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The rotation of trapped molecules offers a promising platform for quantum technologies and
quantum information processing. In parallel, quantum error correction codes that can protect
quantum information encoded in rotational states of a single molecule have been developed. These
codes are currently an abstract concept, as no implementation strategy is yet known. Here, we
present a step towards experimental implementation of these codes by introducing architecture-
agnostic check and correction operators. These operators can be decomposed into elements of the
quantum logic spectroscopy toolbox that is available for molecular ions. We then describe and
analyze a measurement-based sequential as well as an autonomous implementation strategy in the
presence of thermal background radiation, a major noise source for rotation in polar molecules.
The presented strategies and methods might enable robust sensing or even fault-tolerant quantum
computing using the rotation of individual molecules.

I. INTRODUCTION

Quantum computers promise to solve certain compu-
tational tasks more efficiently than existing classical com-
puters, but the performance of current prototypes is lim-
ited by noise [1]. It is thus expected that quantum er-
ror correction (QEC) will be required for useful large-
scale quantum information processors [2]. While the ul-
timate purpose of QEC protocols is to reduce errors dur-
ing the execution of quantum algorithms, they can also
extend the storage time of quantum memories [3]. Over
the last decade, proof-of-principle QEC implementations
have been demonstrated in multiple architectures [4–8].

QEC protects quantum information by storing it re-
dundantly, either over multiple physical information car-
riers, such as atomic ions or superconducting qubits [2],
or in the complex Hilbert space of a single physical infor-
mation carrier [9–13]. Here we concentrate on the latter
approach, which has been used successfully in quantum
harmonic oscillators. This is known as bosonic quantum
error correction and has been implemented in supercon-
ducting [14] as well as trapped ion systems [15]. In the
former, an extension of the storage time of a supercon-
ducting quantum memory coupled to a microwave cav-
ity has been demonstrated [14]. Furthermore, bosonic
codes can also be embedded in finite dimensional Hilbert
spaces, known as qudits [9]. There, an implementation
of QEC in the spin qudits of molecules has been pro-
posed [16].

Trapped molecules have recently emerged as a viable
platform for quantum technologies by demonstrating en-
tanglement [17, 18] and relatively long quantum infor-
mation storage times [19, 20]. Molecules feature multi-
ple degrees of freedom (DOF) that can be used to store
quantum information. We are interested in the rota-
tional DOF of a single molecule which provides an in-
finite Hilbert space. The concept of bosonic QEC has
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been extended to molecular rotation in Ref. [21]. This
framework has been used to develop absorption-emission
codes that protect against a major source of errors in
small polar molecules: spontaneous photon emission and
interaction with black body radiation [22].
In this work, we present and theoretically analyze im-

plementation strategies for such codes in linear molecules
using quantum logic spectroscopy (QLS) with co-trapped
atomic ions [23, 24]. The Hamiltonian of the linear ro-
tor is introduced, and absorption and emission errors in
multiple regimes are discussed in section IA. We then
revisit the conditions that need to be fulfilled to cor-
rect these errors in section IC and summarize the con-
struction and properties of absorption-emission codes in
section IC. Furthermore, we describe a simplified vari-
ant of the code that is able to approximately correct for
the same type of errors in section ID. We then develop
architecture-agnostic check and correction operators to
perform error correction that work for the original as
well as the approximate codes in section II.
These operators are then decomposed into elements of

the quantum logic spectroscopy toolbox that is available
for molecular ions. We describe the quantum logic tool-
box in section IIIA and analyze a measurement-based
sequential implementation strategy in section III B. Fur-
thermore, we develop and analyze a measurement-free
autonomous implementation strategy using dissipation
engineering in section III C. We discuss the requirements
that the implementation imposes on molecular species
and future research directions in section IV.

A. The linear rotor

We consider a molecule modeled as a quantum mechan-
ical linear rigid rotor with an electric dipole moment. The
electric dipole moment gives rise to a magnetic dipole mo-
ment gJµNĴ/ℏ under rotation, and in the presence of a

magnetic field B⃗ = Bẑ generates a Zeeman splitting by

a Ĵ · B⃗ interaction. Such a system has energy eigenval-
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FIG. 1. a) Sketch of the eigenfrequencies of the Ĵ2 term of Ĥrot. b) Nonlinear shifts δωJ,m, shown in violet, which can be

induced in the Zeeman substructure which is shown in red. c) The unresolved ÊBBR(3, δm) operators for interactions with
blackbody radiation are shown here with the coupling strengths indicated by the thickness of the arrows. The operators are
labeled by color above the sublevels at which their coupling strength is strongest.

