ∈ N(a∗)) :

XciZa∗Zb∗ZM∗
ci

(A98)

elif: (ci ∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ /∈ N(a∗)) ∨ (ci /∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ ∈ N(a∗)) :
YciYa∗Zb∗ZM∗

ci
(A99)

elif: (ci /∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ /∈ N(a∗)) ∨ (ci ∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ ∈ N(a∗)) :
YciZa∗Yb∗ZM∗

ci
(A100)

elif (ci /∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ ∈ N(a∗)) ∨ (ci ∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ /∈ N(a∗)) :
XciYa∗Yb∗ZM∗

ci
(A101)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(a∗) ∧ di /∈ N(b∗) : Xdi

ZN(di) (A102)
elif di ∈ N(a∗) ∧ di /∈ N(b∗) : Xdi

ZN(di)\a∗Xa∗ (A103)
elif di /∈ N(a∗) ∧ di ∈ N(b∗) : Xdi

ZN(di)\b∗Xb∗ (A104)
elif di ∈ N(a∗) ∧ di ∈ N(b∗) : Xdi

ZN(di)\{a∗,b∗}Xa∗Xb∗ (A105)

By suitable multiplication with the stabilizers in Eq. (A88) and/or Eq. (A89), these equations are
transformed into the standard representation of the stabilizer generators of a graph state. For instance:
as the stabilizers in Eq. (A93) have support on both a∗, b∗ with Pauli-matrices that are not Pauli-Z,
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they are multiplied by both Eq. (A88) and Eq. (A89). The stabilizers of the obtained graph state are:

Xa∗ZN(A)\a∗ (A106)
Xb∗ZN(B)\b∗ (A107)
∀ai ∈ N(A) \ N(B) \ B \ a∗ :

if: ai /∈ N(a∗) :
if: b∗ /∈ N(ai)∆N(a∗) : XaiZa∗ZK∗

ai
(A108)

else: XaiZa∗Z(N(B)\b∗)∆K∗
ai

(A109)

else:
if: b∗ /∈ N(ai)∆N(a∗) : XaiZa∗Z(N(A)\{a∗,ai})∆K∗

ai
(A110)

else: XaiZa∗Z(N(A)\{a∗,ai})∆(N(B)\b∗)∆K∗
ai

(A111)

∀bi ∈ N(B) \ N(A) \ A \ b∗ :
if: bi /∈ N(b∗) :

if: a∗ /∈ N(bi)∆N(b∗) : Xbi
Zb∗ZL∗

bi
(A112)

else: Xbi
Zb∗Z(N(A)\a∗)∆L∗

bi
(A113)

else:
if: a∗ /∈ N(bi)∆N(b∗) : Xbi

Zb∗Z(N(B)\{b∗,bi})∆L∗
bi

(A114)

else: Xbi
Zb∗Z(N(A)\a∗)∆(N(B)\{b∗,bi})∆L∗

bi
(A115)

∀ci ∈ N(A) ∩ N(B) :
if: (ci /∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ /∈ N(a∗)) ∨ (ci ∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ ∈ N(a∗)) :

XciZa∗Zb∗ZM∗
ci

(A116)

elif: (ci ∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ /∈ N(a∗)) ∨ (ci /∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ ∈ N(a∗)) :
XciZa∗Zb∗Z(N(A)\{a∗,ci})∆M∗

ci
(A117)

elif: (ci /∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ /∈ N(a∗)) ∨ (ci ∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ ∈ N(a∗)) :
XciZa∗Zb∗Z(N(B)\{b∗,ci})∆M∗

ci
(A118)

elif (ci /∈ N(a∗) ∧ ci /∈ N(b∗) ∧ b∗ ∈ N(a∗)) ∨ (ci ∈ N(a∗) ∧ ci ∈ N(b∗) ∧ b∗ /∈ N(a∗)) :
XciZa∗Zb∗Z(N(A)\a∗)∆(N(B)\b∗)∆M∗

ci
(A119)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(a∗) ∧ di /∈ N(b∗) : Xdi

ZN(di) (A120)
elif di ∈ N(a∗) ∧ di /∈ N(b∗) : Xdi

ZN(di)∆N(A) (A121)
elif di /∈ N(a∗) ∧ di ∈ N(b∗) : Xdi

ZN(di)∆N(B) (A122)
else : Xdi

ZN(di)∆N(A)∆N(B) (A123)

As before, all these equations correspond to symmetric differences between neighborhoods from the
original graph state. In the case of Eq. (A119), five different graph neighborhoods are involved which
is the maximum number for all the considered graph transformation rules.

