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We present an analytical formulation of the thermodynamics, free energy and entropy, of any
generic Bogoliubov de Genes model which develops exceptional point (EP) bifurcations in its com-
plex spectrum when coupled to reservoirs. We apply our formalism to a non-Hermitian Josephson
junction where, despite recent claims, the supercurrent does not exhibit any divergences at EPs.
The entropy, on the contrary, shows a universal jump of 1/2 log 2 which can be linked to the emer-
gence of Majorana zero modes (MZMs) at EPs. Our method allows us to obtain precise analytical
boundaries for the temperatures at which such Majorana entropy steps appear. We propose a gen-
eralized Maxwell relation linking supercurrents and entropy which could pave the way towards the
direct experimental observation of such steps in e.g. quantum-dot based minimal Kitaev chains.

Introduction–At weak coupling, an external environ-
ment only induces broadening and small shifts to the
levels of a quantum system. In contrast, the strong cou-
pling limit is highly nontrivial and gives rise to many in-
teresting concepts in e.g. quantum dissipation [1], quan-
tum information science [2] or quantum thermodynamics
[3], just to name a few. An interesting example is the
emergence of spectral degeneracies in the complex spec-
trum (resulting from integrating out the environment),
also known as exceptional point (EP) bifurcations, where
eigenvalues and eigenvectors coalesce [4]. During the last
few years, a great deal of research is being developed in
so-called non-Hermitian (NH) systems with EPs, in var-
ious contexts including open photonic systems [5], Dirac
[6], Weyl [7] and topological matter in general [8–11].
The role of NH physics and EP bifurcations in systems
with Bogoliubov-de Gennes (BdG) symmetry has hith-
erto remained unexplored, until recently. Specifically,
there is an ongoing debate on how to correctly calculate
the free energy in open BdG systems, a question relevant
in e.g Josephson junctions coupled to external electron
reservoirs. Depending on different approximations, such
"NH junctions" have been predicted to exhibit exotic ef-
fects including imaginary persistent currents [13, 14] and
supercurrents [15, 16] or various transport anomalies at
EPs [17]. If one instead uses the biorthogonal basis as-
sociated with the NH problem [18], or an extension of
scattering theory to include external electron reservoirs
[19], the supercurrents are real and exhibit no anomalies.
At the heart of this debate is whether a straightforward
use of the complex spectrum plugged into textbook defi-
nitions of thermodynamic functions leads to meaningful
results or whether, on the contrary, NH physics needs to
be treated with care when calculating the free energy.

We here present a well-defined procedure, valid for ar-
bitrary coupling and temperature, which allows us to cal-
culate the free energy, Eq. (4), without any divergences
at EPs. Derivatives of this free energy, allow us to calcu-
late physical observables such as entropy (6) or supercur-

rents (7). Interestingly, entropy changes of log 2/2 can
be connected to emergent Majorana zero modes (MZMs)
at EPs [20–22]. While such fractional entropy steps were
predicted before in seemingly different contexts [23–25],
our analysis in terms of EPs allows us to obtain precise
analytical boundaries for the temperatures at which they
appear. We propose a novel Maxwell relation connecting
supercurrents and entropy, Eq. (12), which would allow
the experimental detection of the effects predicted here.

Exceptional points in open BdG models– The starting
point of our analysis is the description of the open quan-
tum system in terms of a Green’s function

Geff(ω) = [ω −Heff(ω)]−1, (1)

where Heff(ω) = HQ +Σr(ω) is an effective NH Hamilto-
nian which takes into account how the quantum system
HQ is coupled to an external environment through the
retarded self-energy Σr(ω). In what follows, we consider
the case where an electron reservoir induces a tunneling
rate [39], such that the complex poles of Eq. (1) have
a well-defined physical interpretation in terms of quasi-
bound states. If Heff is a BdG Hamiltonian, electron-hole
symmetry can be satisfied in two non-equivalent ways: (i)
one can have pairs of poles with opposite real parts and
with the same imaginary part ϵ± = ±E − iγ = −(ϵ∓)∗;
or, alternatively, (ii) two independent and purely imag-
inary poles ϵ± = −iγ± = −(ϵ±)∗. A bifurcation of
the former, corresponding to standard finite-energy BdG
modes with an equal decay to the reservoir γ, into the
latter, two MZMs with different decay rates [20–22], de-
fines an EP (Fig. 1a, inset).