ues and a Hilbert space described by the solution of the
time-independent Schrödinger equation for the rotational
Hamiltonian,

Ĥrot =
BR

ℏ2
Ĵ2 +

gJ µN B

ℏ
Ĵz , (1)

with the angular momentum operator Ĵ and its projec-
tion on the magnetic field quantization axis in the lab
frame Ĵz, where BR = ℏ2/(2I) is the rotational con-
stant for a rotor with moment of inertia I. The Zeeman
splitting is given by ωZ = gJµNB/ℏ with gJ the rota-
tional g-factor and µN the nuclear magneton. We define
ωJ = BR J(J +1)/ℏ and ωJ,m = ωJ +mωZ , as indicated
in Fig. 1. In this model, we neglect any other angular
momentum couplings.

The eigenbasis of the Hamiltonian in Eq. (1) can be
described by the quantum numbers J,m which denote
the rotational quantum number and its projection on
the quantization axis given by the magnetic field, re-
spectively. The rotational Hilbert space H, neglecting
any other contributions to angular momentum and any
other DOF, is then the Hilbert space over the basis set
{|J,m⟩ : J ≥ 0, m ∈ [−J, J ], J,m ∈ Z} .
In the description of rotational transitions induced by

coupling to the environment via interaction with black-
body radiation (BBR) or spontaneous decay (SD), or by
coupling to radiation fields used for coherent control,
we make extensive use of a rotational ladder operator
T̂ (J,m, δJ, δm), defined as

T̂ (J,m, δJ, δm) = |J + δJ,m+ δm⟩⟨J,m| . (2)

Direct transitions, i.e., single-photon electric dipole tran-
sitions between rotational manifolds, are described by
this operator with |δJ | = 1 and |δm| ∈ {0, 1}. Raman
transitions, utilized for control within m-sublevels, cor-
respond to |δJ | = 0 and |δm| ∈ {1, 2}.
We aim to implement these transitions using quan-

tum control methods that have been developed for quan-
tum information processing with neutral and charged

molecules [20, 25]. These techniques require spectro-
scopic addressability of transitions between the individ-
ual states. This is certainly possible between J-manifolds
due to their inherent anharmonicity. However, within a
rotational manifold, the transitions between different m-
sublevels are degenerate under the Hamiltonian Ĥrot.
Thus, we require sufficient nonlinearity in the energy

eigenvalues of the m-sublevels such that transitions be-
tween individual m-sublevels within a single J-manifold
can be spectroscopically resolved. Such a nonlinearity
can be inherent to the molecule, e.g., nuclear spin - ro-
tation coupling [24], or engineered, e.g., AC-Stark shifts
which exhibit m-dependent coupling strengths [26, 27].
A nonlinear shift of each m-sublevel by frequency δωJ,m

is represented by the Hamiltonian

Ĥδ = ℏδωJ,m|J,m⟩⟨J,m| , (3)

yielding an energy level structure such as shown in Fig. 1.
We denote the subspace of the Hilbert space in which

we will encode the information as the codespaceHC ⊂ H,
and in particular we require that this subspace exists in
a single rotational manifold JC. We define the minimum
frequency difference between δJ = 0 Raman transitions
between m-sublevels in the code manifold as

δωmin
Raman = min

m∈[−JC,JC]

{
|δωJC,m − δωJC,m′ |

}
, (4)

where m′ = m + δm for δm ∈ {±1,±2}. We also de-
fine the minimum and maximum frequency differences
of |δJ | = 1 direct transitions which couple to the code
manifold as

δωmin,max
direct = min,max

m∈[−JC,JC]

{
|δωJC,m − δωJ′,m′ |

}
, (5)

where J ′ = JC + δJ and m′ = m+ δm for δm ∈ {0,±1}.
We are interested in two different regimes of the non-

linear shifts: (i) the resolved regime where the split-
ting δωJ,m allows spectroscopic addressing of individual
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|J,m⟩ states, i.e., the Rabi rate of driving the transition
Ω≪ δωmin

direct and (ii) the unresolved regime where ideally
δωJ,m = 0 and a single light field drives all m-sublevels
resonantly. For nonzero δωJ,m, this regime is reached
when the Rabi rate Ω≫ δωmax

direct.
In the resolved |δJ | = 1 regime (i), each m-sublevel

transition can be resolved. Applying a light field that is
resonant with a specific transition δJ, δm results in the
interaction Hamiltonian

ĤR
int = ℏΩ(J,m, δJ, δm)

[
T̂ (J,m, δJ, δm) + h.c.