E.1.4 N(A) \ B \ N(B) ̸= ∅ ∧ N(B) \ A \ N(A) = ∅

In this case, the neighborhood N(B)\A is fully contained in N(A) with a finite number of neighbors in
N(B) \ A. There are stabilizers of the type Sai , Sci in equations (A57) and (A59) yet no stabilizers of
type Sbi

in Eq. (A58). Both Sai and Sci anticommute with the measured parity XAZB and a stabilizer
corresponding to a special neighbor Sa∗ is multiplied on all these equations. Eq. (A59) changes to
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SciSa∗ which anticommutes with the second measured parity (ZAXB). Therefore, we chose a second
special neighbor c∗ and we multiply Sc∗ on all the other stabilizers of type SciSa∗ . After applying
Ha∗ , Hc∗ , a derivation similar to the previous section yields:

Xa∗ZN(A)\N(B)\a∗ (A124)
Xc∗ZN(B)\c∗ (A125)
∀ai ∈ N(A) \ N(B) \ B \ a∗ :

if: ai /∈ N(a∗) :
if: c∗ /∈ N(ai)∆N(a∗) : XaiZa∗ZK∗

ai
(A126)

else: XaiZa∗Z(N(B)\c∗)∆K∗
ai

(A127)

else:
if: c∗ /∈ N(ai)∆N(a∗) : XaiZa∗Z(N(A)\{N(B),a∗,ai})∆K∗

ai
(A128)

else: XaiZa∗Z(N(A)\{N(B),a∗,ai})∆(N(B)\c∗)∆K∗
ai

(A129)

∀ci ∈ N(A) ∩ N(B) \ c∗ :
if: ci /∈ N(c∗) :

if: a∗ /∈ N(ci)∆N(c∗) : XciZc∗ZL∗
ci

(A130)

else: XciZc∗Z(N(A)\N(B)\a∗)∆L∗
ci

(A131)

else:
if: a∗ /∈ N(ci)∆N(c∗) : XciZc∗Z(N(B)\{c∗,ci})∆L∗

ci
(A132)

else: XciZc∗Z(N(A)\N(B)\a∗)∆(N(B)\{c∗,ci})∆L∗
ci

(A133)

∀di /∈ N(A) ∪ N(B) :
if di /∈ N(a∗) ∧ di /∈ N(c∗) : Xdi

ZN(di) (A134)
elif di ∈ N(a∗) ∧ di /∈ N(c∗) : Xdi

ZN(di)∆(N(A)\N(B)) (A135)
elif di /∈ N(a∗) ∧ di ∈ N(c∗) : Xdi

ZN(di)∆N(B) (A136)
else : Xdi

ZN(di)∆(N(A)\N(B))∆N(B) (A137)

With K∗
ai

:= (N(ai)∆N(a∗)) \ {ai, a∗, c∗} and L∗
ci

:= (N(ci)∆N(c∗)) \ {ci, a∗, c∗}.

E.1.5 N(B) \ A \ N(A) ̸= ∅ ∧ N(A) \ B \ N(B) = ∅

This case is analogous to the previous section by interchanging the labels A, B.

E.2 XAYB ∧ YAZB (A, B connected)
In section D.2, we have considered the parity measurement XAYB ∧ YAZB when the two fusion qubits
A, B are not connected. Here we derive the corresponding rules when A, B are connected starting from
equations (A55) to (A60). The stabilizer SA in Eq (A55) anticommutes with XAYB. The same applies
to Sai (Eq. (A57)) and Sbi

(Eq. (A58)) and we replace Sai by SaiSA, Sbi
by Sbi

SA, and drop SA. The
remaining stabilizers, which all commute with XAYB, are:

SB = ZN(B)\AXBZA (A138)
∀ai ∈ N(A) \ B \ N(B) : Sai = YaiZN(ai)\AZN(A)\ai\BYAZB (A139)
∀bi ∈ N(B) \ A \ N(A) : Sbi

= Xbi
ZN(bi)∆N(A)XA (A140)

∀ci ∈ N(A) ∩ N(B) : Sci = XciZN(ci)\A\BZAZB (A141)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (A142)
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where the stabilizers in equations (A140) and (A141) anticommute with the second parity YAZB. As
before, different cases are considered since some types of anticommuting stabilizers might not exist.