NH Free energy– Calculating the free energy of an open
quantum system is nontrivial since a direct substitution
of a complex spectrum ϵj = Ej − iγj in the standard
expression F = − 1

β logZ = − 1
β

∑
j log

(
1 + e−β(ϵj−µ)),

can lead to complex results and divergences after an EP
[15, 16]. To avoid inconsistencies, one possibility is to use
the occupation ⟨N⟩ =

∫ ∞
−∞ dωG<(ω) = − ∂F

∂µ , which is a
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Figure 1: Top (inset): Formation of an exceptional
point. The complex eigenvalues of a NH BdG Hamilto-
nian evolve as a function of some parameter until they co-
alesce at a so-called EP and then bifurcate into two purely
imaginary eigenvalues with different decay rates to the reser-
voir γ±, (quasi-bound MZMs). Top (main): Entropy de-
velopment after an exceptional point. Before the EP,
both eigenvalues have identical absolute values by particle-
hole symmetry, ϵ± = ±E − iγ, and thus both poles con-
tribute to the entropy in (6) at the same temperature until
the EP is reached (T EP = |ϵ±|/2 = γ/2, blue curve). After
the EP, E = 0 and their imaginary parts are no longer iden-
tical, ϵ± = −iγ±. Hence, their contributions to the entropy
come at different temperatures (T ± = γ±/2, orange curve),
giving rise to a fractional plateau S = log(2)/2 of width
γasym = (γ− − γ+)/2. Bottom: Free energy changes in
the temperature dependence (by more than six decades) of F
are barely distinguishable before and after an EP, as opposed
to the entropy above S = −∂F/∂T , which illustrates the sub-
tlety of the calculations presented here. The inclusion of a fi-
nite cutoff leads to a convergent low-temperature asymptotic
limit FT →0 = 1

2
∑

j

γj

π
(log γj

D
−1) see Eq. (5) for Ej = µ = 0,

which cures a divergence FT →0 = 1
2

∑
j

γj

π
(log γj

2πT
− 1) [12].

well-defined quantity in open quantum systems, even in
non-equilibrium situations where the so-called Keldysh
lesser Green’s function G<(ω) can be generalized be-
yond the fluctuation-dissipation theorem [26]. In BdG
language, ⟨N⟩ can be written as

⟨N⟩ = 1
2

∫
dωΩ(D)

[
ρp(ω)f(ω − µ) + ρh(ω)f(−ω − µ)

]
,

(2)
where f(ω) is the Fermi-Dirac function and we have ex-

plicitly separated the total spectral function

ρ(ω) = − 1
2π Im TrGeff(ω) = − 1

2π Im
∑

j

1
ω − ϵj

, (3)

in its particle (Re(ϵj) > 0) and hole (Re(ϵj) < 0)
branches, ρp(ω) and ρh(ω), respectively [40]. We have
also added a Lorentzian cutoff Ω(D) = D2/(D2 + ω2)
to avoid divergences in the thermodynamic quantities as
T → 0 (see Supplemental Material [12]). The integral in
Eq. (2) can be analytically solved by residues [12] and
then be used to obtain F as:

F = −
∫
dµ ⟨N⟩ = 1

2
∑

j

[
2T Re log Γ

(
1
2 + iγj − Ej + µ

2iπT

)

−2Tγj

D
Re log Γ

(
1
2 + D + iµ

2πT

)
+ h(T,Ej , γj)

]
,

(4)
with log Γ(z) being the log-gamma function and
h(T,Ej , γj) a generic function coming from the integra-
tion. We now perform the limits γj = 0 and T → 0 of
the previous expression,

