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1Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
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A lepton-neutron potential in configuration space is obtained. It is based on the Coulomb plus
hyperfine interaction Hamiltonian integrated over the neutron charge and magnetic densities. Dif-
ferent parametrisations of the neutron electromagnetic form factors are compared. It is given in the
operator form with a central, spin-spin, tensor and spin-orbit terms. The potentials for lowest par-
tial waves states are presented. We compute the lepton-neutron lepton (ln) low-energy parameters
for the S-waves, estimate the zero-energy cross sections for higher angular momentum states, and
point out a possible divergence in the partial wave summation due to the spin-orbit potential.

PACS numbers:

I. INTRODUCTION

The lepton-neutron (ln) interaction is dominated by
electromagnetic effects. At the leading order, they are
due to the electric interaction between the point-like lep-
ton (l) and the neutron (n) internal charge distribution,
to the magnetic interaction between l and n magnetic
moments and to the coupling between the n magnetic
moment in the field created by the l current. They may
have different relative signs and strengths depending on
the lepton flavour as well as on the quantum number of
the ln system and, despite of its perturbative charac-
ter, offer a rich variety of non trivial behaviours. A key
point in their theoretical estimation is to properly take
into account the neutron’s internal electromagnetic struc-
ture, obtained through the corresponding electric (Gn

E)
and magnetic (Gn

M ) form factors.
The lepton-neutron low-energy parameters (LEP) are

fundamental quantities which are worth to estimate and
measure. Furthermore, they might have several appli-
cations in the precision atomic spectroscopy measure-
ments using e’s and µ’s [1], in determining the deuteron
[2] and α-particle charge radius [3], as well as in solid
state physics with low energy n scattering on materials
[4–6]. Future experiments based on muonic X-ray spec-
troscopy are also proposed to significantly improve the
charge radii of light nuclei [7] as well as some beyond
the standard model investigations related to, still specu-
lative, new bosons (see e.g. [8]).

The aim of the present article is to obtain a ln poten-
tial in configuration space allowing us to compute, within
a non-relativistic dynamics, the LEP parameters as well
as the corresponding phase shifts and cross sections for
the lowest partial waves. It is based on the Hyperfine
Hamiltonian integrated over the n charge and magnetic
densities. The potential has four components: a central
part due to Coulomb interaction, a spin-spin and a tensor
term due to the dipole-dipole magnetic interaction, and
spin-orbit term coupling the ln relative angular momen-
tum, L, to the n spin sn. This potential is the keystone to
evaluate the electronic effects in the low energy neutron
scattering in nuclear atomic targets.

Section II is devoted to describe some selected n elec-
tromagnetic form factors used to derive the correspond-
ing charge and magnetic densities in configuration space.
The ln electromagnetic potential in configuration space

is obtained in section III and the main properties of this
interaction in the lowest partial wave are discussed.
The numerical results for the ln low-energy scattering

observables are summarised in Section IV, with special
emphasis in the (S-wave) low-energy parameters, phase
shifts and zero-energy cross sections and the scattering of
n with electrons-bound-to-atoms (Sub. IVA) and a sub-
section devoted to the zero-energy scattering with higher
partial waves (Sub. IVB). Some final remarks conclude
this work in section V.

II. NEUTRON DENSITIES

The n – charge ρnc (r⃗) and magnetization ρnm(r⃗) – den-
sities can be obtained by Fourier transforming the corre-
sponding Sachs electric (GE) and magnetic (GM ) form
factors in the Breit frame [9]:

ρnc,m(r⃗) =

∫
dq⃗

(2π)3
Gn

E,M (q2) eiq⃗·r⃗

⇐⇒ Gn
E,M (q2) =

∫
dr⃗ ρc,m(r⃗) eiq⃗·r⃗ , (1)

where t = q2 = −Q2 is the space-like momentum trans-
fer. By expanding the plane wave in the right-hand side
of (1)

eiq⃗·r⃗ = 1+ i(q⃗ · r⃗)− 1

2
(q⃗ · r⃗)2 − i

6
(q⃗ · r⃗)3 + 1

24
(q⃗ · r⃗)4 + . . .

and integrating over the angular part, one obtains

G(q2) = G(0)− ⟨r2⟩
6

q2 +
⟨r4⟩
120

q4 +O(q6) . (2)

The (even) radial moments ⟨r2kn ⟩c,m of the n charge and
magnetic distribution can be alternatively obtained as k-
derivatives of the corresponding form factors with respect
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to q2:

⟨r2kn ⟩c,m =
(−1)k k!

(2k + 1)!

[
dkGE,M

d(q2)k

]
q2=0

, (3)

with k = 1, 2, . . ..

A. Charge density

The n-charge density ρnc satisfies∫
dr⃗ ρnc (r⃗) = 0 ,

and must reproduces the experimental value of the n
mean squared charge radius [10]:

⟨r2n⟩ =
∫

dr⃗ r2ρnc (r⃗) = − 0.116± 0.002 fm2

If we assume forGn
E the simple phenomenological form,

suggested by Friar [11]

Gn
E(q

2) = βn
q2(

1 + q2

b2n

)3 , (4)

with parameters bn=4.27 fm−1 and βn=0.0189 fm2, one
gets

ρnc (r⃗) =
(βnb

2
n)b

3
n

32π
(3− x) e−x r = bn x , (5)

and a n charge mean squared radius ⟨r2n⟩ = −0.113 fm2

(in elementary charge units e). Despite its simplicity,
Friar form factor (4) gives quite accurate results and
allows simple analytical expressions. It was also used
in [12] for computing the electromagnetic corrections to
the nucleon-nucleon (NN) S-wave low-energy parameters
and in [13] to compute n-deuteron scattering observables.
For the sake of completeness, we have also consid-

ered the more accurate n charge densities proposed by
Kelly [14]. It has the form

Gn
E(q

2) =
Aτ

1 +Bτ
GD(q2) τ =

q2

4m2
p

, (6)

where

GD(q2) =
1(

1 + q2

b2

)2 (7)

is the dipole form, b = 4.27 fm−1 [b2 = 0.71(GeV/c)2]
and the dimensionless parameters A = 1.70± 0.04, B =
3.30± 0.32 were adjusted to reproduce the experimental
data.
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FIG. 1: Neutron charge densities (in elementary charge units
e): ρnc (r) (upper panel) and 4πr2ρnc (r) (lower panel) obtained
with different n charge form factors: Friar (4), Kelly 6) and
Atac et al. [15].

The corresponding charge density is

ρnc (r⃗) = A′ (bβ)2

8(β2 − b2)2π

b5

x

×
{[

x+
β2

b2
(2− x)

]
e−x − 2

β2

b2
e−βr ,

}
(8)

with A′ = A
4m2

p
= 0.01879769 fm2 and β =

2mp√
B
=5.234983

fm−1. It gives a n charge radius ⟨r2n⟩ = −0.112 ± 0.003
fm2.
A new parametrisation of the Kelly form factor was

recently proposed by Atac et al. [15] with the values
A = 1.655± 0.126, B = 0.909± 0.583. This gives ⟨r2n⟩ =
−0.110 fm2.
The corresponding n-charge densities are represented

in Fig. 1. Despite reproducing well the experimental n
charge radius, they lead to sizeable different results at
small values of r (factor 2) as well as a 20% difference in
the zero of ρnc (r).
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B. Magnetic density
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FIG. 2: Neutron magnetic densities (in µn units): ρmn (r) (up-
per panel) and 4πr2ρmn (r) (lower panel), obtained with differ-
ent n magnetic form factors: Dipole (9) and Kelly (11).