E.2.1 N(B) \ A \ N(A) = ∅ ∧ N(B) ∩ N(A) = ∅ ∧ N(A) \ B \ N(B) ̸= ∅

In this case no stabilizer from equations (A140) and (A141) exists and the stabilizer in Eq. (A138) is
equal to 1 after the fusion. Sai in Eq. (A139) and Sdi

in Eq. (A142) are the only remaining stabilizers
and these commute with both measured parities. Applying the gate R on the qubits of type Sai and
dropping the measured qubits A, B yields the stabilizers of a graph state:

∀ai ∈ N(A) \ B \ N(B) : Sai = XaiZN(ai)∆(N(A)\ai) (A143)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (A144)

E.2.2 N(B) \ A \ N(A) ̸= ∅

In this case, there is at least one stabilizer of type Sbi
in Eq. (A140) which anticommutes with the

second parity YAZB. We pick a special neighbor b∗ ∈ N(B) \ A \ N(A) and multiply Sb∗ on all other
stabilizers that anticommute with YAZB. Dropping the measured qubits A, B and writing the support
on b∗ explicitly yields:

Zb∗ZN(B)\b∗ (A145)
∀ai ∈ N(A) \ B \ N(B) :

if ai /∈ N(b∗) : YaiZN(ai)∆(N(A)\ai) (A146)
else : YaiZb∗Z(N(ai)\b∗)∆(N(A)\ai) (A147)

∀bi ∈ N(B) \ A \ b∗ \ N(A) :
if bi /∈ N(b∗) : Xbi

Xb∗ZN(bi)∆N(b∗) (A148)
else : Ybi

Yb∗Z(N(bi)\b∗)∆(N(b∗)\bi) (A149)
∀ci ∈ N(A) ∩ N(B) :

if ci /∈ N(b∗) : YciXb∗ZN(ci)ZN(b∗)∆(N(A)\ci) (A150)
else : XciYb∗ZN(ci)\b∗ZN(b∗)∆N(A) (A151)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(b∗) : Xdi

ZN(di) (A152)
else : Xdi

ZN(di)∆N(B) (A153)

We multiply stabilizers containing Zb∗ or Yb∗ with SB in Eq. (A138). Then we apply the gate Hb∗ .
Furthermore, we apply the gate R on all qubits ai ∈ N(A) \ B \ N(B) and on all qubits of type
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ci ∈ N(A) ∩ N(B). This yields the following graph state stabilizers:

Xb∗ZN(B)\b∗ (A154)
∀ai ∈ N(A) \ B \ N(B) :

if ai /∈ N(b∗) : XaiZN(ai)∆(N(A)\ai) (A155)
else: XaiZN(ai)∆N(B)∆(N(A)\ai) (A156)

∀bi ∈ N(B) \ A \ b∗ \ N(A) :
if bi /∈ N(b∗) : Xbi

Zb∗ZN(bi)∆N(b∗) (A157)
else : Xbi

Zb∗ZN(bi)∆N(b∗)∆N(B) (A158)
∀ci ∈ N(A) ∩ N(B) :

if ci /∈ N(b∗) : XciZb∗ZN(ci)∆N(b∗)∆(N(A)\ci) (A159)
else: XciZb∗ZN(ci)∆N(A)∆N(B)∆(N(b∗)\ci) (A160)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(b∗) : Xdi

ZN(di) (A161)
else: Xdi

ZN(di)∆N(B) (A162)

E.2.3 N(B) \ A \ N(A) = ∅ ∧ N(B) ∩ N(A) ̸= ∅

Here, no neighbor b∗ ∈ N(B)\A\N(A) exists and we therefore pick a special neighbor c∗ ∈ N(B)∩N(A)
and multiply Sc∗ on all the other stabilizers that anticommute with YAZB. A procedure that is very
similar to the previous section yields the following stabilizers after applying the Hadamard gate Hc∗

and the gates Rai on all qubits ai ∈ N(A) \ B \ N(B):

