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This paper introduces several ideas of emer-
gent gravity, which come from a system similar
to an ensemble of quantum spin- 1

2 particles. To
derive a physically relevant theory, the model
is constructed by quantizing a scalar field in
curved space-time. The quantization is based
on a classical discretization of the system, but
contrary to famous approaches, like loop quan-
tum gravity or causal triangulation, a Monte-
Carlo based approach is used instead of a sim-
plicial approximation of the space-time mani-
fold. This avoids conceptual issues related to
the choice of the lattice. Moreover, this allows
us to easily encode the geometric structures
of space, given by the geodesic length between
points, into the mean value of a correlation op-
erator between two spin-like systems. Numer-
ical investigations show the relevance of the
approach, and the presence of two regimes: a
classical and a quantum regime. The latter is
obtained when the density of points reaches a
given threshold. Finally, a multi-scale analysis
is given, where the classical model is recov-
ered from the full quantum one. Each step of
the classical limit is illustrated with numerical
computations, showing the very good conver-
gence towards the classical limit and the com-
putational efficiency of the theory.
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1 Introduction
Emergent gravity is a field of growing interest. The
idea that the curved space-time of general relativ-
ity is not fundamental but comes from an effective
theory has been explored in plenty of different ap-
proaches, such as in string theory [1, 2, 3, 4], quantum
graphity [5, 6, 7], the work of Carroll and a.l. [8, 9, 10]
and many other [11, 12, 13, 14]. Each approach is usu-
ally well motivated, and it shields light on some key
elements of what could be a complete theory of quan-
tum gravity. Unfortunately, these approaches are not
fully satisfactory yet [11]. If the lack of experimen-
tal evidence is left aside,the current issues come par-
tially from computational problems: from the main
equation it becomes hardly possible to make physical
predictions that can be tested [15], or it is arduous to
connect altogether the main ingredients expected in
a complete theory of quantum gravity [16, 17, 18]. In
this paper, I propose yet another step forward in the
direction of a complete theory of emergent quantum
gravity.

The ideas presented here do not cast exactly in the
main theories, but it can be seen at the crossing be-
tween several of them. One of the main sources of

1

ar
X

iv
:2

40
5.

02
38

0v
1 

 [
gr

-q
c]

  3
 M

ay
 2

02
4

https://orcid.org/0000-0002-4594-5978
mailto:quentin.ansel@univ-fcomte.fr


inspiration is the work of Carroll and a.l. [8, 9, 10]
In their series of papers, they develop the idea that
the Einstein field equation is encoded in some way by
the correlation between parts of the wave function de-
scribing the entire universe. They postulate that the
correlation, quantified by the quantum mutual infor-
mation, gives us areas between adjacent region, and
they are able to recover, at least partially, Einstein
field equations. The relation between the mutual in-
formation and space-time areas is strongly motivated
by different arguments, the main ones being that the
entropy of the horizon is proportional to its area, and
the mutual information follows an approximated area
law [19]. Unfortunately, the inverse radon transform
used to recover the metric from the data of all areas is
far from being simple and not well understood in di-
mensions larger than 2. Moreover, the coupling with
matter fields is not straightforward, and it seems diffi-
cult to recover quantum field theory in curved space-
time with an adiabatic elimination [3]. Nonetheless,
the idea that geometric quantities are encoded in the
correlation between subparts of a quantum state is
interesting, and the fundamental discrete nature of
space-time follows other approaches, such as causal-
networks [20], loop quantum gravity [21, 22, 16], and
quantum graphity [5, 6, 7]. In these approaches,
space-time is given by "atoms of space" connected to-
gether in a lattice. One drawback of these approaches
is that the connectivity between these atoms of space
is not imposed by fundamental principles, and one
usually assumes 4 valent nodes (discretization with
tetrahedrons) or 6-valent nodes (discretization with
cuboids), but this is only motivated by a computa-
tional convenience. This discretization can be thought
of as a quantum gravity analog of the nearest neigh-
bors approximation of solid-state physique, but the
ultimate theory must be free of the choice of a lattice.

Based on these observations, I propose a model of
emergent gravity for which the main ingredients are
the following: (i) the structure of space-time is en-
coded in the correlation of subparts of a quantum
state, each subpart being tough as an "atom of space",
a quantum region of space (ii) Correlations are re-
lated to the geodesic distance between two quantum
regions, not the area (iii) Quantum field theory in
curved space-time is recovered in the limit when grav-
itational degrees of freedom are eliminated adiabati-
cally [3, 4] and when the size of the wave-packet is
large compared to the Planck scale, and finally (iv)
the quantum state describing the quantum space-time
is similar to an ensemble of spin- 1

2 , a quantum region
being described by a spin, and geometric quantities
are given by a spin-spin correlation. The use of an
ensemble of two-level systems is interesting because it
limits the size of the Hilbert space, but we can imag-
ine rewriting the theory with arbitrary spin-j or even
with harmonic oscillators.

This paper is organized as follows. In sec. 2, the

Monte-Carlo discretization procedure is introduced.
In Sec. 3, the scalar field is introduced and it is quan-
tized using the material developed in Sec. 2. In Sec. 4,
a quantum description of the gravitational field is de-
veloped so that quantum field theory in curved space-
time is recovered in the appropriate limit. This part
of the theory is still significantly incomplete, but the
minimum is made to provide a well-defined theory
for which explicit calculations en physical predictions
can be made. In Sec. 5, a multi-scale analysis is pro-
vided, where the classical scalar field theory is recov-
ered from the full quantum theory by means of suc-
cessive approximations. Each approximation step is
illustrated with numerical simulations. A conclusion
and prospective views are given in Sec. 6.

2 From continuous to discontinuous
field theory with a Monte-Carlo approx-
imation

As outlined in the introduction, space-time is assumed
fundamentally discrete, and the continuous theory is
obtained at a large scale, without assumptions on a
lattice structure at the Planck scale. Here, quan-
tum regions are not connected with the nearest neigh-
bors, they are all connected together with more or
less weight. This is quite different from the typ-
ical situation encountered in lattice quantum field
theory (such as in Wilson’s approach of path inte-
grals [23, 24, 25, 26, 27], loop quantum gravity [22],...).
The underlying idea is illustrated in Fig. 1. Here, a
probabilistic approach is used, and integrals are dis-
cretized with a Monte-Carlo method [28].