The n-magnetic densities ρnm(r⃗) are obtained by
Fourier transforming the n-magnetic form factor Gn

M and
must fulfil ∫

dr⃗ ρnm(r⃗) = µn ,

where µn is the neutron magnetic moment in Bohr mag-
neton units µn=-1.91304.

By assuming a dipole form for the magnetic form fac-
tor [11, 16]

Gn
M (q2) =

µn(
1 + q2

b2n

)2 , (9)

the n-magnetic density reads

ρnm(r⃗) = µn
b3n
8π

e−x . (10)

We have also considered the more elaborate parametri-
sation of Kelly, which reads:

Gn
M (Q2) = µn

1 + a1τ

1 + b1τ + b2 τ2 + b3 τ3
, (11)

with τ = q2

4m2
p
, and involve four dimensionless parame-

ters: a1 = 2.33 ± 1.4, b1 = 14.72 ± 1.7, b2 = 24.20 ± 9.8
and b3 = 84.1± 41. The corresponding n-magnetic den-
sities are depicted in Fig. 2 in µn units. As one can see,
the results for the magnetic density are more stable than
for the charge density.

III. THE LEPTON-NEUTRON INTERACTION

We will consider on the same footing the three ele-
mentary leptons (e,µ and τ) that will be generically de-
noted by l = e−, µ−, τ−, as well as their correspond-
ing antiparticles l̄ = e+, µ+, τ+. The masses (ml)
are taken as me=0.510999MeV, mµ=105.658MeV and
mτ=1776.86MeV, and we will assume for all of them a
Landé factor gl = 2.00232 [44], such that their magnetic
moments Ml are given by

M⃗l = gl
qlℏ
2ml

S⃗ = µlσ⃗ ,

µl = −gl
2

eℏ
2ml

= −1.00116

(
me

ml

)
µB ,

µB =
eℏ
2me

= 5.788382× 10−5 eV T−1 , (12)

where we denoted ql = −e, ql̄ = +e, and e is the (posi-
tive) elementary charge.
For the neutron we have taken mn=939.565MeV, a

Landé factor gn = −3.82608 and a magnetic moment
given by

M⃗n = gn
eℏ
2mp

S⃗ = µnσ⃗ , µn =
gn
2

eℏ
2mp

= −1.91304 µN ,

µN =
eℏ
2mp

= 3.152451× 10−8 eV T−1 . (13)

For the remaining constants, we have taken the values
ℏc=197.327MeV fm, 1/α=137.036.

The lepton-neutron (ln) interaction is assumed to be
purely electromagnetic, which means that we have ne-
glected any weak contribution. The interaction potential
we have considered has three components: the Coulomb
interaction V C

ln , the dipole magnetic term V MM
ln result-

ing from the interaction between the lepton and neutron
magnetic moments and the spin-orbit term V LS

ln .

Vln = V C
ln + V MM

ln + V LS
ln . (14)

The fist term (V C) is the purely Coulomb interaction be-
tween the pointlike lepton l and the n charge distribution.
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The last two terms correspond to the Hyperfine Hamil-
tonian, as described e.g. in [17, 18], integrated over the
magnetization densities. We neglect n polarization ef-
fects which, due to virtual excitations to negative parity
states, could lead to a 1/r4 potential with a rich phe-
nomenology of bound and resonant states, like in Refs.
[19–22].

Each of the Vln terms depicted in (14) are detailed in
the coming sections.

A. Coulomb interaction

R=r+r

rn

n

r nl

FIG. 3: Interaction between point-like lepton l and n charge
distribution.

The ln Coulomb interaction is entirely due to the n
internal structure. It is obtained as a convolution of the
Coulomb potential between the point-like lepton with the
n charge density (see Fig. 3):

V C
ln (r) = − 1

4πϵ0

∫
dr⃗n

e2ρnc (r⃗n)

| r⃗ + r⃗n |

= −α(ℏc)
∫

dr⃗n
ρnc (r⃗n)

| r⃗ + r⃗n |
. (15)

By inserting the Friar electric form factor (4) in the
previous expression and making use of

1

R
=

1

2π2

∫
dq⃗

eiq⃗·R⃗

q2
,

the lepton-neutron Coulomb potential reads:

V C
ln (r) = − α(ℏc) bn

(βnb
2
n)

8
(1 + x) e−x , x = bnr . (16)

In the point-like limit, βn → 0, and therefore the poten-
tial vanishes.

This potential, which is the same for the three leptons,
is displayed in the upper panel of Fig. 4 (solid black line)
in MeV and fm units. It is monotonously attractive with
a depth at the origin of V C

ln (0) ≡ CC
ln ≈ −0.266 MeV. We

have also included for comparison the results obtained
with other parametrisations of the n charge density rep-
resented in the lower panel: the original Kelly parametri-
sation from [14] (in red) and the recent readjustment of
the Kelly parameters from [15] (in blue). Their analytic
expressions are quite lengthy and are omitted here. The

noticeable differences observed in the n charge densities
are also manifested in the ln Coulomb potentials at r ≈ 0.
Notice that for the corresponding antiparticles (in

our convention with positive charge), the sign of poten-
tial (16) must be changed, giving rise to different ln and
l̄n low energy parameters. This difference – at first glance
surprising since dealing with scattering on a neutral par-
ticle – is uniquely due to the neutron’s internal structure.
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FIG. 4: Upper panel: Coulomb potential between a lepton l
and a neutron n (in MeV and fm units) with (lower panel)
the corresponding n electric form factors, Friar (4), Kelly 6)
and Atac et al. [15], used in their computation. The potential
is the same for all leptons.

B. Magnetic dipole interaction

The interaction between two point-like magnetic mo-
ments is given by [17, 18]:

VMM (r⃗) = −µ0

4π

[
8π

3
M⃗l · M⃗n δ(r⃗)

+
3(M⃗l · r̂l)(M⃗n · n̂)− M⃗l · M⃗n

r3

]
, (17)
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which, in terms of (12) and (13), can be written as

V ln
MM (r⃗) = −µ0µlµn

4π

[
8π

3
σ⃗l · σ⃗n δ(r⃗) +

Ŝ12(r̂)

r3

]
, (18)

where Ŝ12(r̂) ≡ 3(σ⃗1 · r̂)(σ⃗2 · r̂) − σ⃗1 · σ⃗2 is the tensor-
operator, whose matrix elements are given by

⟨SLJ | S12 | S′L′J ′⟩ = δSS′δS1δJJ ′

×


L = J − 1 L = J L = J + 1

L = J− 1 −2L
2L+3 0

6
√

J(J+1)

2J+1

L = J 0 2 0

L = J + 1
6
√

J(J+1)

2J+1 0 −2(L+1)
2L−1

 (19)

and

⟨SLJ | σ⃗1 · σ⃗2 | S′L′J ′⟩ = (−3δS0+ δS1)δSS′δLLδJJ ′ . (20)

In order to take into account the n magnetization den-
sity, the expression for the n magnetic moment (13) be-
comes:

M⃗n = µn

∫
ρnm(r⃗)σ⃗ dr⃗

and Eq. (18) is generalized into

V ln
MM (r⃗) = −µ0µlµn

4π

[
8π

3
σ⃗l · σ⃗n

∫
dr⃗nρ

n
m(r⃗n)δ(R⃗)

+

∫
dr⃗n

3(σ⃗l · R̂)(σ⃗n · R̂)− σ⃗l · σ⃗n

R3
ρnm(r⃗n)

]
, (21)

where R⃗ = r⃗ + r⃗n.
By inserting the dipole form factor (9), the integration

can be performed analytically, as for the Coulomb case,
and the ln magnetic interaction reads:

V ln
MM (x) = −µ0µlµn

4π
b3n

[
1

3
e−x(σ⃗ · σ⃗)

+
1−

(
1 + x+ x2

2 + x3

6

)
e−x

x3
Ŝ12

 , (22)

where x = bnr.
By writing explicitly the scalar spin-spin (VS) and ten-

sor (VT ) components we can write (22) in the form:

V ln
MM (x) = VS(x)(σ⃗ · σ⃗) + VT (x)Ŝ12 , (23)

where

VS(x) = − 1

3
Cln

MM e−x , (24)

VT (x) = −Cln
MM

1−
(
1 + x+ x2

2 + x3

6

)
e−x

x3
, (25)

and the (positive) numerical pre-factor

Cln
MM = µ0

µnµl

4π
b3n = − gngl

4

α (bℏc)3

4(mnc2)(mlc2)
. (26)

For the electron case (l = e−) it takes the value
Cen

MM=4359.4109MeV.
Notice that the ln magnetic potential (23) for different

leptons differs from each other only by the value of this
pre-factor, which merely scales the respective (VS) and
(VT ) components. In view of further discussions, it is
interesting to take as a reference the en case and write

V ln
MM (x) =

(
me

ml

)
V en
MM (x) . (27)

We have displayed in Fig. 5 the spin-spin (VS) and ten-
sor (VT ) components of the reference magnetic potential
V en
MM . As one can see, VS largely dominates at small

distance, where it takes values as large as 1.5GeV; at
r=0.5 fm one still has VS ≈ 200 MeV. Due to the finite
size structure of n, both components are finite in all the
domain [0,+∞] and VT has the asymptotic behaviours

VT (x) ≈
x→0

− Cln
MM

x

24
, VT (x) ≈

x→∞
− Cln

MM

x3
, (28)

with a maximum at r ≈ 0.4 fm. We have also included in
Fig. 5 the V ln

MM potential provided the Kelly magnetic
form factor (11). The result is still analytic but the ex-
pression is lengthy enough to be omitted in the text. As
was the case for the Coulomb interaction VC , VS displays
some sizeable differences at r = 0 among the models.
Notice that for the en case, the Coulomb poten-

tial (16), displayed in Fig. 4, is totally negligible with
respect to the magnetic one (27). However, while the for-
mer is independent of the lepton flavour, the latter one
scales with the inverse of lepton mass and the situation
is reversed in the case of τ .
In view of the sizeable values of the spin-spin compo-

nent VS , the question of a possible en bound state seems,
a priori, pertinent and will be examined in the next sec-
tion. However, the value of ℏ2/(2µne) ≈ 38120MeV fm2,
driving the repulsive kinetic energy term, lets very little
hope for the en case. At r ≈ 0.8 fm the slow-decreasing
tensor component starts being dominant and its 1/r3 tail
imposes non trivial asymptotic conditions for the scatter-
ing solutions in the spin-triplet (S=1) L > 0 states, for
which the standard LEPs are not defined.

C. Spin-orbit interaction

Our starting point is the spin-orbit term of the Hyper-
fine interaction for a point-like lepton [17, 18]:

H ln
LS =

µ0

4π

e

me

1

r3
L ·M⃗n = − µ0

4π

eµn

me
σ⃗n ·

(p ∧ r)

r3
. (29)
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FIG. 5: Upper panel : Spin-spin (VS) and tensor (VT ) com-
ponents of the magnetic interaction (23) between e− and n,
corresponding to the Dipole (9) and Kelly (11) magnetic form
factors (Gn

M ), which are represented in the lower panel.

If one takes into account the n magnetization density,
this expression generalizes into

H ln
LS = −µ0

4π

eµn

µln
σ⃗n · p ∧

∫
drn

Rρnm(rn)

R3
, (30)

where we have used the notation of Fig. 3. In principle,
an additional term should be added to (30) to account
for the coupling between the e magnetic moment and the
magnetic field created by the orbiting n. The non-zero
n charge density will indeed create a current and the
corresponding magnetic field. This term is supposed to
be negligible and has been omitted.

By using the same techniques developed for the charge
and magnetic terms, one obtains for the spin-orbit inter-
action the general form

V ln
LS = VLS(x) (L⃗ · s⃗n) . (31)

When inserting the dipole form factor one has

VLS(x) = Cln
LS

1− (1 + x+ x2

2 )e−x

x3
(32)

with

VLS(x) ≈
x→0

Cln
LS

[
1

6
− x

8
+O(x2)

]
, VLS(x) ≈

x→∞

Cln
LS

x3
, (33)

and Cln
LS a (negative, since gn = −3.8261) numerical

pre-factor

Cln
LS = gn

α(bℏc)3

(µlnc2)(mpc2)
. (34)

For the en case one has Cen
LS = −34853, 82MeV. The

corresponding potential is displayed in Fig. 6. As for the
spin-spin term, there is a deep attraction at the origin
but it is compensated by the centrifugal barrier in such a
way that the effective potential is repulsive everywhere.
Remarkably, the reduced spin-orbit potential (i.e. vLS =
2µlnVLS) is the same for the three leptons.

0 0,5 1 1,5 2
r (fm) 

-6000

-5000

-4000

-3000

-2000

-1000

0

V LS
(M

eV
)

VLS Dipole

FIG. 6: Spin-orbit potential (VLS) for the en scattering ob-
tained with the Dipole n magnetic form factor (9).

Notice that the total orbital angular momentum L of
the ln pair is not coupled to its total spin S = sn+se but
only to the neutron spin sn. In this sense, the interaction
does not correspond to the standard spin-orbit interac-
tion, although we will keep the same notation to denote
it. The main difference is that interaction (31) does not
conserve the total spin S in a similar way that the ten-
sor term does not conserve L. The matrix elements of
the spin-orbit operator (31) in the standard partial wave
basis | SLJ⟩ are:

• Null for S-waves

⟨1S0 | L⃗ · s⃗n |1 S0⟩ = ⟨3S1 | L⃗ · s⃗n |3 S1⟩ = 0 (35)
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• For L > 0 triplet unnatural parity states

⟨3LL±1 | L⃗ · s⃗n |3 LL±1⟩ = λ±(L) (36)

with λ± given in (A3).