]
(6)

where the coupling rate Ω is determined by the transition
dipole moment and the electric field strength. Applying
a rotating wave approximation allows us to neglect inter-
actions with other rotational states. Incoherent interac-
tions with the environment via electric dipole transitions
can be modeled by a master equation with a single col-
lapse operator per sublevel. In the case of stimulated
emission or absorption of BBR, the dynamics between
the states |J,m⟩ ↔ |J − 1,m+ δm⟩ are described by the
Liouvillian operators

ÊBBR(J,m, δm) =√
ΓBBR(J,m, δm) T̂ (J,m,−1, δm) + h.c. (7)

which occur with rates

ΓBBR(J,m, δm) =

γBBR
J

(
4π

3

)
|cJ(J − 1,m+ δm, 1, δm)|2 , (8)

where the m, δm-independent part of the rates, γBBR
J ,

are given in Appendix A 2 and cJ , the Slater integrals,
are defined in Appendix A 1.

In the unresolved |δJ | = 1 regime (ii), the nonlineari-
ties in the transition frequencies are not resolved and we
consider the transition frequency between all m-sublevels
to be equal. The interaction Hamiltonian with an ex-
ternal field on resonance with the transition is thus the
sum over all resolved interaction Hamiltonians ĤR

int in
the connected J-manifolds,

ĤU
int =

J∑
m=−J

ĤR
int . (9)

The unresolved collapse operators describing interactions
with BBR are

ÊBBR(J, δm) =

J∑
m=−J

ÊBBR(J,m, δm) . (10)

These operators are shown schematically for J = 3 in
Fig. 1.

The set of errors which represent the couplings to
the environment via unresolved absorption and emis-
sion includes not only interactions with BBR, but also

spontaneous decay. The error model for these processes
ÊSD and their corresponding rates γSD

J are given in Ap-
pendix A 2. The full set of unresolved errors thus com-
prises a family of collapse operators,

Cenv =
{
ÊSD(J, δm), ÊBBR(J, δm)

: J ∈ N, δm ∈ {−1, 0, 1}
}
. (11)

B. Error correction conditions

Protection of quantum information in the presence of
absorption and emission processes requires an encoding
of logical information such that the error operators de-
fined above do not affect the encoded information. A set
of errors, characterized by Kraus operators K̂a, can be
corrected if the Knill-Laflamme error correction condi-
tions for a set of logical states |i⟩, |j⟩ are fulfilled [28]:

⟨i|K̂†aK̂b|j⟩ = cabδij . (12)

The weights cab should be state-independent meaning
that no information on the logical states should be gained
by the environment, and the Kronecker delta δij is inde-
pendent of the Kraus operators indicating that orthogo-
nal logical states remain orthogonal for all error channels.
It should be noted that there exists no QEC code which

can protect information in the resolved |δJ | = 1 regime
where the photons emitted or absorbed from each state
are distinguishable [22]. Any quantum superposition will
be projected into a classical mixture after a single ab-
sorption or emission event. Thus, any implementation of
QEC in the rotation of a molecule must be realized in
the unresolved regime.
In Ref. [22], it was shown how molecular states can

be constructed to fulfill these conditions for errors cor-
responding to unresolved quantum jumps. These codes
are referred to as absorption-emission (Æ) codes. In
particular, it was shown that the anharmonicity of the
J-manifold centroid energies makes error correction im-
possible if the codewords span multiple J-manifolds.
However, encoding quantum information in a single J-
manifold can be correctable if the decay processes are
degenerate across the m-sublevels, i.e., the processes act
in the unresolved regime. Furthermore, in Ref. [22] the
argument was made that error correction is possible only
if the frequency difference between absorbed or emitted
photons, given by δωmax

direct, is smaller than the natural
linewidth of transitions out of the codespace so that the
decay processes do not gain any information of the logical
state. The linewidth for decays out of a given J-manifold
is

ΓJ =
1

2J + 1

[
J(γSD

J + γBBR
J ) + (J + 1) γBBR

J+1

]
, (13)

and the linewidth for decays out of the codespace is thus
ΓC = ΓJC

.
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Alternatively, the linewidth of the absorbed or emit-
ted photons can be controlled by the rate at which these
errors are measured. This can be accomplished by per-
forming a check operation capable of detecting a |δJ | = 1
jump out of the JC-manifold without disturbing the log-
ical state. In order to satisfy the error correction con-
ditions, the rate of this projection process Rproj needs
to fulfill Rproj ≫ max{δωmax

direct,ΓC}. This process can
be interpreted as effectively broadening the sublevels of
the error manifolds and ensures that errors can be pro-
jected before a second error occurs. The projection rate
Rproj ≫ δωmax

direct yields a projection into an undisturbed
state or one where an unresolved quantum jump error has
occurred. With the additional condition δωmin