In the following, the points defining space are as-
sumed uniformly distributed on a manifold Σ, such
that for any function f : Σ → C, and any R ⊂ Σ we
have [29, 30]

∫
R∈Σ

d3x
√
q(x)f(x) = lim

N→∞

VR

N

N∑
n=1

f(xn) (1)

where VR is the volume of R, and q is the metric on
Σ. In this paper, the Lebesgue measure is replaced by
a probability distribution px(y). Using the fact that∫

Σ
d3y
√
q(y)px(y) = 1, the normalization factor for

an integration around the point x is deduced to be

Vx

N
=
(

N∑
n=1

px(yn)
)−1

. (2)

This result is written for a distribution with support
on Σ, but it can be easily restricted to R ⊂ Σ. This
leads to a simple formula for the calculation of integral
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Figure 1: a) A triangulated space. b) A discretized space with the vertices connected all together (only the edges between
x2 and the other vertices are shown) the weight between the vertices is a function of the distance between the points. In the
continuum limit, the weights define density probability functions, depicted with colored gradients.

without reference to a coordinate system:

E[f ]x =
∫

Σ
d3y
√
q(y)px(y)f(y)

≈
∑N

n=1 f(yn)px(yn)∑N
n=1 px(yn)

.

(3)

To be true, px(y) must be gauge invariant. A natural
definition for such a quantity is based on the geodesic
length between x and y, which can be computed with-
out too much difficulty as soon as the points are not
too far from each other. In the following, it is assumed
that

px(y) = N (R)
(
√

2πε)3
exp

(
−σ(x, y)

ε2

)
(4)

where ε has the dimension of a length, and σ is Synge’s
world function [31], which is equal to half the square of
the geodesic length, and N (R) is a normalization co-
efficient that depends on the space-time curvature. It
is equal to 1 in a flat space. In this setting, ε provides
a natural notion of distance. It is not fixed by first
principles, but it is assumed of the order of the Planck
length, i.e., ε2 ∼ ℏG/c3. At a first sight, it is not obvi-
ous that Eq. (4) gives a valid probability distribution
in a curved space-time. This aspect is explored in
appendix A with a taylor expansion of Synge’s world
function in Riemann normal coordinates.

The discretization procedure described here above
can be easily generalized to the case when the distri-
bution of points is not homogeneously distributed on
Σ, but is distributed homogeneously with respect to a
given coordinate system. In such a case, the previous
formulas can be adapted using the replacement rule
px(y) →

√
q(y)px(y).

3 Discrete quantum scalar field theory
in curved space-time
3.1 Hamiltonian of a scalar field
Now that the general setting for the discretization of a
field theory is made, a specific example can be studied.
As a toy model, a real scalar field φ is considered. The
starting point of the presentation is the Lagrangian
density [32, 33]:

L =
√

−g
2

[
gµν(∂µφ)(∂νφ) +m2φ2] (5)

where gµν is the metric tensor of the space-time man-
ifold M,

√
−g ≡

√
− det g, and m is the mass. Both

g and φ depend on the space-time position x. In
the following, a 3+1 splitting is performed, to de-
fine a Hamiltonian [34, 21]. With this splitting, the
metric is rewritten as follows: g00 = −N + NaNa,
g0a = Na, and gab = qab, where coordinate indices
with Latin characters run over space coordinates only
(i.e., a, b = 1, 2, 3), and q is the metric of a space sub-
manifold Σ ⊂ M. With this notation, the volume
density is

√
−g = √

qN. The next step is to determine
the conjugated momentum of φ. Using Π = ∂L

∂(∂0φ) ,
one can determine

Π = √
qNg0ν ∂νφ, (6)

and the Hamiltonian reads

H = 1
2

∫
Σ
d3x

(
Π2

√
qN + √

qN
[
qab∂aφ∂bφ+m2φ2]) .

(7)
The Klein-Gordon equation in curved space-time is
then recovered using Hamilton’s equations δH

δφ =
−∂0Π and δH

δΠ = ∂0φ. To simplify the analysis, the co-
ordinate gauge choice N = 1 and Na = 0 is made. This
avoids the use of many subtleties of algebraic QFT in

3



curved space-time [32, 33], and thus, the derivation of
a quantum theory is significantly simplified. A first
look at a covariant approach to the theory is presented
in Appendix C. The natural next step is to introduce
complexifed field variables. They are defined by

a(x) =
√
m

2

(
φ+ i

m
√
q

Π
)

(8)

a†(x) =
√
m

2

(
φ− i

m
√
q

Π
)
. (9)

With these new variables, the Hamiltonian takes the
form

H =
∫

Σ
d3x

√
q

(
m

(
a†a+ 1

2

)
+ 1

4m2 q
ab∂a(a† + a)∂b(a† + a)

)
.

(10)

Contrary to the standard approach, the Hamiltonian
is not diagonalized by the complexified variables [35].
This enables the development of a quantum theory
where the gravitational field plays a role only in the
coupling terms between different space-time positions
(the term with derivatives).

3.2 Discretization procedure
So far, the theory is given by a continuous space-time
background. This section is devoted to its discretiza-
tion. The most subtle point concerns the discretiza-
tion of the coupling Hamiltonian ∂aφ∂aφ, which must
return a term of the form ∇a∇aφ in the equation of
motion, ∇ being the covariant derivative 1. To apply
the procedure of Sec. 2, Stokes’s theorem [34] must
be used and a field vanishing on the boundary of the
domain must be assumed. Therefore,∫

d3x
√
qN ∂aφ∂

aφ → −
∫
d3x

√
qN φ ∇a∇aφ.

(11)
with this setting, the Laplacian is related to the av-
erage of the field around a given position. More pre-
cisely, one has

E[φ]x =
∫

Σ
d3y

√
q px(y)φ(y)

= φ(x) +
∫

Σ
d3y

√
q px(y) ya∂aφ(x)

+ 1
2

∫
Σ
d3y

√
q px(y) yayb∇a∇bφ(x) + ...

= φ(x) + ε2

2 ∇a∇aφ(x) +O(ε3),
(12)

1In a curved space-time, the covariant derivative ∇ replaces
the usual derivative ∂, to take into account the modification of
the tangent space TxM when a vector is moved in the manifold.
For a scalar field, ∇ reduces to ∂, but ∂aφ = ∇aφ is a vector
and its derivative must be computed with ∇ [34].

and as a consequence,

∇a∇aφ(x) = 2
ε2 [E[φ]x − φ(x)] +O(ε3). (13)

This result is easily obtained in a flat space, but a few
more cautions must be taken in curved space. The
validity of the O(ε3) approximation is explored in ap-
pendix A.

Next, the last equation is plugged into the integral
over Σ, and a Monte-Carlo approximation is made.
The result is∫

Σ
d3y

√
qNφ∇a∇aφ ≈ 2V

ε2N

N∑
n=1

Nn

[
φnE[φ]n − φ2

n

]
.

(14)
The subscript n is used to specify that quantities are
evaluated at the point xn.