Xc∗ZN(B)\c∗ (A163)
∀ai ∈ N(A) \ B \ N(B) :

if ai /∈ N(c∗) : XaiZN(ai)∆N(B)∆(N(A)\ai) (A164)
else: XaiZN(ai)∆(N(A)\ai) (A165)

∀ci ∈ (N(A) ∩ N(B)) \ c∗ :
if ci /∈ N(c∗) : XciZc∗ZN(ci)∆N(c∗) (A166)
else: XciZc∗ZN(ci)∆N(c∗)∆N(B) (A167)

∀di /∈ N(B) ∪ N(A) :
if di /∈ N(c∗) : Xdi

ZN(di) (A168)
else: Xdi

ZN(di)∆N(B) (A169)

E.3 XAXB ∧ ZAZB (A, B connected)

The graph transformations are identical to the case that the fusion qubits A, B are not connected.
The reason is the following: first, equations (2) to (7) and equations (A55) to (A60) are identical when
disregarding the measured qubits A, B. Second, the procedure to make stabilizers (anticommuting
with the measured parities) commute can be chosen identically: multiply SA on SB and if (N(A) \
B)∆(N(B)\A) ̸= ∅, chose a special neighbor in (N(A)\B)∆(N(B)\A) and multiply the corresponding
stabilizer with all other ones that anticommute with the second measured parity. If (N(A)\B)∆(N(B)\
A) = ∅, SASB = 1 can be removed and the fusion is just removing both qubits from the graph. Thus
the graph transformation is the same as in Sec. 3.2.
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E.4 YAZB ∧ ZAYB (A, B connected)
In this section, we derive the update rules for the parity measurement YAZB ∧ ZAYB when the fusion
qubits A and B are connected. The update rules are realized by first multiplying Eq. (A55) on
equations (A57) and (A59) followed by multiplying Eq. (A56) on equations (A58) and (A59), and
finally applying R on the qubits ai ∈ N(A) \ N(B) \ B and bi ∈ N(B) \ N(A) \ A (equations (A57)
and (A58)). Omitting the fusion qubits yields the stabilizers of the transformed graph state:

∀ai ∈ N(A) \ N(B) \ B : XaiZN(ai)∆N(A)\ai
(A170)

∀bi ∈ N(B) \ N(A) \ A : Xbi
ZN(bi)∆N(B)\bi

(A171)
∀ci ∈ N(A) ∩ N(B) : XciZN(ci)∆N(B)∆N(A) (A172)
∀di /∈ N(B) ∪ N(A) : Xdi

ZN(di) (A173)

E.5 YAXB ∧ XAYB (A, B connected)
The graph transformations are identical to the case that the fusion qubits A, B are not connected (see
Appendix D.1). The reason is that equations (2) to (7) and equations (A55) to (A60) are identical
up to the measured qubits A, B and in both cases, the stabilizers SA, SB can be multiplied on all
stabilizers in N(A)∆N(B) to make all other stabilizers commute with the measured parties. Therefore
equations (A29) and (A30) also represent the graph transformation for connected fusion qubits.

F Graph transformation by single-qubit measurements
For completeness, we also show here the graph transformations corresponding to single-qubit measure-
ments. These transformations can also be found in Refs. [7, 1, 20]. Before the measurement of qubit
A, the stabilizers are:

SA = XAZN(A) (A174)
∀ai ∈ N(A) : Sai = XaiZN(ai)\AZA (A175)
∀di /∈ (N(A) ∪ A) : Sdi

= Xdi
ZN(di) (A176)

When measuring qubit A in the Z-basis, the only stabilizer that anticommutes with the measurement
is the one in Eq. (A174). Up to local Z-gates applied to N(i) upon the measurement outcome 1, the
Z-basis measurement therefore corresponds to removing the measured qubit from the graph. Measure-
ments in the X- and Y -basis can be represented by local graph complementations [1] or symmetric
differences of local neighborhoods in the graph [20] in combination with removing the measured qubits.