Raman ≫ ΓC,
we can ensure that m-shifts can be corrected fast enough
such that the probability for another absorption or emis-
sion event during this process is low. Thus, we can es-
tablish the following hierarchy of timescales

Rproj ≫ δωmax
direct and δωmin

Raman ≫ ΓC . (14)

In order to protect the logical quantum information,
this hierarchy of timescales needs to be fulfilled at all
times. It should be noted that δωmin

Raman sets the rate for
addressing individual m-sublevels. Explicitly, this limits
the full error correction rate RQEC to

Rproj ≫ δωmin
Raman ≫ RQEC ≫ ΓC . (15)

C. Rotational Æ error correction codes and their
properties

We will here revisit the QEC conditions for the Æ-
codes. It has been shown in Ref. [22] that if the distance
between populatedm-sublevels is three or larger, only the
symmetric error correction criteria need to be fulfilled:

⟨0|K̂†aK̂b|0⟩ = ⟨1|K̂†aK̂b|1⟩ , (16)

for any error process K̂a in the set of unresolved Kraus
operators corresponding to the set of recoverable collapse
operators Crec. This subset is defined as the subset of
Cenv with a single absorption or emission collapse oper-
ator coupling from JC → JC ± 1 which in principle is
recoverable by implementation of a first-order rotational
error correction protocol:

Crec =
{
ÊSD(JC, δm), ÊBBR(JC, δm),

ÊBBR(JC + 1, δm) : δm ∈ {−1, 0, 1}
}
. (17)

Satisfying Eq. (16) requires that the probability to ab-
sorb or emit a photon with defined frequency and polar-
ization to be the same for each of the logical basis states
and thus no information on the logical state can leak to
the environment.

We focus on the counter-symmetric Æ codes that have
been introduced in Ref. [22], where the encoded basis

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
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FIG. 2. Codeword populations of the CS(7,2,5) code: |0⟩
(blue) and |1⟩ (red). Areas are proportional to the norm
squared of the amplitudes.

states are defined as

|0⟩ =
√

m2

M
|JC,−m1⟩+

√
m1

M
|JC,m2⟩ (18)

|1⟩ =
√

m1

M
|JC,−m2⟩+

√
m2

M
|JC,m1⟩ , (19)

where M = m1 + m2. This code family is identified as
CS(JC,m1,m2), and the CS(7,2,5) code is shown graph-
ically in Fig. 2. The subspace spanned by the complex
linear combinations of {|0⟩, |1⟩} is defined as the logical
space HC. This family of codes has been shown to sat-
isfy the error correction criteria for the unresolved single
absorption or emission errors corresponding to Crec when
m1 ≥ 3/2, m2 ≥ m1 + 3, and thus JC ≥ m2 ≥ 9/2.
The counter-symmetric Æ codes can be encoded in ei-
ther half-integer or integer angular momentum systems.
It is then straightforward to define the logical operators

as

X = |JC,−m2⟩⟨JC,m2|+ |JC,m1⟩⟨JC,−m1|
+ h.c.

(20)

Z = |JC,−m1⟩⟨JC,−m1|+ |JC,m2⟩⟨JC,m2|
− |JC,−m2⟩⟨JC,−m2| − |JC,m1⟩⟨JC,m1|

(21)

which introduces a natural way of characterizing the per-
formance of QEC by the logical fidelities for the evolution
of a logical state [29]

F0,1 =
1± ⟨Z⟩

2
(22)

F± =
1± ⟨X⟩

2
. (23)

We now investigate the performance of this code under
the following correction strategy: After a decay indicated
by δJ and δm, the population of the decayed states in
|JC+δJ,m+δm⟩ is coherently brought back to its origin
|JC,m⟩ states. This operation preserves the orthogonal-
ity between the states |0⟩ and |1⟩ because the codewords
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never overlap in the recoverable error subspace. On the
other hand, an error alters the relative amplitudes of the
|JC,m⟩ states that encode the logical qubit according to
the corresponding Slater integrals. Thus, the state after
a single δJ, δm-correction does not fulfill the error correc-
tion criteria anymore. The probability of another decay
differs for the logical |0⟩, |1⟩ states. This effect can be
directly quantified by a decrease in the logical fidelities
of the logical X-basis states |+⟩, |−⟩ after a second ab-
sorption or emission event.

D. Approximate Æ codes

The error correction criteria can also be relaxed giv-
ing rise to “approximate” error correction codes [30, 31]
which reduce the complexity to detect single errors.
These approximate codes are characterized by relaxing
the error correction criteria given by Eq. (16) to

⟨0̃|K̂†aK̂b|0̃⟩ ≈ ⟨1̃|K̂†aK̂b|1̃⟩ , (24)

which discards the condition that both logical basis states
have the same error probabilities. In this case, an error
event can partially project the logical information, caus-
ing a logical error.