Complexified variables can be restored and Eq. (14)
can be inserted into the Hamiltonian (10). The the-
ory is quantized straightforwardly by promoting the
complexified field variables into creation and annihila-
tion operators acting on a Fock space. The quantum
Hamiltonian is

Ĥ =V

N

N∑
n=1

(
m

(
â†

nân + 1
2

)
− 1

2ε2m

[
(â†

n + ân)E[(â† + â)]xn
− (â†

n + ân)2]) ,
(15)

with â†
n and ân the creation/annihilation operators at

the position xn. Despite the relatively simple expres-
sion of the Hamiltonian, the average E hides a factor
V/N , which plays the role of an unknown coupling
constant between oscillators. To circumvent this is-
sue, the Hamiltonian is factorized with a global factor
V/N , and at each position xn the volume is evaluated
with the relation (2). The global factor is only re-
sponsible for a rescale of the time coordinate in the
Schrödinger equation. The final result is:

Ĥ =V 2

N2

N∑
n=1

(
n∑

k=1
pxn(xk)

)(
m

(
â†

nân + 1
2

)
+ 1

2ε2m
(â†

n + ân)2
)

− 1
2ε2m

(
(â†

n + ân)
N∑

k=1
pxn(xk)(â†

k + âk)
)
.

(16)

This Hamiltonian shares very strong similarities with
the Bose-Hubbard model [36, 37, 38, 39, 40]. In par-
ticular, this model was used to simulate quantum
fields in curved space-times [41]. While the standard
approach is to start from a given lattice configuration
of the Bose-Hubbard model and to compute the re-
sulting effective space-time, here the reverse approach

4



is made. However, Eq. (16) is free from the near-
est neighbor approximation, and it provides a simple
mapping between the space-time geometry and the
parameters of the Hamiltonian.

4 Quantum space-time
In the previous sections, a formalism that allows us
to discretize a quantum scalar field in space was de-
veloped, where gravitational degrees of freedom have
an influence only through an interaction Hamiltonian
that couples the fields at different locations. With
these materials at hand, a (partial) quantum the-
ory for the gravitational field consistent with QFT
in curved space-time can be constructed.

A closer look at Eq. (16) highlights that in the inter-
action Hamiltonian, the geometry of M is hidden in
Pxn

(xk). These weights are the quantities that must
be quantized.

The quantization relies on several assumptions. In
particular, the geometry of the gravitational state is
encoded in the correlation between different sites of
an ensemble of spin- 1

2 , a spin being associated with
a point xn. Then, a general quantum state |ΨG⟩ is a
linear combination of vectors of HG = C2N .

Many different operators can be used to describe
a two-point correlation function. Here, the following
choice is made:

Ĉnk = σ̂+(xn)σ̂−(xk) + σ̂+(xk)σ̂−(xn) (17)

with σ̂−(xn) and σ̂+(xn) the spin cre-
ation/annihilation operators associated with the
point xn. The mean value of this operator,
Cnk = ⟨ΨG|Ĉnk|ΨG⟩, gives us information on how
much two regions are correlated, and more specif-
ically how much two regions are entangled since a
superposition of different states is necessary to get
Cnk ̸= 0.

To relate correlations and geometric data of the
manifold, I propose to postulate the following relation
between the correlation and the geodesic distance:

C2
nk = α exp

(
−σ(xn, xk)

ε2

)
, (18)

with α a proportionality coefficient. This definition,
motivated by a numerical investigations, requires the
exclusion of the terms n = k in the sum. This is be-
cause σ̂+(xn)σ̂−(xn) + σ̂+(xn)σ̂−(xn) = 112, and thus,
by taking the expectation value, it is not possible to
recover the coefficient α. As a consequence, the condi-
tion pxn(xn) = 0 must be imposed in Eq. (16). This is
not a problem for the convergence of the Monte-Carlo
approximation scheme since it concerns a modifica-
tion of the probability distribution whose Lebesgue
measure is equal to zero.

Eq. (18) has a very simple physical interpreta-
tion. The larger the distance between xn and xk, the

smaller the correlation. In order to suppress the quan-
tum fuzziness at large scales, the correlation must de-
cay sufficiently fast. A normal law (see Eq. (4)) is
assumed for convenience, but it is not excluded that
another distribution can be more adapted to the prob-
lem. For example, C2

nk ∝ exp(−
√

2σnk/ε) could be
also a viable choice. The validity of this ansazt is ex-
plored numerically in Fig. 2. The approach of the nu-
merical investigation is the following. A cost function

F = 1
N

N∑
n=1

N∑
n=1

|αe−σnk/ε2
− C2

nk(ΨG)|2 is minimized

with respect to the vector components of |ΨG⟩. For
a different number of points (i.e., a different number
of spins), a quantum state is optimized numerically
such that C2

nk is as close as possible to αe−σnk/ε2
.

The value of α is fixed by hand, to simplify the opti-
mization process. Specific details on these numerical
computations are gathered in Appendix B. Different
kinds of configurations and spaces are investigated,
with flat and curved spaces, and with points orga-
nized randomly or regularly. In all situations, very
low values of F are obtained, except when the den-
sity of points is too large. For example, in the case
of Fig. 2 b), the value of F drops significantly when
L reaches a given threshold (L/ε ≈ 1.5 for the cube
and L/ε ≈ 1.2 for the 3-simplex). The threshold de-
pends on the number of spins and it seems to corre-
spond to Cnk ≈ 1/

√
N . Further investigations may

clarify this point, but this numerical result has an
important physical consequence: there is a natural
minimum scale for which we can obtain a classical
geometry. The value of the threshold depends on α,
and thus it is not clear at this point in which exact
circumstances it is possible to encounter a quantum
space-time. This issue will be investigated elsewhere.

The Hamiltonian of the scalar field (16) can be re-
constructed with the information given by Cnk. How-
ever, the square of Cnk is required, to ensure a positive
quantity that can be assimilated with a probability.
This cannot be realized as the mean value of a lin-
ear operator acting on |ΨG⟩, the quadraticity can be
recovered with a duplicate of the state and a tensor
product. We introduce |Ψ̃G⟩ = |ΨG⟩⊗|ΨG⟩, and with
this state, C2

nk is obtained with the relation

⟨Ψ̃G|Ĉnk ⊗ Ĉnk|Ψ̃G⟩ = C2
nk. (19)

The full quantum Hamiltonian is obtained by re-
placing Pxn(xk) by Ĉnk ⊗ Ĉnk in Eq. (16). The pa-
rameter α is omitted since it can be factorized with
the term V 2/N2, which is already a global scaling
factor of the Hamiltonian.