• They couple the L > 0 singlet and triplet natural
parity states

⟨2S+1LJ=L | L⃗ · s⃗n |2S
′+1 LJ=L⟩ =

=

( S = 0 S = 1

S = 0 0
√

L(L+ 1)

S = 1
√

L(L+ 1) −1

)
. (37)

Their computation requires some care and it is detailed
in the Appendix A

IV. RESULTS

We present in this Section the scattering results ob-
tained with the above detailed V ln potentials, for some
selected ln states. To this aim, we write the total poten-
tial in the operator form

V ln(r) = V ln
C (r) + V ln

S (r) (σ⃗l · σ⃗n)

+ V ln
T (r) Ŝ12 + V ln

LS(r) (L⃗ · s⃗n) . (38)

It depends on four scalar functions V ln
i=C,S,T,LS which

change their sign for the antilepton scattering: V l̄n
i =

−V ln
i .
Due to the tensor and spin-orbit terms, the physical

states are in general labeled only by Jπ = 0±, 1±, 2±...
quantum numbers with π = (−)L. Calculation are
performed in the | SLJ⟩ basis and we will use the
spectroscopic notation 2S+1LJ for the tensor and spin-
orbit uncoupled states, the standard notation 2S+1LJ -
2S+1(L+2)J for the tensor coupled ones, and the 1LL-

3LL

for the spin-orbit coupled states.
The matrix elements of the spin-spin, tensor and spin-

orbit operators in this basis are given in Table I for the
lowest partial waves and the corresponding V ln poten-
tials are displayed in Fig. 7 for the three considered lep-
tons (in MeV and fm units). Notice the different energy
scales among them, varying from few MeV (for τn) to few
GeV (for en), which are essentially due to the involved
magnetic moments. The V ln potential is the same for all
the singlet states (1S0,

1P1,
1D2,...), since the tensor and

the diagonal term of (L⃗ · s⃗n) vanishes. All potentials are
strongly repulsive, except the 3LJ=L+1 states (3S1 and
3P2 in the selected ensemble) which are attractive, in
absence of the centrifugal term. Let us remind that the
situation is however reversed for the antilepton-neutron
cases. Notice that for en case, there is a merging of 1S0,
3P0 and 3P1 potentials at r = 0, and that the 1S0 result
is getting away when going to µn and τn. The reason for

σl · σn S12 L⃗ · s⃗n
Jπ 2S+1LJ S S’ L L’ S S’
0+ 1S0 -3 0 0

1+ 3S1-
3D1 +1 0 2

√
2 0 0

2
√
2 -2 0 -3/2

0− 3P0 +1 -4 -1

1− 1P1−3P1 -3 0 0 0
√
2

0 1 2
√
2 -1

2− 3P2-
3F2 +1 -2/5 6

√
6/5 +1/2 0

6
√
6/5 -8/5 0 -2

TABLE I: Angular matrix elements of the spin-spin (20),
tensor (19) and spin-orbit (37) operators for the lowest partial
waves.

that lies in the particular expressions of potentials and
the angular matrix elements presented in Table I. The
expressions for these potentials are given below:

V ln
1S0

= V ln
C − 3V ln

S , (39)

V ln
3P0

= V ln
C + V ln

S − 4 V ln
T − V ln

LS , (40)

V ln
3P1

= V ln
C + V ln

S + 2 V ln
T − V ln

LS . (41)

At r = 0, VT vanishes and V ln
3P0

(0) = V ln
3P1

(0) for all lep-
tons. For the en case, the equality between these three
potentials at the origin is due to the approximate rela-
tion 8Cen

MM ≈ Cen
LS (at the level of 0.1%) that follows

from Eqs. (26) and (34) with µen ≈ me and ge ≈ 2. This
approximate relation is broken when the lepton mass in-
creases from e to µ, and τ as clearly seen in the figure.
These potentials are inserted in the set of coupled re-

duced radial Schrodinger equations

∂2
rφα(r) +

[
k2 − Lα(Lα + 1)

r2

]
φα(r) =

∑
β

vαβφβ ,

where vαβ = 2µln

ℏ2 Vαβ(r) is the reduced potential and

k2 = 2µln

ℏ2 E is the center of mas momentum. Remarkably,
the huge variations observed in Fig. 7 between the dif-
ferent leptons are largely compensated by their reduced
mass in vαβ and, the resulting ln scattering observables
turn to be quite similar among them, especially in the
zero energy limit. This will be presented in the following
subsections.
It is worth noticing that, except from the 1S0 and 3S1

states, all the partial waves potentials behave asymptot-
ically as 1/r3, due to both the tensor and the spin-orbit
terms. In this case, the standard scattering theory does
not apply [23–29], in particular the low-energy parame-
ters are not defined and the low-energy limit of the cross
sections is strongly modified. For the singlet states both
terms are absent but, as we have discussed in the pre-
vious section, they are coupled by a long-range term to
the triplet state, which are driven by the same long-range
potentials.
We will present in the next subsection the results for

these particular S-waves and devote the last one to de-
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FIG. 7: ln potentials in different partial waves, obtained with
the Friar (electric) and Dipole (magnetic) n form factors.
From top to bottom: en, µn and τn.

scribe some low-energy properties of higher angular mo-
mentum states.

A. Low energy parameters for S-waves

We will start with the coherent and incoherent LEPs
for the 1S0 and 3SD1 states, for which they are well de-
fined. They will be completed by the low-energy phase
shifts and cross sections and compared to some experi-
mental results obtained in the low energy n scattering on
atomic systems.

1. 1S0

For the S-wave singlet state (1S0) one has σ⃗l · σ⃗n=-3,

Ŝ12 = 0 and L⃗ · s⃗n=0. The ln potential is given in (39)
As seen in Fig. 7, this potential is globally repulsive for
all leptons and attractive for antileptons.
The corresponding LEPs are given in Table II in

fm units. The different columns correspond to dif-
ferent choices of GE and GM : Friar (4)+Dipole(9),
Kelly(6)+Kelly(11) and Atac[15]+Kelly combination of
form factors. The upper half part of the table cor-
responds to lepton-neutron (ln) and the lower part to
antilepton-neutron (l̄n). Several comments are in order:

• For e and τ there is a nice stability in the predic-
tions for the scattering length among the different
n form factor parametrisations. This is due to the
fact that this quantity is essentially dominated by
VS , which is very similar in the three parametrisa-
tions. For the τ lepton, the two components of the
potential, VC and VS , become comparable and the
scattering length is sensitive to small differences in
the n charge and magnetic form factors.

The effective ranges, on the contrary, show clear
discrepancies varying from 20% in the en and τn
cases to more than a factor 10 in τn (including
sign).

• For the en case, the potential is dominated by
VS , whose contribution, affected by a factor -3, is
strongly repulsive (∼ 5GeV). However when the
lepton mass increases, the repulsive VS term de-
creases (as me/µl ) and can be compensated by the
attractive VC . This is manifested by the decreasing
value of the, still repulsive, scattering length aln in
the upper part of Table II, which in the τ case is
close to zero. By artificially increasing the lepton
mass, a0 will become negative at ml ≈ 1.18mτ .