Fγ=0 =1
2

∑
j

[
T log(2π) − T log

(
2 cosh Ej − µ

2T

)
−µ

2 + h(T,Ej , 0)
]
,

FT →0 =1
2

∑
j

γj

π
log

√
γ2

j + (Ej − µ)2

D
− µ

2

−Ej − µ

π
arctan Ej − µ

γj
+ h(0, Ej , γj)

]
,

(5)

which, by comparison with well-known limits [27, 28],
give h(T,Ej , γj) = −γj/π−T log(2π) [41]. From now on,
we fix µ = 0 but the complete derivation with full expres-
sions, including µ ̸= 0, can be found in [12]. Derivatives
of Eq. (4) allow us to obtain relevant thermodynamic
quantities, as we discuss now.

Entropy steps from EPs– Using the free energy in Eq.
(4), the entropy, defined as S = −∂F/∂T , reads:

S = 1
2

∑
j

[
log(2π) − 2 Re log Γ

(
1
2 + iγj − Ej

2iπT

)

+ 2γj

D
log Γ

(
1
2 + D

2πT

)
+ γj

πT
Reψ

(
1
2 + iγj − Ej

2iπT

)
−Ej

πT
Imψ

(
1
2 + iγj − Ej

2iπT

)
− γj

πT
ψ

(
1
2 + D

2πT

)]
,

(6)
where ψ(z) is the digamma function. From Eq. (6), we
can define a critical temperature Tj = |ϵj |/2 as the in-
flection point when the eigenvalue ϵj begins to have a
non-zero contribution (Sj = log(2)/4) to the total en-
tropy, Fig. 1 (top). Hence, two standard BdG poles
ϵ± = ±E − iγ will contribute at the same temperature
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to the entropy of the system since their absolute values
are equal, |ϵ±| =

√
E2 + γ2, and thus a single plateau

of S = log(2) can be measured. On the contrary, after
an EP at ϵ+ = ϵ− = −iγ, the poles bifurcate taking
zero real parts and different imaginary parts, ϵ+ = −iγ+

and ϵ− = −iγ−, and separating from each other a dis-
tance γ− − γ+. Then, each pole will contribute to the
entropy at a different temperature T± = |ϵ±|/2 = γ±/2,
giving rise to a fractional plateau S = log(2)/2 of width
T− − T+ = (γ− − γ+)/2. Here it is very important to
point out that this nontrivial behavior of the entropy
seems absent in the free energy that we used for the cal-
culation of S = −∂F/∂T . Indeed, F is seemingly in-
sensitive to any EP bifurcation even when varying the
temperature over six decades, Fig. 1 (bottom).

Non-Hermitian Josephson junction with EPs– Our
method also allows to calculate the supercurrent of any
generic NH Josephson junction (or similarly the persis-
tent current through a normal ring [18]) by just consider-
ing a phase-dependent spectrum ϵj(ϕ) and taking phase
derivatives of Eq. (4) as I = ∂F

∂Φ = 2e
ℏ

∂F
∂ϕ , which gives

I(ϕ) = e

ℏ
∑

j

[
− 1
π

Imψ

(
1
2 + iγj − Ej

2iπT

)
∂Ej

∂ϕ

+ 1
π

Reψ
(

1
2 + iγj − Ej

2iπT

)
∂γj

∂ϕ
− 1
π

∂γj

∂ϕ

−2T
D

log Γ
(

1
2 + D

2πT

)
∂γj

∂ϕ

]
.

(7)

As T → 0, the supercurrent carried by a pair of BdG
poles simply becomes [42]

before EP: IT →0 = − e

ℏ
2
π

arctan
(
E

γ

)
∂E

∂ϕ
,

after EP: IT →0 = e

2ℏ
2
π

log
(
γ+

γ−

)
∂γ+

∂ϕ
,

(8)

which, for example, allows us to calculate the supercur-
rent carried by Andreev levels in a short junction coupled
to an electron reservoir almost straigthforwardly [12].
Note that, although I(ϕ) has a cutoff-dependent term,
it cancels by the particle-hole symmetry of the problem
[12]. Eqs. (8) strongly differ from a calculation using
directly the complex spectrum [15, 16]

Ialt(ϕ) = e

ℏ

(
∂E

∂ϕ
− i

∂γ

∂ϕ

)
. (9)

Eqs. (4), (6) and (7) are the main results of this pa-
per and allow to calculate thermodynamics from generic
open BdG models (arbitrary coupling and temperature)
that can be written in terms of complex poles (Eq. (1)).