The dynamics of the full quantum system are given
by the Schrödinger equation

d

dt
|Ψ⟩ = − iN

V

(
Ĥ + ĤG

)
|Ψ⟩, (20)

where Ĥ is the Hamiltonian [34, 21] given in Eq. (16),
and the origin of factor N/V is explained in ap-
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Figure 2: Test of the validity of the gravitational wave
function ansazt, using the numerical minimization of the

cost function F = 1
N

N∑
n=1

N∑
n=1

|α exp(−σ(xn, xk)/ε2) −

C2
nk(ΨG)|2. The parameters to optimize are vector com-

ponents of |ΨG⟩. Different case studies are considered. In
the first one (panel a), the locations of N points are gen-
erated randomly in a cube of edge length L/ε. In the sec-
ond case (panel b), the number of points is fixed, and they
are located at the vertices of a regular polyhedron (a cube
or a 3-simplex), the edge length being varied. In the third
case (panel c), the situation is similar to the first one, but
the cube is replaced by a 3-sphere of radius r. In the last
case (panel d), points are randomly sampled in a Hayward
space-time [42]. Further details concerning the numerical
calculations are given in Appendix B.

pendix D. ĤG is a gravitational Hamiltonian. De-
riving the explicit expression of ĤG is a nontrivial
key point of the theory. It is left unresolved in this
article. Both Ĥ and ĤG act on gravitational degrees
of freedoms, but in the low coupling limit, |Ψ⟩ ap-
proximately take the form of a tensor product at any
time, i.e. |Ψ⟩ ≈ |Ψ̃G⟩ ⊗ |ΨS.F.⟩ (Born approxima-
tion). This limit is not obtained by m → 0, but when
∥Ĥ|Ψ⟩∥ ≪ ∥ĤG|Ψ⟩∥. By taking the trace over gravi-
tational degrees of freedom, one gets:

d

dt
|ΨS.F.⟩ = − iN

V

(
⟨Ĥ⟩Ψ̃G

+ ⟨ĤG⟩Ψ̃G
11
)

|ΨS.F.⟩ (21)

The mean value of ĤG returns only an irrelevant
phase from the point of view of the scalar field, and
thus, the Schrödinger equation can be redefined as

d

dt
|ΨS.F.⟩ = − iN

V
⟨Ĥ⟩Ψ̃G

|ΨS.F.⟩. (22)

It gives us the dynamics of the scalar field in the
limit of quantum fields in curved space-time. This
is a mean-field Schrödinger equation similar to the
one encountered in quantum optics [43, 44, 45]. From
the point of view of open quantum systems, this cor-
responds to a first-order adiabatic elimination [46].
The second-order expansion introduces non-unitary
dynamics and an effective Lindblad equation must
replace Eq. (22). The second-order correction goes
beyond the standard quantum field theory in curved
space-time and it incorporates the notion of gravita-
tional decoherence [47, 48]. The rest of this paper
is focused on the first-order approximation and only
Eq. (22) is considered.

5 Multi-scales analysis
In the previous sections, a quantum theory for the
scalar field and the gravitational field was developed,
such that quantum field theory in curved space-time
is recovered when suitable limits are taken. Several
aspects have been omitted and the goal of this sec-
tion is to go deeper in the analysis, using numerical
calculations.

5.1 Classical and non-classical gravitational
states
First, a few properties of the gravitational quan-
tum state are investigated by computing a few rel-
evant quantities. A first one is the inverse par-
ticipation ratio (IPR) [49], defined by IPR =(

dimHG∑
m=1

|ΨG,m|4
)−1

, with ΨG,m the vector compo-

nents of |ΨG⟩ in the canonical basis of HG. Roughly,
the IPR gives us the number of basis states on which
the state is decomposed with equal weights. This pro-
vides us some information on the complexity of the

6



d

G

Figure 3: Panel a) shows the IPR of |ΨG⟩, given by IP R =

(
dimHG∑

m=1

|ΨG,m|4
)−1

as a function of the edge length L for the

optimized quantum states whose final cost function are given in Fig. 2 b). In this situation, the optimized quantum state aims
to describe a classical geometry with 8 points located at the vertices of a cube. We recall that when L/ε ≤ 1.5, the state
fails to describe the target geometry, but when L/ε > 1.5 the geometry is well described by the |ΨG⟩. Panel b) is the same
as panel a), but it shows the mean, max. and min. values of the purity Tr[ρ̂(xn)2] of each spin reduced states. Panel c) and
d) show the geodesic distance between each point, as given respectively by the optimized state at L/ε = 2 and L/ε = 0.1.
The geodesic distance is deduced from Eq. (18), with value α = (

√
2πε)3 (fixed for the numerical optimization), and it reads:

lnk =
√

−2ε log(C2
nk).

quantum state, and how many basis states are used
to encode the data of a classical space-time. A second
interesting quantity is the purity of the reduced state
associated with each spin.

The purity associated with a point xn is defined
by Tr[ρ̂(xn)2] [44, 45] , with ρ̂(xn) the reduced
density matrix of the corresponding spin. Since
the system is a spin- 1

2 , the reduced density ma-
trix can be easily computed using ρ̂(xn) = (112 +

3∑
i=1

σ̂i⟨ΨG|σ̂i(xn)|ΨG⟩)/2, with σi the Pauli matrices.

The purity is a quantity describing how the density
matrix is close to a pure state. The purity of a pure
state is equal to 1, and the minimum value is 0.5 for
the state ρ̂ = 112/2.

The IPR and the averaged purity of each xn are
given in Fig. 3 a) and b), for the quantum states opti-
mized to describe a cube, whose cost functions F are
given in Fig. 2 b). With these states, there are the
ones that describe a classical geometry, and the ones
that do not. The physical relevance of this second
kind of state is less important than the first one, be-
cause they fail in the description of a classical object,

and there is no guarantee that they describe a true
physical situation. However, they give us elements
of comparison with the states describing a classical
geometry. We observe that the IPR is usually quite
high (between 30% and 50% of the total dimension
of the Hilbert space) and the purity is low, close to
the minimum value of 0.5. The local states are there-
fore highly statistical mixtures. The relatively high
IPR and low purity suggest that the states are quite
highly entangled. Interestingly, the data of Fig. 3 a)
and b) clearly indicates the change of behavior near
L/ε = 1.5. This observation, already commented in
the previous section, requires a deeper analysis to ex-
plain its origin.

Having a large-scale entanglement and locally
mixed states seem to be necessary conditions to ob-
tain classical geometries, but we see that there exist
non-classical states that have similar behaviors. Only
the correlation function allows us to distinguish a clas-
sical to a non-classical geometry. In figure Fig. 3 c)
and d) are plotted the geodesic distance between the
xn for the optimized state computed with L/ε = 2
and L/ε = 0.1. They are respectively classical and
non-classical states. The geodesic distance is com-
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puted from Cnk by inverting Eq. (18), and using
α = (

√
2πε)3 (fixed for the numerical optimization).