• If the problem was fully perturbative, that is T = V
(where T is the T-matrix obeying the Lipmann-
Schwinger equation), one should have a0(ln) +
a0(l̄n) = 0. As one can see from Table II by com-
paring the upper and lower half parts, this con-
dition is quite accurately fulfilled, for a0 as well
as for r0. In fact, the value s = a0(ln) + a0(l̄n)
constitutes a measurement of the non-perturbative
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Friar+ Dipole Kelly+ Kelly Atac+ Kelly
1S0 a0 r0 a0 r0 a0 r0
e−n 2.926 10−3 -149 2.920 10−3 -186 2.920 10−3 -186
µ−n 2.501 10−3 -170 2.497 10−3 -215 2.501 10−3 -215
τ−n 1.574 10−4 4814 1.623 10−4 -2145 1.849 10−4 -276
e+n -2.949 10−3 150 -2.943 10−3 186 -2.943 10−3 186
µ+n -2.518 10−3 171 -2.514 10−3 217 -2.517 10−3 216
τ+n -1.577 10−4 -4802 -1.625 10−4 2142 -1.851 10−4 276

TABLE II: Low energy ln parameters (in fm) in the 1S0 state obtained with different choices for the electric (first name heading
each column) and magnetic (second name) n form factors: Friar (4), Dipole (9), Kelly 6) and Atac et al. [15] used to compute
the potential.

effects, mainly due to two-photon exchange contri-
butions:

T ln + T l̄n = [V + V G0V + . . .]

+[(−V ) + (−V )G0(−V ) + . . .] = 2V G0V + . . .

For the e and µ, s ≈ 2 10−5 fm, that is about 1%,
and for τ one order of magnitude smaller.

• In the limit of an infinitely heavy lepton, the poten-
tial is given by the Coulomb term and the reduced
mass µln = mn.

• The most favorable situation to obtain a ln bound
state concerns this channel, not for the en case since
it is repulsive, but for the positron e+n and anti-
muon cases for which a ≈ −3.10−3 fm. However,
the very small values of these scattering lengths tell
us that these systems are still very far from a pos-
sible bound state. Its very existence would require
changing the sign of a0 after crossing a singularity.
It can have some interest to see how far we are from
an eventual binding and give no place for eventual
further speculations [30–33]. To this aim we have
introduced an enhancement factor η in front of the
V ln
1S0 potential and determined the critical value of

η where a0 → +∞, indicating that a zero-energy
bound state starts to appear. The result is ηc = 231
for e+n and ηc = 266 for µ+n, far beyond any rea-
sonable uncertainty in the constructed potential.

2. 3S1-
3D1

The 3S1-
3D1 state is a coupled channel with the po-

tential matrix

V ln
3S1−3D1

=

(
VC + VS 2

√
2VT

2
√
2VT VC + VS − 2VT − 3

2VLS

)
.

However, for this particular state, the diagonal tensor
term is zero in the 3S1 channel and the coupling to the
3D1 channel is small, as its can be seen from Fig. 5. As
a very good approximation we will first consider the 3S1
channel alone:

V ln
3S1

(x) = VC(x) + VS(x) ,

in which both components are attractive, giving rise to
the unique ln attractive channel, as seen in Fig. 7. The
corresponding LEP parameters are displayed in Table III
for the same combinations of n form factors as in Table
II.
When compared to the 1S0 state one first remarks a

much higher stability in the predictions of different form
factors, including the τ lepton and the effective range
parameter r0. This is due to the absence of any com-
pensation between the Coulomb (VC) and magnetic (VS)
terms, which are both attractive.
One can remark also a kind of flavour independence of

the ln scattering lengths: they vary about 20% while the
lepton masses vary over three orders of magnitude. This
is the combined consequence of, on one hand, a purely
attractive channel (no cancellations between VC and VS)
and on the other hand, the fact that the reduced spin-
spin potential scales as:

vS ≡ 2µ

ℏ2
VS ∼ mlmn

ml +mn

1

mlmn
∼ 1

ml +mn
. (42)

For the en and µn systems, vS is the dominant contri-
bution of the total potential vln, while for τn, vS is sup-
pressed by a factor of ∼ mn/(mτ + mn) ≈ 1/2 with
respect to en and µn and becomes comparable and even
smaller than the reduced Coulomb potential vC . The fi-
nal reduced potential v = vC+vS , in the region of interest
to determine the scattering length,

aB0 =

∫ ∞

0

dr r2 v(r) (43)

turns to be roughly independent of the lepton mass. We
have illustrated this fact by plotting in Fig. 8 the inte-
grand of eq. (43) for the different leptons as well as the
purely Coulomb potential.
Notice also that the non-perturbative effects are one

order of magnitude smaller than for 1S0, with s ≈
10−6 fm for e and µ. The coupling to the 3D1 channel
by the small tensor force VT does not modify sizeably
the value value of the 3S1 scattering lengths given in Ta-
ble III.
Concerning the possibility of an eventual bound en

state in this channel, the critical enhancement factor –
defined in the previous subsection – is ηc = 690 for en,
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Friar+Dipole Kelly+Kelly Atac+Kelly
3S1 a0 r0 a0 r0 a0 r0
e−n -0.981 10−3 448 -0.979 10−3 559 -0.979 10−3 559
µ−n -1.015 10−3 462 -1.012 10−3 546 -1.009 10−3 557
τ−n -1.200 10−3 498 -1.192 10−3 482 -1.117 10−3 535
e+n 0.979 10−3 -448 0.977 10−3 -559 0.977 10−3 -559
µ+n 1.012 10−3 -461 1.010 10−3 -545 1.006 10−3 -556
τ+n 1.200 10−3 -497 1.189 10−3 -481 1.117 10−3 -535

TABLE III: Low energy ln parameters (in fm) in the 3S1 state, with the same conventions as in Table. II.
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FIG. 8: Reduced 3S1 potentials (42) multiplied by r2 for the
three different ln systems depicted by solid lines. The dashed
line is the reduced Coulomb potential for the τn system.

roughly a factor 3 larger than for 1S0 state, the same
factor that exists between the respective potentials.

3. S-wave phase shifts, cross sections and coherent
scattering lengths

The ln phase shifts have been computed by solving
the Schrödinger equation up to a center of mass energy
Ecm half of the ln reduced mass µln, i.e. up to center of
mass momentum kmax = µln/ℏc. This defines our kine-
matical constraint; beyond, a relativistic dynamics would
be required. In this kinematical domain, the computed
phases are accurately reproduced by the effective range
expansion

k cot δ0(k) = − 1

a0
+

1

2
r0k

2

=⇒ δ0(k) = −k a0

[
1 +

1

2
r0 a0 k

2 + . . .

]
. (44)

with parameters given in Tables II and III.
They are represented in Fig. 9 as a function of Ecm. As

one can see, all phase shifts are very small in the consid-

ered kinematical region. As expected, the perturbative
treatment gives accurate result, up to a degree that we
have discussed in the previous section.
Obtaining a departure from the linear behaviour at

the origin given by δ0(k) = −k a0 in (44), would require
r0 a0 k

2 ∼ 1. As one can see from Tables II and III, the
product r0 a0 takes, for both S states and all considered
leptons, similar values ∼ 0.4 − 0.8 fm2. Thus, the ef-
fective range manifests only above k ∼ 1 fm−1, which is
– between our kinematical constraint – realized only for
the τn (kmax=3.11 fm−1), and to a less extent for µn
(kmax=0.48 fm−1). In the en case the phase shifts are
accurately given by δ0(k) = −a0k.
The ln total S-wave cross section takes the form

σln(k) =
1

4
σs(k)+

3

4
σt(k) with σi=s,t = 4π

sin2 δi(k)

k2
,

where the index s denotes the singlet 1S0 state, t the
triplet 3S1. The zero-energy limit is given by

σln(0) = π(| as |2 +3 | at |2) ,

and provides similar values for the three con-
sidered leptons: σen(0)= 0.358µb, σµn(0)= 0.292µb,
στn(0)= 0.136µb [45].