Non-Hermitian minimal Kitaev Josephson junction–
As an application we now consider a quantum dot (QD)

Figure 2: Top: Schematic illustration of the four-
Majorana Josephson junction device. Each segment
comprises two quantum dots connected via a middle super-
conductor in a so-called minimal Kitaev geometry. In the
low-energy regime, only the Majorana modes located at the
edges are considered in the model. The two inner modes are
connected through a weak link, coupling t23, which defines a
Josephson junction. Its superconducting phase difference ϕ
can be controlled by the magnetic flux Φ = ℏ

2e
ϕ through a

SQUID loop connecting the superconductors, with the cross
denoting an ancillary junction, see e.g. [29, 30]. The in-
ternal QDS are coupled to reservoirs with rates γ0

2 ̸= γ0
3 .

Center: Energy spectrum of the junction showing an
EP near phase ϕ = π. Lightblue/yellow (darkblue/red)
lines correspond to real/imaginary parts of ϵ±

outer (ϵ±
inner). In-

nermost states bifurcate around ϕ = π, presenting two dif-
ferent topological phases (pink/green) divided by a pair of
EPs. Gray lines correspond to the closed system (γ0

i = 0).
Bottom: Phase dependence of supercurrent. Colored
curves correspond to different temperatures (see legend). The
black curve is associated with the Hermitian (closed) analog
at T = 10−8, assuming equilibrium occupations (hence no
4π Josephson effect) which shows the typical sawtooth-like
profile for a perfectly transparent Andreev level [12]. The
dashed line shows the calculation using the real part of Eq.
(9). System parameters are fixed as t12 = ∆12, t34 = ∆34,
t23 = γ0

2 = ∆ and γ0
3 = 0.

array in a so-called minimal Kitaev model

HQD = −
∑

i

µic
†
i ci − ti,i+1c

†
i ci+1 + ∆i,i+1cici+1 + H.c. ,

(10)
where c†

i (ci) denote creation (annihilation) operators
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on each QD with a chemical potential µi. The QDs
couple via a common superconductor that allows for
crossed Andreev reflection and single-electron elastic co–
tunneling, with coupling strengths ∆i,i+1 and ti,i+1, re-
spectively. Remarkably, only two QDs are enough to
host two localized MZMs η1 and η2 when a so-called
sweet spot is reached with ∆1,2 = t1,2. This theoreti-
cal prediction [31] has recently been experimentally im-
plemented [32, 33]. Let consider now a second double
QD array (Majoranas η3 and η4) that forms a Joseph-
son junction with the former array with a coupling
HJJ = −t2,3e

i ϕ
2 c†

2c3 + H.c., with ϕ being the supercon-
ducting phase difference between both arrays and t2,3
the tunneling coupling between inner QDs. If, addition-
ally, the two inner QDs are coupled to normal reser-
voirs with rates γ0

2 and γ0
3 this system is a realization

of a Non-Hermitian Josephson junction containing Ma-
jorana modes (see the sketch in Fig. 2 top). In the
low-energy regime, this model can be described in terms
of four Majorana modes [34]. Assuming µi = 0 ∀i
and ∆12 = t12 and ∆34 = t34, only the inner Majo-
ranas η2 and η3 are coupled and lead to BdG fermionic
modes of energy ϵ±inner = − i

2γ0 ± 1
2 Λ(ϕ), where γ0 =

γ0
2 + γ0

3 , δ0 = γ0
2 − γ0

3 and Λ(ϕ) =
√

2t223(1 + cosϕ) − δ2
0 ,

while the outer modes remain completely decoupled and
ϵ±outer = 0. For δ0 = 0, one recovers the standard Ma-
jorana Josephson term: ϵ±inner = − i

2γ0 ± t23 cos(ϕ/2).
When δ0 ̸= 0, the spectrum develops EPs at phases
ϕEP = arccos [ δ2

0
2t2

23
− 1]. For an example of the resulting

supercurrents and a comparison against Eq. (9), see Fig.
2 bottom. Similarly, when ∆12 = ∆34 = ∆, t12 = t34 = t
but t ̸= ∆, an additional pair of EPs appears at [43]
ϕEP = arccos [ δ2

0−[4(∆−t)−γ0]2

2t2
23

− 1].