It reads lnk =
√

−2ε log(C2
nk). In the classical case,

the distances correspond to the ones between the ver-
tices of a cube of edge length 2 (they are equal to 2,
2
√

2 ≈ 2.8 and 2
√

3 ≈ 3.5). In the nonclassical case,
all the distances are ≈ 1.5. This is not possible unless
the geometric figure is a hypercube of dimension equal
to 8, or if the interpretation of well-located points in a
3D space is lost. This ensemble could also be seen as a
kind of fuzzy object. This object is divided into well-
identifiable subsystems but do not have well defined
positions in a 3D space. They are identically close to
one another, violating the basis axiom of normed 3D
spaces.

5.2 Classical limit of the quantum scalar field
The next step of the multi-scales analysis is to con-
sider a regime where the gravitational field is in its
semi-classical limit such that the dynamics of the
scalar field are governed by the Schrödinger equation
Eq. (22). In this limit, the mean value of the Hamil-
tonian with respect to the gravitational state gives us
the coefficients pxk

(xn) in Eq. (16). We can thus for-
get the quantum nature of gravity and the coefficients
pxk

(xn) become inputs of the model. As previously
outlined in the text, the Hamiltonian is in the form
of a Bose-Hubbard Hamiltonian, and it is well de-
fined and already studied in the literature. However,
it is not so easy to recover standard quantum field
theory, and even harder to recover the classical field.
Of course, we can follow the reverse procedure of the
one followed in Sec. 3, and come back to the initial
point, but it is quite difficult to visualize the transition
from the quantum world to the semi-classical one. To
this end, different semi-classical approximations can
be performed. Here, we are interested in an approach
particularly well suited for numerical computations.
First, we consider the regime where ⟨φ̂⟩ ≈ φ and
⟨Π̂⟩ ≈ Π [44], where the dynamics of φ and Π are
computed using Hamilton’s equations, with the clas-
sical Hamiltonian as a starting point (see appendix
D). This allows us to replace the Schrödinger equa-
tion with a set of classical equations of motion, with a
small number of degrees of freedom (compared to the
size of the truncated Hilbert space used in a numerical
simulation) [50, 51, 52]. Physically, the classical sys-
tem corresponds to a set of coupled oscillators. Equa-
tions of motions are non-linear, but their numerical
integration is not particularly difficult. Next, we take
the limit when the number of discretization points
tends to infinity, to recover the continuum limit.

The regime with ⟨φ̂⟩ ≈ φ and ⟨Π̂⟩ ≈ Π is obtained
when the quantum state is of the form

|ΨS.F.⟩ =
N⊗

n=1
|an⟩ (23)

with |an⟩ a coherent state defined by [44]

|an⟩ = e−|an|2/2
∞∑

k=0

(an)k

√
k!

|kn⟩, (24)

|kn⟩ being the Fock basis state of the oscillator n. A
coherent state has the particularity that ⟨an|ân|an⟩ =
an and ⟨an|â†

n|an⟩ = a∗
n, and thus ⟨φ̂⟩ = φ and

⟨Π̂⟩ = Π. The Hamiltonian has the particularity to
preserve quite well the coherent state structure of the
state, and thus, a coherent state remains coherent as
a function of time. As a consequence, if |ΨS.F.⟩ is a
coherent state, it behaves like a classical ensemble of
coupled oscillators. This point is illustrated in Fig. 4.
We see that quantum and classical dynamics are very
close to each other, even after very long times (i.e.,
after a large number of oscillations). Physically, this
system is quite far from a classical continuous scalar
field because the number of points taken in this exam-
ple is quite small. The number of quantum oscillators
that can be considered in a numerical simulation is
limited by the size of the Hilbert space. Nevertheless,
a feature of the continuous limit can already be ob-
served: an initially localized excitation will tend to
propagate towards the nearby points. This is clearly
visible in panels a) and b), where the field amplitude
in x1 decreases while the amplitude in the other points
increases.

Next, the state of the scalar field is assumed to stay
coherent at any time, such that dynamics can be com-
puted using only the classical equation of motion (see
appendix D). In this regime, the number of xn in the
numerical simulation can be increased considerably,
but the Monte Carlo method requires quite a lot of
points to obtain a good convergence, and thus, the
illustrative example is limited to a 1D flat space. In
practice, the expression of the Hamiltonian remains
the same as in 3D, but the coefficients pxn

(xk) are
now defined by. pxn

(xk) = e−(xn−xk)2/(2ε2)/(
√

2πε).
In a flat 1D space, the Klein-Gordon equation is given
by [35]

∂2φ

∂x2 − ∂2φ

∂t2
−m2φ = 0. (25)

It can be derived readily from the Lagrangian Eq. (5),
with gµν = ηµν (the Minkowski metric), and using
Euler Lagrange equations with respect to the field
variable φ. Solutions of Eq. (25) are given by [35]

φ(x, t) =
∫

dk

4πω(k)

(
a(k)ei(−ω(k)t+kx) + C.C.

)
,

(26)
with ω(k) =

√
k2 +m2. In order to satisfy the con-

dition that φ vanish on the boundary of the domain
(remember that this is a necessary condition to derive
the quantum Hamiltonian in the form of Eq. (16)), the
density of modes is chosen to be

a(k) = ω(k)
κ

exp
(

− k2

2κ2

)
. (27)
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Figure 4: Panels a) and b) show the time evolution of the field at different space positions, computed using the Schrödinger
equation and the Hamiltonian Eq. (16) for the quantum case, or the classical Hamiltonian and Hamilton equations for the
classical case given in Appendix D. The system is defined with 5 points in Minkowski space whose locations are given in panel
d). The initial quantum state condition is a coherent state |ΨS.F.⟩ = |0.1⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩, and the initial classical state
is φn = (⟨0.1|φ̂|0.1⟩, 0, 0, 0, 0) and Π̃n = (0, 0, 0, 0, 0). The mass is fixed such that mε = 2. Panel c) shows the error made
by the semi-classical approximation. It consists of the 2-norm in RN of the difference between the vector ⟨φ̂n⟩ and φn. The
accumulation of error is due to the small nonclassical effects, but also to some extent numerical errors due to the truncation
of the Hilbert space (only the first four states of the Fock space are kept, leading to a total Hilbert space dimension of 1024).

Plugging Eq. (27) into Eq. (26) leads us to

φ(x, t) =
∫

dk

2πκ exp
(

− k2

2κ2

)
cos(kx− ω(k)t). (28)

This integral can be easily evaluated numerically with
very good precision. Even if a short numerical com-
putation is necessary for its evaluation, Eq. (28) is
called below "the analytic solution" of the Klein-
Gordon equation. In the limit when m → ∞, a sim-
ple approximated expression can be derived, φ(x, t) ≈
e−x2/2κ2

cos(mt)/
√

2π. The shape of the wave packet
is a Gaussian oscillating at a frequency m.