Before concluding this section it is worth considering
the ln coherent scattering length, defined as

ac =
as + 3 at

4
. (45)

By inserting in (45) the results of Tables II and III,
one gets the ac values displayed in the upper half part
of Table IV (in fm). For the en and µn cases, there is a
remarkable stability with respect the different choices of
form factors but for τn they can differ by up to 50%.
Notice that, in the Born approximation, i.e. T ≡ V ,

the coherent scattering length (45) would be entirely
given by the spin-independent Coulomb potential VC .
Indeed, in this case the singlet (1S0) and triplet (3S1)
contributions to ac coming from the spin-spin magnetic
term VS would exactly compensate each other, due to
the (σ⃗l · σ⃗n) term, and any non zero value of ac would
entirely come from VC .
We can check this fact by switching off the magnetic

term VS in the potentials and obtain in this way the
”pure Coulomb” coherent scattering length, denoted by
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FIG. 9: ln S-wave phase shifts (in degrees) as a function of cm energy Ecm.

aCc . The result is given in the lower half part of Ta-
ble IV. For the µn case, aCc and ac are indeed practically
identical, and for τn both quantities are very close. How-
ever in the en case, the value of the coherent scattering
length ac is one order of magnitude larger than what one
could expect from the Coulomb potential alone (aCc ). It
follows from that the value of the ”in flight” en coher-
ent scattering length is dominated by, and measures, the
non-perturbative effects in the en scattering process. The
dynamical reason for this difference is the huge value of
the spin-spin potential in the en case.

Friar+Dipole Kelly+Kelly Atac+Kelly
ac ac ac

e−n -4.50 10−6 -4.42 10−6 -4.43 10−6

µ−n -1.36 10−4 -1.35 10−4 -1.32 10−4

τ−n -5.07 10−4 -4.88 10−4 -3.76 10−4

aC
c aC

c aC
c

e−n -7.14 10−7 -7.08 10−7 -6.90 10−7

µ−n -1.33 10−4 -1.32 10−4 -1.28 10−4

τ−n -8.60 10−4 -8.53 10−4 -8.31 10−4

e+n 7.14 10−7 7.08 10−7 6.90 10−7

TABLE IV: Coherent ln scattering lengths ac and the value
aC
c produced by the Coulomb potential VC only (in fm units).

Finally the coherent scattering cross sections, given
by

σc = 4π
∣∣∣1
4
[fs(k) + 3ft(k)]

∣∣∣2 ,
are represented in Fig. 10 as a function of k2. They cor-
respond to Atac+Kelly n form factors. The zero-energy
coherent cross section is σc=0.0023 nb for en, σc=2.2

nb for µn and σc=79 nb for τn, that is 3-5 orders of
magnitude smaller than the incoherent cross sections (1
nb=10−3 µb=10−7 fm2).
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FIG. 10: Coherent ln scattering cross section (in nb).

To our knowledge, there has been no any measure-
ment of either the coherent or the incoherent ln cross
sections, although it was used in some experiments as a
fit parameter for determining the n-”electron-bound-in-
a-heavy-atom” coherent scattering length, which is the
topic of the next section.
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4. n scattering on an ”e-bound-to-atom”

A very different situation occurs if one assumes, as
was done in the Foldy seminal paper [34] and subsequent
reviews on this topic [4, 5], that a very low-energy n
(termal energies) scatters coherently on a single electron,
bound in a heavy atom, which recoils as a whole. In this
case the electron can be considered as being infinitely
heavy and the reduced mass of the ne system is equal to
the neutron mass: µen ≡ mn.

One rather talks about the coherent scattering length
of a n colliding with an ”electron-bound-to-atom”, abu-
sively shortened into ne coherent scattering length, and
traditionally denoted bne. In order to distinguish this
process from the ”on-flight” ne one described in the pre-
vious section, we will use for the former case the notation
ne∗ and the corresponding coherent scattering length by
ac(ne

∗) ≡ bne.
In this approach, the magnetic interaction is disre-

garded and V ne∗ is simply given by the Coulomb term
VC – i.e. the n charge form factor GE – which entirely
determines the value of bne ≡ ac(ne

∗). [46]
One obtains in this way the bne values displayed in Ta-

ble V, together with the corresponding effective ranges.
Notice a three order of magnitude enhancement, of purely
kinematical origin, with respect the en on-line coherent
scattering lengths given in Table IV.

The bne values presented in Table V are in close agree-
ment with the experimental value bne = −1.32± 0.03 fm
from [6]. It is worth noticing that the value of bne –
entirely determined by GE – is strongly dominated by
the the so-called Foldy term [34–37], that is the contri-
bution due to the F2 Dirac form factor in the standard
decomposition of GE [38]:

GE(q
2) = F1(q

2) +
q2

4m2
p

κ F2(q
2) .

By considering the ln Coulomb interaction in momen-
tum space

VC ≡ −α(ℏc)
2π2

GE(q
2)

q2

and applying expansion (2) and (3) to GE , one obtains
at the lowest order in q2, the Born approximation of the
en scattering length displayed in Table V in terms of the
moments of the n radial charge density [5]

aB0 (e
∗n) =

(mnc
2)α

3(ℏc)
⟨r2⟩n , (46)

We have shown that the next order in q2 provides the
effective range values

rB0 (e∗n) = − 1

5 aB0 (ne
∗)

⟨r4⟩n
⟨r2⟩n

. (47)

Due to the perturbative character of the interaction,
these relations provide quite accurate results and give
some light to the large values of the effective ranges ob-
tained. The former expressions can be generalized to the
incoherent LEPS from Tables II and III, provided one
properly includes the contribution due to the magnetic
form factor GM .

Last but not least, we would like to emphasize that, if
one takes into account the full magnetic interaction (even
a fixed electron keeps its magnetic moment) the results
change dramatically. The values of the coherent (a∗c) and
incoherent (a∗s,t) scattering lengths are given in Table VI
for the different choices of n densities. When compared
to the results of Tables II and III one can see a 3 orders
of magnitude enhancement due to the kinematical factor.
One can remark also a positive sign for the triplet scat-
tering length, whose potential is purely attractive. This
indicates the formation of a n-e∗ bound state in this par-
ticular channel. Its binding energy is B ≈ 110MeV and
the rms radius R =

√
⟨r2⟩=0.55 fm. This state corre-

sponds to a pole in the n−e∗ scattering amplitude in the
physical energy sheet, although the experimental perti-
nence of such a result is not clear.

B. Higher partial waves

All the ln states with non-zero angular momenta (Jπ =
0−, 1−, 2,− , 2+, 3+, 3−, . . .) involve | SLJ⟩ coupled chan-
nels. This coupling is produced by 1/r3 long-range po-
tentials which are due to the tensor (VT ) and spin-orbit
(VLS) terms in (14). Solving the coupled-channel scatter-
ing problem with a long-range coupling between channels
requires specific methods, like those developed in Refs
[39, 40], and it is beyond the scope of the present work.