One can thus define approximate protected codewords
by simply directly encoding in the rotational states, e.g.,

|0̃⟩ = |JC,m0̃⟩ (25)

|1̃⟩ = |JC,m1̃⟩ , (26)

where the distance in m between these codewords should
satisfy |m0̃−m1̃| ≥ 3 such that an absorption or emission
event preserves orthogonality between basis states. But
any |δm| = 1 decay occurs with different probability for
|0̃⟩ and |1̃⟩ and thus information about the logical state
can leak to the environment. This family of codes is
identified as A(JC,m0̃,m1̃).

The distinguishability of the codewords and thus the
leakage of logical information to the environment will
vanish at larger JC. This effect is quantified by the worst-
case logical infidelity 1−F+ over all single error events,
shown as a function of JC for the codes A(JC,-2,2) in
Fig. 3.

II. QUANTUM ERROR CORRECTION
PROTOCOLS

We describe an error detection and correction strat-
egy for a logical qubit encoded in a counter-symmetric
Æ code for JC = 7, m1 = 2, and m2 = 5, referred to here
as the CS(7,2,5) code. We also consider the |0̃⟩ = |7,−2⟩,
|1̃⟩ = |7, 2⟩ approximate code, identified as A(7,-2,2), us-
ing ideal check operators and unitary operations.

In our implementation strategy, we employ spectro-
scopic resolvability of the m-sublevels for the correction

5 6 7 8 9 10 11 12 13 14
JC
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FIG. 3. Worst-case logical infidelity after a single error for
the approximate A(JC,-2,2) quantum error correction code as
a function of the code manifold JC.

of errors. In order to prevent interactions with the en-
vironment from also resolving the m-sublevels, we split
up the correction of errors into three steps as shown in
Fig. 4:

1. δJ-detection and correction,

2. δm-detection and correction,

3. amplitude refreshment.

This allows the δJ-correction to be performed in the un-
resolved regime. Then, only if an error is detected, the
resolved δm-correction operations are applied. This can
be realized via two approaches: (a) setting the nonlin-
earity δωJ,m = 0 during δJ check and corrections, and
only if an error is detected, applying the nonlinearity in
the Zeeman sublevels followed by the δm-correction op-
erations, or (b) the δJ-corrections can be applied rapidly
so as to not resolve the m-sublevels while δωJ,m ̸= 0.
Detecting whether an absorption or emission event has

occurred can be achieved with the measurement of two
independent check operators ŜδJ for δJ ∈ {−1, 1} iden-
tifying a population transfer out of the codespace in the
JC-manifold. The respective ŜδJ operator is defined as
the diagonal operator ŜδJ =

∑
J,m λδJ |J,m⟩⟨J,m| with

λδJ =

{
−1 if J = JC + δJ

+1 otherwise .
(27)

The expectation value of both operators ŜδJ are mea-
sured subsequently, where the outcome −1 indicates a
population transfer into the JC + δJ manifold. If either
of these check operations indicate an absorption or emis-
sion event, the rotational state needs to be returned to
the code manifold JC. This can be achieved by condi-
tionally applying the correction operator

ÛδJ =
∑
m

T̂ (JC + δJ,m,−δJ, 0) + h.c., (28)
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Encode logical state

J

m

ÛδJ,δm
ref

Interact with environment

ŜδJ check operations

Ŝ+1

Ŝ-1

δJ correction operations

Ŝδm check operations

Ŝ+1

Ŝ-1

δm correction operations

Amplitude refreshment

Rref
    2

Rref
    1

〈ŜδJ〉= +1

for δJ = -1 and +1
〈ŜδJ〉= -1

〈Ŝδm〉= +1

for δm = -1 and +1
〈Ŝδm〉= -1

FIG. 4. Algorithm for sequential quantum error correction of
Æ codes in a linear rotor. The ŜδJ check and δJ-correction
operations are performed repeatedly and rapidly, and the sub-
sequent Ŝδm check, δm-correction, and amplitude refreshment
steps are performed only if a |δJ | = 1 error is detected. Popu-
lation of the CS(7,2,5) codewords and their evolution through-
out the algorithm are indicated with red and blue squares.
States which are acted on by operators are highlighted.