In Fig. 5, the analytic solution of the Klein-Gordon
equation is compared with the discrete model, defined
by the classical version of Eq. (16). The equation of
motion of the second model being entirely integrated
numerically, the resulting solution is called below the
"numerical solution". The two dynamics are very
close to each other. In both cases, two observations
can be made, the field oscillates at the frequency m
and there is a time deformation of the wave packet
because mε is of the order of unity. The validity
of the numerical solution can be characterized more
precisely by computing its deviation from the Klein-

Gordon equation. The number of points φ(x, t) in the
numerical solution being sufficiently high, it is possi-
ble to compute an analytic interpolation of the data
points. The interpolated function is then inserted in
the Klein-Gordon equation, and the error at a given
time t is defined by the sup norm, computed over
the variable x. The error of the numerical solution
is given in Fig. 5 c). It is divided by the sup norm
of φ(t = 0) to fix an irrelevant scaling amplitude.
The error remains small and bounded (≲ 2 percent).
Better accuracy of the method can be obtained by in-
creasing the number of points, increasing the region of
integration, and increasing the size of the wave packet
(the size of the wave packet must be large to ensure a
good convergence of the approximation scheme of the
Laplacian, as given in Eq. (13)).

To finalize the illustration of the method, a short
example of propagation in a curved space-time is pro-
vided in Fig. 6. The chosen one is a Hayward space-
time [42] where space-slices are restricted to a single
dimension. In Lemaitre type coordinates, the line el-
ement is given by:

ds2 = −dt2 + rsr
2

r3 + l2rs
dρ2 (29)
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Figure 5: Panel a) shows the analytic solution of the Klein Gordon equation, given by Eq. (28) with mε = 0.8 and κε = 0.15.
Panel b) shows the numerical solution, computed with the same parameters and an initial state given by the analytic solution
at t = 0. In the numerical solution, time must be rescaled due to the global factorization in the Hamiltonian Eq. (16). Panel
c) gives the deviation (also called the error) of the numerical solution from the Klein-Gordon equation. It is given by the sup
norm of (∇2 − m2)φ = ∂2

xφ − ∂2
t φ − m2φ, the norm being computed over the variable x.

with t the time coordinate, and ρ a space coordinate.
rs correspond to the Schwarzschild radius, and l is a
length scale of the central body. The function r(ρ, t)
is a non-analytic, and defined through the differen-

tial equation dρ − dt = dr
(

rsr2

r3+l2rs

)−1/2
. It can be

easily evaluated numerically or approximated analyt-
ically using a Taylor expansion. Since the coordinates
are related by a differential equation, an arbitrary
choice of origin is required. Here, ρ − t = 0 is cho-
sen to correspond with r = 21/3l2/3r1/3

s . In this case
study, the space-time has two horizons [42]. The wave
packet is initially located near the inner horizon. Due
to the non-zero energy density at the origin of this
space-time, the wave packet propagates towards the
horizon (free fall towards the center of the body, lo-
cated at r = 0), and a very strong distorsion happens
near this latter. Here, the goal is just to illustrate
that the method allows us modelize the non-trivial
properties of a curved space-time2. No further details

2The second order expansion of σ used for its estimation
allows us to show the existance of curvature effects, but it may

are investigated, this could be the topic of another
independent paper.

The very good results given by the numerical solu-
tion show the relevance of the discretization method.
It is, therefore, an interesting for quantum gravity
purposes, but it can also be an alternative discretiza-
tion scheme in quantum field theory in curved space-
time for which most of the current techniques are
based on a simplicial discretization of the space-time
manifold [23, 24, 25, 26, 27]. The simplicial dis-
cretization requires a nontrivial discretization scheme
of the differential operators which may be difficult to
compute in large dimensions. With the Monte-Carlo
based approach the nontrivial task is to compute the
geodesic length, but once this task is achieved, poten-
tially with some approximations, then, the implemen-
tation of the scheme is straightforward.

also leads to numerical errors that could be corrected with more
accurate estimations of σ.
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Figure 6: Propagation of a scalar field near the inner hori-
zon of a Hayward space-time. The dashed line corresponds
to this horizon, and the solid line corresponds to the radial
coordinate r = (2rs)1/3l2/3. The parameters used in the
simulation are l/ε = 10, rs/ε = 60, mε = 0.8, and κε = 0.4.

6 Conclusion

In this paper, several ideas of quantum gravity have
been explored, such as the possibility to encode space-
time geometric distances in the correlation of a spin-
like system, and to use a discretization scheme based
on Monte-Carlo principles instead of a lattice-based
discretization. These two ingredients offer interest-
ing advantages compared to other common quantum
gravity theories which are based on elementary areas
(instead of distances) and/or simplicial lattices for the
discretization scheme. The use of distances leads to
a simpler connection with general relativity and our
everyday world, for which elementary quantities are
distances. The Monte Carlo method simplifies the
discretization scheme of differential operators, and it
avoids conceptual problems induced by the arbitrary
choice of a lattice.

To construct a physically relevant theory, the start-
ing point was to quantize a scalar field in curved
space-time. Working with such a test system has
led to a simple link between general ideas and a
well-defined mathematical model. In this model, the
gravitational field is described by a quantum sys-
tem which is similar to an ensemble of spin-1

2 par-
ticles. At each spin corresponds a point of space.
The geodesic length between two of these points is
given by the quantum state through the relation
C2

nk = ⟨σ̂+(xn)σ̂−(xk) + σ̂+(xk)⟩2
ΨG

∝ pxn(xk). This
relation is a postulate of the theory, and its phys-
ical relevance has been investigated with numerical
tests. Quantum states that describe various classical
geometries have been found with a very high numeri-
cal precision. This is a first positive result supporting
this very strong postulate. The numerical simulations

have also shown the existence of two different regimes
associated with two different length scales. Bellow a
specific threshold, the classical description does not
hold anymore and one obtains something that can be
called "a quantum space-time". This is a nontriv-
ial consequence of the model, which remotely resem-
bles the quantization of areas and volumes in loop
quantum gravity. In loop quantum gravity, the min-
imal scale is given by the lowest eigenvalues of area
and volume operators [21, 22, 16]. This can be in-
terpreted as the existence of minimal building blocks
that can be used to construct the space-time. How-
ever, in the theory of this paper, the interpretation is
slightly different. The classical space-time is observed
only if the distance between two points is sufficiently
far from each other. If the density of points becomes
too short, there is a threshold where a classical pic-
ture is not possible anymore and the resulting object
cannot be interpreted as a space-like sub-manifold.
This effect may have interesting consequences in black
hole physics and cosmology. The relevance of the
model has also been investigated from another point
of view, which has consisted of recovering, by means
of successive approximation, the classical theory of a
scalar field. Each step of the procedure has been illus-
trated by numerical examples. These examples show
clearly the different regimes of the theory, but they
also demonstrate its computational efficiency.