F.1 single-qubit Y -basis measurement
The equations (A174) and (A175) do both anticommute with YA. When measuring YA, the remaining
stabilizers can be obtained by multiplying Eq. (A174) on all stabilizers in Eq. (A175) and dropping
Eq. (A174) afterwards which yields:

∀ai ∈ N(A) : YaiZN(ai)∆(N(A)\ai) (A177)
∀di /∈ N(A) : Xdi

ZN(di) (A178)

where, as before, we have not explicitly subtracted the qubit A from N(ai) as it has been measured
and thus is not part of the graph anymore. After applying the gate R on all qubits ai:

∀ai ∈ N(A) : XaiZN(ai)∆(N(A)\ai) (A179)
∀di /∈ N(A) : Xdi

ZN(di) (A180)

which corresponds to adding (modulo-two) N(A) on the neighborhoods of all qubits within N(A),
respectively a local complementation of the neighborhood N(A) [7].
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Figure A7: Venn diagrams representing the neighborhood transformations for single-qubit measurements. (a) Effect
of measuring YA (see Eq. (A179)). (b, c, d) Effect of measuring XA for the cases given by Eq. (A182), Eq. (A183),
and Eq. (A185), respectively.

F.2 single-qubit X-basis measurement
The stabilizer in Eq. (A174) commutes with XA but the stabilizers in Eq. (A175) anticommute with
it. We chose a special neighbor a∗ and multiply Sa∗ on the other stabilizers in Eq. (A175). Applying
Ha∗ and removing the measured qubit A from Eq. (A174) results in:

Xa∗ZN(A)\a∗ (A181)
∀ai ∈ N(A) \ a∗ :

if ai /∈ N(a∗) : XaiZa∗ZN(ai)∆N(a∗) (A182)
else : XaiZa∗ZN(ai)∆N(a∗)∆N(A) (A183)

∀di /∈ N(A) :
if di /∈ N(a∗) : Xdi

ZN(di) (A184)
else : Xdi

ZN(di)∆N(A) (A185)

The Venn diagrams corresponding to the graph transformations upon single-qubit Y - and X-basis
measurements are shown in Fig. A7.

G Resource state generation
In the main text, we have shown a construction of the cube graph from the resource state in Fig. 3
using three fusions. In Fig. A8(a) we show how the used resource state can be deterministically
generated by a single quantum emitter (see Ref. [37, 38, 47] for related schemes). The generation
relies on three operations: 1) Photonic qubit generation (see operation Gen in Fig. A8(b)), 2) Local
complementation (LC) [1]16, and 3) single qubit measurements in the Z-basis. In a graph picture,
photonic qubit generation corresponds to adding an edge between the emitter node and the generated
photonic qubit node [37, 34], as shown in Fig. A8(b). Furthermore, first performing a photonic qubit
generation, then LC on the emitter followed by LC on the newly generated photonic qubit interchanges
the emitter and the photonic qubit in the graph (see Fig. A8(c)). This operation we call Push photonic
qubit generation (P.Gen). With these operations, we generate the required resource state as shown in
Fig. A8(a), followed by generating the cube graph using the three fusions. Without any fusions, we find
by computing the so-called height function [47] for all orderings of the photonic qubit generation that at
least three interacting quantum emitters would be required to generate the cube graph deterministically.

16Applying LC on a node q of a graph G complements the induced subgraph G[N(q)] (the subgraph with vertices from
the neighborhood N(q), connected by edges from G). Local complementation on qubit q can be implemented by the
single-qubit Clifford gates exp

(
−i π

4 Xq

)
exp

(
i π

4 Z
)

N(q)
[7, 1]
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Figure A8: (a) Generation of the cubic graph state [26] using a single quantum emitter and the three fusion operations
from Fig. 3(c) of the main text. (b) Explanation of the operation Gen. A new photon attached to the quantum
emitter, E, by a controlled-Z gate is generated by optical excitation of the emitter followed by photon emission and
a Hadamard gate on the emitted photon (see Refs. [37, 38, 34] for more details on the scheme). (c) Explanation
of the operation P.Gen. The operation is composed of generating a photonic qubit as in (b) followed by local
complementation (LC) on the emitter and then LC on the newly generated photonic qubit.
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