However one can obtain an estimation of the scat-
tering amplitude and cross section for non-zero angular
momentum states by neglecting the coupling among the
channels and considering decoupled | SLJ⟩ states. Still
we will be faced with the non trivial problem of scatter-
ing by a short-range plus asymptotically 1/r3 potential.
It is well known from the early sixties [23–27] that the
1/r3 asymptotic behaviour of the interaction precludes
the existence of low-energy parameters.

The simplest case is provided by the spin singlet states,
only affected by the short-range VC and VS , and for which
we can compute the LEPs. The results for 1P1 and 1D2

scattering ”volumes” are represented in Table VII. One
can see very small values of the corresponding scattering
volumes with a net decreasing as a function of L: one or-
der of magnitude each L (10−3 for L = 0, 10−4 for L = 1,
10−5 for L=2). When compared to the S-wave results,
one see also a stronger dependence on the choice of n den-
sity parametrizations: a sign inversion for τ is present in
Friar-Dipole and absent in the other choices, due to the
differences in the magnetic form factors. Notice however
that these results have only an informative character con-
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Friar Kelly Atac
a0(ne

∗) r0(ne
∗) a0(ne

∗) r0(ne
∗) a0(ne) r0(ne

∗)
-1.32 10−3 501 -1.31 10−3 449 -1.27 10−3 518

TABLE V: n- electron-bound-to-atom (ne∗) coherent scattering lengths a0(ne
∗) ≡ bne (in fm) produced by VC only and with

different charge form factors.

Friar+Dipole Kelly-Kelly Atac-Kelly
a∗
s 0.843 0.905 0.905

a∗
t 0.611 0.567 0.567

a∗
c 0.669 0.652 0.652

TABLE VI: n-electron-bound-to-atom incoherent (a∗
s and a∗

t )
and coherent (a∗

c) scattering lengths (in fm) produced by the
full V ln interaction.

Friar+Dipole Kelly+Kelly Atac+Kelly
1P1 a1 (fm3) a1 (fm3) a1 (fm3)
e−n 2.15 10−4 2.67 10−4 2.67 10−4

µ−n 1.79 10−4 2.27 10−4 2.26 10−4

τ−n -2.00 10−4 0.94 10−5 0.16 10−5

1D2 a2 (fm5) a2 (fm5) a2 (fm5)
e−n 1.41 10−5 3.01 10−5 3.01 10−5

µ−n 1.11 10−5 2.60 10−5 2.57 10−5

τ−n -0.34 10−5 0.39 10−5 0.18 10−5

TABLE VII: Singlet P- and D-wave ln scattering ”volumes”
(the spin-orbit coupling to 3P1 is neglected).

cerning the short-range part of the interaction, which in
its turn produces low-energy partial cross section behav-
ing as σL(k) =| aL |2 k4L, and so vanishing at k = 0.
Notice also, that the spin-orbit coupling (see Table I) be-
tween he singlet states (1LJ=L) and the corresponding
natural parity triplet states (3LJ=L) could dramatically
modify the zero energy scattering properties.

For all the other L > 0 states, the 1/r3 behaviour of
the interaction prevents a similar study. However, it has
been shown in recent works [28, 29] that it is possible
to obtain a simple expression for the zero energy cross
section, which, contrary to what happens in the case of
short-range interactions, does not vanish in the zero en-
ergy limit.

The key parameter is the asymptotic coefficient β3 of
the (reduced) long range interaction

β3 =
2µ

ℏ2
C3 with C3 = lim

r→∞
r3 V (r) (48)

It has the dimensions of a length and, in our particular
case, it depends on the partial wave β3 = β3(L, S, J).
Since the central and spin-spin terms in the the V ln po-
tential are exponentially decreasing, β3 has contributions
coming from the tensor and from the spin-orbit poten-
tials. They are obtained by multiplying the asymptotic
constants of VT (28) and VLS (33) – which depends on
the lepton flavour and on the n form factor parametrisa-
tion – by the corresponding matrix elements of S12 (19)

and L⃗ · s⃗n (36)-(37).
It was shown in Refs. [28, 29] that, in the low-energy

limit, the PW phase shifts for L > 0 are given by [47]

tan δL,S,J(k) =
1

2L(L+ 1)
kβ3(LSJ) +O(k2) (49)

which entirely depends on the asymptotic coefficient β3

and it is independent of the short-range phase shifts. The
scattering amplitude is, in this limit, given by

fLSJ(k) =
tan δL(k)

k
+O(k) =

β3(LSJ)

2L(L+ 1)
+O(k)

and the partial cross section

σLSJ(k) = (2J + 1)π | fLSJ |2

= (2J + 1)
πβ2

3

4L2(L+ 1)2
+O(k) . (50)

We displayed in Table VIII the asymptotic coefficients
β3 (in fm) and the zero-energy partial cross sections pro-
vided by Eq. (50) (in µb) for the lowest angular momen-
tum states. They correspond to the Friar+Dipole n form
factors.

Our first remark concerns the asymptotic coefficient
β3. As one can see, the triplet natural parity states
(3LJ=L) have β3 independent of L, while for the unnat-
ural parity states 3LJ=L±1 states, β3 increases with L.
This β3(LSJ=L±1) increasing is due to both the tensor
and the spin-orbit contributions. The tensor contribu-
tion increases with L but converges to a finite value when
L → ∞ since the tensor matrix elements S12 → −1.
However the contribution to β3(L,S,J=L±1) due to the
spin-orbit term increases linearly with L, due the λ±(L)
eigenvalues (A3).

Our second remark concerns the non-vanishing zero-
energy cross section σL(0). They all decrease with in-
creasing L but for the lowest value of L represented in
Table VIII, they are comparable to the S-wave partial
cross sections described in the previous section and which
have typical values of 0.4 − 0.2 µb. This is one of the
most striking difference with respect the usual scattering
by short-range potentials.

A final remark concern the contribution to the total
zero-energy cross section from the triplet L > 0 states,
as it follows from Eq. (50), and that will be written for
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e+n µ+n τ+ − n
β3 σL(0) β3 σL(0) β3 σL(0)

3P0 1.76 10−2 0.61 1.70 10−2 0.57 1.38 10−2 0.37
3P1 0.88 10−2 0.45 0.91 10−2 0.49 1.07 10−2 0.68
3P2 -5.28 10−3 0.28 -5.34 10−3 0.28 -5.67 10−3 0.32
3D1 2.06 10−2 0.28 2.03 10−2 0.27 1.86 10−2 0.23
3D2 0.88 10−2 0.08 0.91 10−2 0.09 1.07 10−3 0.12
3D3 -1.09 10−2 0.18 -1.10 10−2 0.18 -1.15 10−3 0.20
3F2 2.58 10−2 0.18 2.56 10−2 0.18 2.43 10−2 0.16
3F3 0.88 10−2 0.03 0.91 10−2 0.03 1.07 10−2 0.04
3F4 -1.66 10−2 0.14 -1.67 10−2 0.13 -1.73 10−2 0.15

TABLE VIII: Asymptotic coefficients β2 (48) (in fm) and zero-energy partial cross sections (50) (in µb) for the lowest non-zero
angular momentum states.

latter convenience in the form.

σT (k) =
∑
J=0

σJ with

σJ = σL=J−1,1,J + σL=J,1,J + σL=J+1,1,J .