In these few pages, many issues have been glossed
over. Here is a (non-exhaustive) list of the points that
shall be investigated:

• One of the most important ones concerns the ex-
plicit construction of the gravitational Hamilto-
nian HG, which is compatible with the Einstein-
field equation (at least in some limit cases, com-
patible with current experimental observations).
Another issue concerns the choice of the proba-
bility density pxn

(xk), which has been assumed
to be a normal law. In fact, the form of the den-
sity may be fixed by the theory itself, by ĤG

and its eigenvectors. The use of a normal Law
is interesting because at small distances we have
C2

nk ∝ 1−qabdx
adxb/(2ε2), with dx a vector con-

necting xn to xk. The relation with the metric
tensor is therefore very simple and quite natural,
but many different distributions can have locally
this form and very different behaviors at large
scales.

• In this paper, it was sufficient to provide a quan-
tum mechanical description of the 3-metric qab.
However, this is not sufficient to describe the en-
tire space-time manifold M, the extrinsic curva-
ture kab is also necessary, and it must be encoded
somewhere in |Ψ̃G⟩.

• A similar study with a Dirac field instead of
a scalar field could also be interesting to test

11



the coupling operator Ĉnk. This operator (see
Eq. (17)) has been chosen because it provides
interesting numerical results, but this choice is
not unique. For a Dirac field, it could be more
interesting to choose an operator of the form
Ĉnk =

∑
i,j∈{x,y,z}

wij σ̂i(xn)σ̂(xk), with wij ∈ R,

with σ̂i(xn) the Pauli matrices.

• Another point to clarify concerns the possibility
of interpreting σ̂i(xn) as a quantized 3D reference
frame. If such a link can be consistently made
with the ideas of the paper, this may provide a
very interesting connection with current theories
of quantum reference frame.

• Finally, a last point to investigate with deeper
details, together with the construction of HG, is
the physical consequence of the use of |Ψ̃G⟩ =
|ΨG⟩⊗2. This condition has a pure mathemati-
cal origin, it could be relaxed, such that |Ψ̃G⟩ =
|Ψ1⟩ ⊗ |Ψ2⟩. The two states would correspond
only in the classical limit.
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A Normal law in a curved space-time
Theorem 1. Let Synge’s world function be expressed
in terms of Riemann normal coordinates [31, 53]:

σ(xn, xk) = 1
2

(
δaby

ayb − λ2

3 Racbdy
aybycyd +O(λ3)

)
with the coordinate system defined such that xn is lo-
cated at the origin, and xk located at ya. λ is a scale
parameter that must be sufficiently small, but also suf-
ficiently large in front of ε, and Rabcd is Riemann
tensor evaluated at y = 0. Then, we have,∫

d3y
√
q

N (R)
(
√

2πε)3
e−σ/ε2

= 1 +O(λ3)

with N (R) = 1+Rε2λ2/6+O(λ3), R being the scalar
curvature, and∫
d3y

√
q yayb N (R)

(
√

2πε)3
e−σ/ε2

= ε2 +O(ε3) +O(λ3).

Proof The proof is based in both cases on a series
expansion in powers of λ, followed by the integration.
To perform the calculation

√
q must be also Taylor

expanded. Following anew [53], one get

√
q = 1 − λ2

6 Raby
ayb +O(λ3), (30)

with Rab the Ricci tensor. Plugging all together the
expansions of N (R), σ and

√
q, the integral becomes:∫

d3y
√
q

N (R)
(
√

2πε)3
e−σ/ε2

=
∫
d3y

e−δabyayb/ε2

(
√

2πε)3

(
1 + λ2

6 (Rε2 −Raby
ayb

+Rabcd

ε2 yaybycyd)
)

+O(λ3)

The integral has non zero contributions only if the
powers in ya are all even (otherwise positive and neg-
ative positions cancel each other). This leads us to
the following replacement rules:∫

d3y
e−δabyayb/ε2

(
√

2πε)3
yayb = ε2δab (31)∫

d3y
e−δabyayb/ε2

(
√

2πε)3
(ya)2(yb)2 = ε4(3 − 2δab). (32)

Moreover, the Ricci tensor is symmetric and the Rie-
mann tensor is skew-symmetric on some of its indices.
As a consequence, one get Raby

ayb → Rabδ
ab = R

(the scalar curvature being evaluated at ya = 0),
and Rabcdy

aybycyd → 0. As a result, the second or-
der term in λ in (A) is canceled, and the result is
1 +O(λ3).

For the second relation of the theorem, the starting
point is the same, but now, the minimum number of
powers in ya is at least one. Once again, the term
with the Riemann tensor is canceled, and the only
surviving terms are the ones with yayb, Rε2λ2yayb/6
, and Rcbλ

2yaybycyd/6. The result of the integral, is
thus ε2 −ε4λ2(R+2Rab)/6. Then, this leads to a final
expression of ε2 +O(ε3) +O(λ3).

B Details on the numerical optimiza-
tions
In Sec. 4, the assumptions at the core of the quan-
tum description of space-time is tested numerically
by searching numerically quantum states that can de-
scribe a classical space-time.

As earlier commented in the main text, the goal
is to determine the vector component of a quantum
state that minimize a cost function F . Several cases
study are considered, and results are plotted in Fig. 2.
In the first one (panel a), the locations of N points
are generated randomly in a cube of edge length L/ε.
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In the second case (panel b), the number of points is
fixed, and they are located at the vertices of a regular
polyhedron (a cube or a 3-simplex), the edge length
being varied. In the third case (panel c), the situation
is similar to the first one, but the cube is replaced
by a 3-sphere of radius r. In the last case (panel
d), points a randomly sampled in a Hayward space-
time [42]. With these examples, flat and two kind
of curved spaces are investigated. The first curved
space of interest is a 3-sphere, for which it is easy to
compute geodesic lengths. The second curved space
has, contrary to the 3-sphere, a position dependent
scalar curvature. Hence, the normalization coefficient
of the probability distribution (see Eq. (4)) depends
on the position.

The Hayward3 space-time is defined by the line el-
ement (written in Lemaitre-type coordinates)

ds2 = −dt2 + rsr
2

r3 + l2rs
dρ2 + r2dΩ2, (33)

with t the time coordinate, ρ the radial coordinate,
and Ω is a solid angle coordinate, rs correspond to
the Schwarzschild radius, and l is a length scale of
the central body. r(ρ, t) is a non-analytic function of

ρ and t, defined by dρ − dt = dr
(

rsr2

r3+l2rs

)−1/2
. It

can be easily evaluated numerically or approximated
analytically using a Taylor expansion. Since the co-
ordinates are related by a differential equation, an
arbitrary choice of origin is required. Here, ρ− t = 0
is chosen to correspond with r = 21/3l2/3r1/3

s . In this
paper only a limited portion of the space-time is con-
sidered. In the case of Fig. 2, t = 0 and ρ/ε ∈ [−1, 2],
l/ε = 0.5, and rs/ε = 3.