acting identically on all m-sublevels.
An absorption or emission event also alters the projec-

tion of the angular momentum on the quantization axis
by δm ∈ {−1, 0, 1}, depending on the polarization of the
absorbed or emitted photon. This change in m spreads
the logical qubit into different m-sublevels within the JC-
manifold after applying the δJ-correction, and thus the
encoded information is not completely restored to the
codespace. However, the encoded information remains
in the recoverable error subspace. We refer to the effec-
tive shift errors inm caused by sigma transitions followed
by J-correction as Zeeman errors. This shift can be mea-
sured by a second pair of check operators Ŝδm which need
to be defined such that no information on the encoded
information can be gained. The diagonal δm-check oper-
ators Ŝδm =

∑
J,m λδm|J,m⟩⟨J,m| are applied after the

δJ-correction and it is thus sufficient to define them in
the JC-manifold:

λδm =

{
−1 if |J,m− δm⟩ ∈ HC

+1 otherwise,
(29)

where the m-sublevels in HC are {−5,−2, 2, 5} for the
exact CS(7,2,5) code and {−2, 2} for the approximate
code. Again, a correction needs to be applied for an
outcome of −1. The correction is performed using the
conditional application of

Ûδm =
∑
m

T̂ (JC,m, 0,−δm) + h.c. (30)

Addressing individual m-sublevels breaks the hierar-
chy of timescales for Rproj in Eq. (14) and should thus
only be performed if an absorption or detection event has
been detected. These operations have a limited rate, but
this can still be performed at RQEC ≫ ΓC so the rate at
which a second error occurs during the correction cycle
can be kept comparatively low. Additionally, these oper-
ations are required relatively seldom, namely only if an
absorption or emission occurs.
An error alters the relative amplitudes of the |JC,m⟩

states that encode the logical qubit according to the
corresponding Slater integrals, and this persists after
the equal coupling correction of J and m. In the ex-
act counter-symmetric codes, this can be expressed as a
coupling between the states |JC,−m1⟩ ↔ |JC,m2⟩, and
|JC,−m2⟩ ↔ |JC,m1⟩ respectively. This coupling is an
effective unitary operation comprising two rotations be-
tween the states in these two pairs of sublevels,

ÛQ(θδJ,δm,1, θδJ,δm,2) =

2∏
k=1

exp(−iθδJ,δm,k R̂k/2) , (31)

where

R̂k = iT̂ (JC,−mk, 0,m1 +m2) + h.c., (32)

for k ∈ {1, 2}. The rotation angles θδJ,δm,k are deter-
mined by the δJ and δm of the error and are derived in
Appendix B 1.
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In the counter-symmetric codes, the amplitudes of the
logical state can be refreshed after an error event and
correction cycle once δJ and δm are known. This can be
achieved by coupling the states |JC,−m1⟩ to |JC,m2⟩;
and |JC,−m2⟩ to |JC,m1⟩, respectively, using the in-
verse of the unitary operation in Eq. (31), which is just
the same rotation operators but with opposite rotation
angles, i.e.,

Û δJ,δm
ref = ÛQ(−θδJ,δm,1,−θδJ,δm,2) . (33)

Refreshment of a corrected δJ = +1, δm = −1 transi-
tion in the CS(7,2,5) code can be performed with angles
−θ1,−1,1 = −0.7160 and −θ1,−1,2 = 0.7145 rad. Consider
the initial state |+⟩ in this code experiencing this decay:
The logical fidelity after δJ, δm-correction is reduced to
F+ = 0.877. With amplitude refreshment, this fidelity
can be restored to F+ = 1. This operation cannot be
performed on the approximate codes, where the change
in amplitudes manifests as a logical error via a rotation
in the logical Bloch sphere.

III. IMPLEMENTATION STRATEGIES FOR
TRAPPED IONS

A. Trapped molecular ion toolbox

We describe and analyze an implementation strategy
for the error detection and correction operations de-
scribed above in an ion trap platform where a single
molecular ion is co-trapped with an atomic ion [23–
25, 32–34]. In such a system the combined motional
state of the molecule and the atom can serve as a re-
liable bus to transfer quantum information between the
atom and the molecule [35]. This serves as the basis for
the quantum logic spectroscopy toolbox, enabling high-
fidelity state initialization and readout of the molecule
via the co-trapped atom [23].

In order to keep the number of parameters of the sys-
tem small, we consider only a single error channel: black-
body radiation (BBR) absorption and stimulated emis-
sion on the molecular rotation. Assuming perfect opera-
tions on the atomic system, it is sufficient to model the
ion trap and the atom as a single motional mode which
significantly reduces the required resources for numerical
analysis. Thus, we consider the Hamiltonian

Ĥtot = Ĥrot ⊗ Ĥmotion, (34)

with Ĥmotion =
∑

i ℏωi(1/2 + â†i âi).
We model the manipulation of the rotational states by

the interaction Hamiltonian

Ĥint(J,m, δJ, δm) =

ℏΩ(J,m, δJ, δm) T̂ (J,m, δJ, δm)⊗ M̂int + h.c., (35)

where the operator M̂int indicates the action that a ro-
tational population transfer has on the motional state.