If β3 would be independent of L, as it is implic-
itly assumed in [28, 29], the zero-energy cross section
σL(0) would decrease asymptotically as 1/J3 for all states
L = J − 1, J, J + 1 and one could easily obtain the total
low-energy cross section. For instance, for natural parity
states (L=J) one has

σT (k) =
πβ2

3

4

∞∑
J=1

2J + 1

J2(J + 1)2
=

πβ2
3

4
.

This is however not the case in the ln system. In partic-
ular, the contribution to the total cross section due the
unnatural parity states, is affected by a quadratic depen-
dence on J due to β3(L = J ± 1) and according to (50)
one has

∞∑
J=1

σJ(0) ∼
∞∑

J=1

1

J
(51)

which is logarithmically divergent with J . This fact sug-
gests a non integrability of the total differential cross sec-
tion, and could be either an intrinsic property of the 1/r3

potentials with spin-orbit force, or a consequence of a too
restrictive hypothesis in the derivation of (49). Refer-
ences [28, 29] are indeed based on the Born approxima-
tion with the asymptotic 1/r3 potentials. It is not clear
that this approximation could apply when the asymptotic
coefficient β3 of these potentials is very large, even lin-
early diverging with L/J . Work is in progress to clarify
this point.

V. CONCLUDING REMARKS

We have presented a lepton-neutron potential in con-
figuration space based on the Coulomb interaction be-
tween the pointlike lepton and the neutron charge den-
sity plus the hyperfine Hamiltonian integrated over the

neutron electric and magnetic densities. It is given in
the operator form and has a central, spin-spin, tensor
and spin-orbit terms, all regulars at the origin and the
two latter displaying a long-range 1/r3 tail, precluding
the existence of low-energy parameters in non-zero an-
gular momentum states. Several parametrisations of the
experimentally measured neutron form factors have been
used to check the stability of the predictions.

The S-wave lepton-neutron low-energy parameters –
coherent and incoherent scattering length and effective
range – have been obtained as well as the correspond-
ing cross section. The coherent scattering of n with
”electrons-bound-to-atoms” has been considered and the
predictions of the potential have been found in agreement
with the experimentally measured value of the coherent
n-atom scattering length bne = 1.23 ± 0.03 fm. To our
knowledge, and apart from this latter quantity, none of
the lepton-neutron low-energy parameters have been al-
ready predicted and remain experimentally unknown.

The higher angular momentum states are all coupled
in the partial wave LSJ basis, either by tensor force for
the triplets unnatural parity states (3L=J-1J−3L=J+1J)
or by spin-orbit term for the single and triplet natural
parity states (1LJ=L and 3LJ=L ). By neglecting this
coupling, we have estimated the low-energy cross section
for the lowest partial waves and pointed out a divergence
in the partial wave expansion of the total cross section.
The origin of this behaviour lies in the spin-orbit inter-
action for the triplet unnatural parity states, from the
combined effect of its long-range tail and the increasing
matrix elements with the angular momentum.

The lepton-neutron potentials presented in this work,
which are largely dominated by the magnetic terms (ten-
sor and spin-orbit), can be useful as theoretical inputs
in the analysis of the precision atomic spectroscopy data
with e’s and µ’s beyond the H case. In particular, to
extract the nuclear charge radii taking into account the
impact of the neutron electromagnetic structure on the
electron-nucleus interaction. It is worth mentioning that,
contrary to what happens in H isotopes (proton [41, 42]
and deuterium [2]), there is no any significant difference
between the e and µ results in the 4He charge radius [3].
A possible reason for that could be the average of the
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lepton-nucleon magnetic effects that take place in the α-
particle but is absent in proton and deuterium.
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Appendix A: Matrix elements of spin-orbit term

Let us consider the spin-orbit operator in the form

L⃗ · s⃗n =
1

2

[
jn(jn + 1)− L(L+ 1)− 3

4

]
,

j⃗n = L⃗+ s⃗n , J⃗ = j⃗n + s⃗e (A1)

It is diagonal in the eigenbasis

| L, jn, J = L,L± 1⟩ ≡
| [L, sn = 1

2 ]jn=L± 1
2
, se =

1
2 ; J = jn ± 1

2 = L,L± 1⟩ ,

the spin-orbit matrix elements are:

⟨L, jn = L± 1
2
, J | L⃗ · s⃗n | L, j′n = L± 1

2
, J⟩ = δjj′λ±(L) (A2)

for ∀J = L,L ± 1, with eigenvalues given by the right-
hand side of (A1):

λ±(L) =

{
L
2 if jn = L+ 1

2
−L

2 − 1
2 if jn = L− 1

2

(A3)

It is however interesting to know the matrix elements
of the spin-orbit operator in the usual partial wave (PW)
basis | SLJ⟩:

⟨SLJ | L⃗ · s⃗n | S′LJ⟩ =∑
jn=L±1/2

⟨SLJ | LjnJ⟩ λ±(L) ⟨LjnJ | S′LJ⟩ . (A4)

The relation between the | L, jn, J⟩ and the | S,L, J⟩
basis is given by the 6j coefficients [43]

⟨[(sesn)SL]J | [se(snL)jn ]J⟩ =

(−1)J+L+1
√
(2S + 1)(2jn + 1)

{
se sn S
L J jn

}
, (A5)

with se = sn = 1
2 . According to that, most of | L, jn, J⟩

states corresponds to a single | SLJ⟩ state. Thus for
S-wave one has :

| 0, jn = 1
2 , J = 0⟩ ≡ |1 S0⟩

| 0, jn = 1
2 , J = 1⟩ ≡ |3 S1⟩

(A6)

and for L > 0 unnatural parity states

| L, jn = L± 1/2, J = L± 1⟩ ≡|3 LL±1⟩ , (A7)

where we used the spectroscopic notation

|2S+1 LJ⟩ ≡| SLJ⟩ .

The corresponding matrix elements of the spin-orbit
operator are

⟨1S0 | L⃗ · s⃗n |1 S0⟩ = 0 (A8)

⟨3S1 | L⃗ · s⃗n |3 S1⟩ = 0 (A9)

⟨3LL±1 | L⃗ · s⃗n |3 LL±1⟩ = λ±(L) (A10)

It turns out, however, that the two natural parity
states, | L, jn = L ± 1

2 , J = L⟩, are (orthogonal) lin-
ear combinations of the corresponding singlet and triplet
natural parity states, i.e. | S = 0, L, J = L⟩ and
| S = 1, L, J = L⟩:

(
| L, jn = L− 1

2 , J = L⟩
| L, jn = L+ 1

2 , J = L⟩

)
= ML

(
| 1LL⟩
| 3LL⟩

)
,

ML =

−
√

L
2L+1

√
L+1
2L+1√

L+1
2L+1

√
L

2L+1

 , (A11)

with, det(ML)=-1 and M−1
L = ML.

The matrix elements of the spin-orbit operator in this
basis are obtained by inserting relation (A5) into (A4)
and read:

⟨2S+1LJ=L | L⃗ · s⃗n |2S
′+1 LJ=L⟩ = ML

(
λ− 0
0 λ+

)
ML , (A12)

which leads to Eq. (37). As one can see, the singlet |1LJ⟩
and the triplet |3LJ⟩ states with natural parity (i.e. with
J=L) are coupled by the spin-orbit term (A1), which
generates transitions between them. This is the case for
1P1−3P1,

1D2−3D2,
1F3−3F3 etc.
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