To perform the calculations, several key points
must be considered. First of all, the minimization
of F is performed with a two-step procedure. The
first step is a global minimization with the algorithm
JAYA [54]. With this algorithm, convergence towards
a minimum may not be achieved (mostly when the
number of spins is large), but the resulting quantum
state is used as an input for a second optimization
using a gradient descent algorithm [55].

The second point is that C2
nk ∝ pxn(xk), and the

proportionality coefficient is unknown. The value of
this coefficient, namely α, is fixed by hand in the
numerical optimization. In principle it can be op-
timized simultaneously with the quantum state, but
at the price of an important computational cost. A
third important point concerns the computation of
geodesic lengths. This can be done exactly in the
simplest cases, but otherwise they are only estimated
approximately.

• In the first two cases α is simply fixed to α = 1,
and the geodesic length is given by the Euclidean
distance. We thus have σ = ∥xn − xk∥2/2.

3A Hayward space-time describes a Black hole without sin-
gularity.

• In the case of the 3-sphere, the space is curved,
α = (1 + Rε2λ2/6)(

√
2πε)−3, with λ = 3r/5

(fixed by hand, such that ε < λ < r). Re-
call that r is the radius of the sphere, and the
scalar curvature is given by R = 6/r2. The
geodesic length is given by the arc length, so that
σ = r2 arccos(un.uk/r

2)2/2, with un the point
position in R4.

• In the case of the Hayward space, α = (
√

2πε)−3.
The geodesic length is estimated using a second
order expansion of σ [31, 53]

C Covariant Monte-Carlo discretiza-
tion
In this appendix, the ideas introduced in Sec. 3.2 are
reused to define a covariant quantum theory of the
scalar field. In such a framework, the action is dis-
cretized, and it can be inserted in a second step into
a path-integral. The precise definition of the path in-
tegral is not discussed here, the following few lines
focus on the discretization of the action. The usual
action for a scalar field is given by:

S =
∫
d4x

√
−g
2

[
gµν(∂µφ)(∂νφ) +m2)φ2] (34)

It can be discretized with a Monte-Carlo approach,
as given in Sec. 2, but using the space-time met-
ric g instead of the metric q of a 3D hypersurface.
The nontrivial point would be to estimate the term
gµν(∂µφ)(∂νφ).

One can notice that:

E[φ2]x =
∫
d4y

√
−g px(y)φ(x)2

≈ φ(x)2 + ε2

2 φ(x)∇µ∇µφ(x) + ε2(∂µφ)(∂µφ)
(35)

The computation steps are basically the same as in
Eq. (12), but using the Taylor expansion of φ(x)2 over
space-time. Using the relation of Eq. (13), generalized
to 4D, it is possible to rewrite Eq. (35) into

E[φ2]x ≈ ε2
(

1
2φ(x)E[φ]x + (∂µφ)(∂µφ)

)
, (36)

and thus,

(∂µφ)(∂µφ) ≈ 1
ε2E[φ2]x − 1

2φ(x)E[φ]x. (37)

As a consequence, with the Monte-Carlo approxima-
tion, the action is approximately

S ≈ V

2N

N∑
n=1

m2φ2
n+V

N

N∑
k=1

pxn
(xk)

(
1
ε2φ

2
k − 1

2φnφk

)
(38)
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One can also factorize by V/N , as in Eq. (16), and
the final result is

S ≈ V 2

2N2

N∑
n=1

(
N∑

k=1
pxn(xk)

)
m2φ2

n

+
N∑

k=1
pxn

(xk)
(

1
ε2φ

2
k − 1

2φnφk

)
.

(39)

Once again, this formula is evaluated in 4D, which
means that pxn

(xk) is a function of the geodesic length
in M, not in Σ.

D Hamiltonian and equation of motion
of discretized systems
In the main text of this paper, repeated references to
the classical Hamiltonian and the classical equation
of motion are made, without detailed explanations on
the subject. A few details on the subject are reported
in this appendix.

The classical Hamiltonian and the classical equa-
tion of motions are already given in Sec. 3, in the
case of the continuous field. However, the formula
must be slightly adapted in the discretized versions.

In the continuous case, Hamilton’s equations are
given by functional derivatives [56]. In the case
of δ-peacked variation of a field, a functional I =∫
dµ(x)f(φ(x)) has for variation:

δI

δφ(y) =
∫
dµ(x)∂f

∂φ
δ(x− y) = ∂f

∂φ
(y). (40)

In the Monte-Carlo approach, the Lebesgue measure
4 µ is replaced by a sum of Dirac distribution, i.e.

I ≈ I ′ = V

N

∑
n

∫
dµ(x)δ(x− xn)f(φ(x)). (41)

The functional derivative is, therefore, 5

δI ′

δφ(y) = V

N

∑
n

∂f

∂φ
(xn)δ(xn − y). (42)

This is a distribution. To identify the variations of I ′

to the variations of I, δI′

δφ(y) must be regularized. The
regularization can be performed by different means.
A simple one is to consider:

δI

δφ(y) = N

V

∫
By

dµ(x) δI ′

δφ(y) (43)

with By a ball centered on y with a radius sufficiently
small, so that a single Dirac distribution is integrated.

4for simplicity, a flat space is assumed
5to get this result, a product of Dirac distributions must be

carefully computed using the Colombeau algebra [57].

The two functional derivatives are thus proportional,
with a factor N/V .

As a consequence, the proportionality coefficient is
recovered in all the formulas adapted from the con-
tinuous case. Then, Hamilton’s equations for the dis-
cretized system are given by:

dφn

dt
= N

V

∂H

∂Πn
(44)

dΠn

dt
= −N

V

∂H

∂φn
. (45)

with H the discretized Hamiltonian, and the
Schrödinger equation is

d

dt
|ψ⟩ = −iN

V
Ĥ|ψ⟩. (46)

Now, a few details on the classical version of
Eq. (16) are given. The classical Hamiltonian is ob-
tained by reversing the canonical quantization proce-
dure, which means that ân and â†

n are replaced by
C numbers an and a†

n. The corresponding Hamilto-
nian H is therefore a function on the complex phase
space CN . Equations of motion are then obtained
by complexified Hamilton equations idtan = N

V ∂a†
n
H.

We can also come back to the real representation of
the system, using the change of variable introduced
in Eq. (8) and (9). After the change of variable, the
classical Hamiltonian reads:

H = V 2

2N2

N∑
n=1

(
n∑

k=1
pxn

(xk)
)(

Π2
n +

[
m2 + 1

ε2

]
φ2

n

)

− 1
ε2

(
φn

N∑
k=1

pxn(xk)φk

)
.

(47)
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