Driving the molecular transition on resonance leaves the
motional state unchanged and therefore M̂int = M̂CAR =
Î. This operation is known as a carrier (CAR) transition.
When the frequency of the interacting field differs from

the frequency of the carrier transition by the frequency

of the motional sideband, and the effective k⃗-vector has
nonzero projection on the motional mode axis, the oper-
ator acquires the form M̂BSB = â†. This adds a phonon
to the motional state during a population transfer from
the ground to the excited state and such an operation is
known as a blue sideband (BSB) transition. Conversely,
a decrease in frequency from the carrier by the motional
mode frequency can drive a red sideband (RSB) transi-

tion with M̂RSB = â [36]. The coupling strength of a side-
band transition, relative to that of a carrier transition, is
reduced by the Lamb-Dicke factor η, which characterizes
the strength of the coupling between the internal state of
the atomic or molecular ion and the motional state.
We consider here two types of interactions between

light fields and molecular rotations with different selec-
tion rules: (i) Raman carrier and sideband transitions on
a molecule with |δJ | = 0 and |δm| ≤ 2, and (ii) direct
microwave/terahertz carrier and sideband transitions on
a molecule with |δJ | = 1 and |δm| ≤ 1.1 These transi-
tions are used to control the rotational state, including
check and correction operations.
The motional state can then be read out on an atomic

ion by attempting to drive a RSB π-pulse on the atomic
qubit transition, performing fluorescence readout of the
qubit, and recooling of the motional mode [23, 36]. In
the following, we can model the atomic system by a per-
fect measurement of the phonon number in the shared
motional mode.

B. Sequential check operators and correction

Sequential δJ check and correction The J-projection
and correction operation can be implemented by (i) map-
ping the information of a decay event in the molecular
rotation onto the motional mode and then (ii) mapping
the motional mode onto the co-trapped atomic ion elec-
tronic state and reading out this state. The motional
sideband operation is implemented using the unitary op-
erator

Û δJ
BSB =

∏
m

exp

[
−i
2
ĤBSB(JC+δJ,m,−δJ, 0) topt

]
(36)

1 We allow microwave sideband transitions to simplify the imple-
mentation. It might not be possible to drive sideband opera-
tions directly between rotational manifolds within the electronic
and vibrational ground state in an experiment due to the small
Lamb-Dicke factor. In that case, a combination of optical Raman
|δJ | = 2 sideband and microwave carrier |δJ | = 1 transitions or
a strong magnetic field gradient can be used [37].
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for time topt to drive an optimal population transfer be-
tween the JC + δJ → JC manifolds.
The operation is performed at the timescale of Rproj

and should stay in the unresolved regime in order to not
distinguish different m-sublevels. The requirement on
the Rabi frequency of the molecular transition is then
ηΩ ≈ Rproj ≫ δωmax

direct.
Performing these sideband pulses with a single π-

transition yields an m-dependent coupling strength in Ω.
This would degrade the error correction performance be-
cause it cannot detect the complete JC ± 1 population.
For the CS(7,2,5) code, the physical fidelity of the state
after J-correction with a single pulse compared to an
ideal detection operation with equal coupling is 97.5% in
the case of a decay with δm = 0.

The problem of performing quantum operations with
high fidelity in the presence of varying coupling strength
is ubiquitous in practical quantum information process-
ing. For example, the SCROFULOUS composite pulse
sequence has been developed to be less sensitive to varia-
tions in coupling strength [38]. When applying a SCRO-
FULOUS sequence for the J-correction, the physical fi-
delity of the state after correction as compared to an ideal
operation with equal coupling increases to 99.9%.

Sequential δm check and correction For the detection
and correction of a shift in m by |δm| = 1, we can em-

ploy a BSB Raman operation ĤBSB(JC,m, 0,−δm), for
which the individualm-sublevels can be spectroscopically
resolved. Thus, the coupling strength can be controlled
for each transition individually and no composite pulse
sequence is required.