Using these analytics, the critical temperatures Tj =
|ϵj |/2 read

before EP: T±
inner = 1

4

√
γ2

0 + Λ2(ϕ) ,

after EP:


T+

inner = γ0 −
√
δ2

0 − 2t223(1 + cosϕ)
4

T+
inner = γ0 +

√
δ2

0 − 2t223(1 + cosϕ)
4

(11)

To illustrate their physical meaning, we plot a full cal-
culation of the entropy S(T, ϕ) using Eq. (6), Fig. 3
top, together with the analytical expressions in Eq. (11)
(solid lines). This plot demonstrates that changes in en-
tropy can be understood from EPs, a claim that is even
clearer by analyzing cuts at fixed phase (Fig. 3 center).
Interestingly, a universal entropy change of 1/2 log 2 can
be linked to the emergence of MZMs at phase ϕ = π as
T → 0. Alternatively, the entropy loss due to Majoranas
can be seen in phase-dependent cuts taken at different
temperatures, Fig. 3 bottom, which show as an interest-
ing behavior where a S = 2 log 2 plateau at large temper-
atures becomes an emergent narrow resonance, centered
at ϕ = π and of height S = 1.5 log 2, as T is lowered.

Figure 3: Entropy of a Majorana Josephson junction
with EPs. Top: Entropy as a function of ϕ and T . Two
EPs± are marked in white at ϕEP and 2π − ϕEP (??). Black-
/red curves correspond to T ±

inner, agreeing with the jumps in
entropy. Center: Entropy as a function of T for different
phases. We have also marked the position of T ±

inner for each
curve. Bottom: Entropy as a function of ϕ for different
temperatures. Gray intermediate steps follow the trajectory
in between such colored curves. System parameters are fixed
as t12 = ∆12, t34 = ∆34, t23 = γ0

2 = ∆ and γ0
3 = 0.

Experimental detection of fractional entropy– recently
it has been demonstrated that one can measure en-
tropies of mesoscopic systems, either via Maxwell rela-
tions [35, 36] or via thermopower [37, 38]. The Maxwell
relation method relies on continuously changing a param-
eter x (e.g. chemical potential or magnetic field) while
measuring its conjugate variable y (e.g. electron number
or magnetization, respectively) such that y = ∂F/∂x.
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Then, the Maxwell relation yields ∂S/dx = −∂y/dT .
Here we propose a novel application of this procedure,
employing the Josephson current I(ϕ), which gives

∆Sϕ1→ϕ2 = −
∫ ϕ2

ϕ1

∂I(ϕ)
∂T

dϕ . (12)

Since the phase difference on the Josephson junction can
be controlled by e.g. embedding it in a SQUID loop
[29, 30], Fig. 2 top, one can integrate dI/dT between
ϕ1 = 0 and ϕ2 = π. From Fig. 3 (bottom) we expect
∆S to change from zero at high-T to log 2/2 at low-T,
an unequivocal signature of Majorana zero modes in the
junction.
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Note added While finishing this manuscript, two re-
cent preprints in Arxiv [18] and [19] also pointed out the
subtleties of calculating the free energy in a NH Joseph-
son junction. Eq. (9) in Ref. [18] for the supercur-
rent agrees with our Eq. (7) in the limit without cutoffs
D → ∞. Moreover, Eq. (16) in Ref. [19] agrees with
our Eq. (7) in the regime without EPs. This latter case,
in particular, results in a reduction factor 2

π arctan
(

E
γ

)
in the T → 0 supercurrent, see Eq. (8), owing to the
coupling with the reservoir.
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