The sideband operation needs to be implemented four
times, mapping information from the states |JC,mC⟩ for
mC ∈ {±m1,±m2} onto the motional mode resulting in
the unitary operation

Û δm
BSB =

∏
mC

exp

[
−i
2
ĤBSB(JC,m

′
C, 0,−δm) tπ(mC, δm)

]
(37)

with pulse duration tπ(mC, δm) = π/Ω(JC,mC, 0,−δm)
and the target m-substate m′C = mC + δm.
Amplitude refreshment In order to refresh the am-

plitudes of the codewords, populations need to be ex-
changed between the constituents of both logical basis
states |0⟩ and |1⟩. These operations require a change
in quantum numbers |δJ | = 0, |δm| = m1 + m2 = 7.
Driving transitions with |δm| = 7 is not possible due to
selection rules and thus the operation needs to be split
into a sequence of |δm| = 2 and |δm| = 1 Raman oper-
ations. For the state |0⟩, this sequence transfers popula-
tions from m = −5 to m = 1, performs a δm = 1 Raman
operation to realize the actual refreshment, and imple-
ments the inverse of the transfer Raman sequence. The
individual operations are based on carrier operations

Ûmi,δm
CAR = exp

[
−i
2
ĤCAR(JC,mi, 0,−δm) t(mi)

]
. (38)

The operator that transfers the populations of the log-
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FIG. 5. Sequential correction of the logical states |0⟩ (solid
line) and |+⟩ (dashed line) using the exact CS(7,2,5) (blue)
and the approximate A(7,-2,2) (orange) error correction code
for the correction rate ΩBSB = 500ΓC.

ical state |0⟩ to m = 1 can be written as

Û0
trans =

∏
mi

Ûmi,δm
CAR (39)

with δm = 2, mi ∈ {−5,−3,−1}, and t(mi) correspond-
ing to a π rotation on the respective transition. The
refresh operation is given by

Û0
ref = Ûmi,δm

CAR (40)

with δm = 1, mi = 1, and t(mi) the time to implement
the refreshment angle given in Eq. (B1). The second
transfer is then the inverse of the initial transfer opera-
tion. The full refreshment operator for the state |0⟩ can
then be written as

Û0
total = (Û0

trans)
† Û0

ref Û
0
trans . (41)

This procedure must also be performed for the logical
state |1⟩ where the parameters of the transfer operations
are δm = 2, mi ∈ {−2, 0, 2} and mi = 4 for the refresh-
ment operation. The procedure for both basis states re-
quires 12 additional Raman π-operations in addition to
the two refreshment operations. Each operation can be
performed at a rate ∼ δωmin

Raman.
Numerical simulation We analyze the performance of

multiple correction cycles by numerical simulation us-
ing the QuTiP package [39, 40]. We choose a noise
model that focuses on the inherent capabilities of the
code rather than on implementation details and thus the



9

only noise source considered is absorption and stimulated
emission by BBR on the molecular rotation during the
operations. While performing the ÛδJ

BSB check and correc-
tion operations in the unresolved regime, the interaction
with BBR is modelled by solving the Lindblad master
equation with collapse operators as defined in Eq. (10).
This noise model preserves superpositions between the
individual m-sublevels. On the other hand, decays which
occur during m-resolved operations of the m-correction
and amplitude refreshment will destroy any superposition
of the Zeeman sublevels in a rotational manifold and are
thus more detrimental. The decay dynamics for this re-
solved regime is given by the Lindblad master equation
using the operators given in Eq. (7) in Appendix C. To
simplify the noise model, we assume that all operations
can be performed at the same timescale, which is valid
if the degeneracy of the m-levels can be lifted with a
comparatively strong AC-Stark shift as discussed in sec-
tion IA.

The relevant timescale of the operations is then given
by the Rabi frequencies of the sideband operations ΩBSB

in relation to the decay rate of the codespace. We as-
sume a generic model with constant field strength of the
thermal radiation, yielding γBBR

J = γBBR, independent
of J . Then the J,m, δm-independent part of the decay
rate is just the total decay rate out of the code manifold

γBBR = ΓC , (42)

where ΓC = 1 determines the timescale of the simula-
tions.

We assume a quantum memory operation, where mul-
tiple rounds of error correction are applied, spaced by a
determined free evolution time; in this example, 0.05Γ−1C .
In Fig. 5, we show the logical fidelity with respect to
the initial states |0⟩ and |+⟩ for the exact CS(7,2,5) and
the approximate A(7,-2,2) code with correction timescale
ΩBSB = 500ΓC. The simulations show that the QEC pro-
tocol indeed extends the qubit storage time for the chosen
parameters, although the initial state |+⟩ is more affected
by noise. We observe that the approximate code outper-
forms the exact code for this parameter regime. The ap-
proximate code requires less time for the δm-correction
and does not have amplitude refreshment which incurs
a lower penalty on the fidelity despite information on
the logical state leaking to the environment. This im-
provement in fidelity of the operations dominates over
the additional error that is introduced by the approxi-
mate nature of the code itself.

C. Autonomous approximate QEC using
dissipation engineering

While a sequential correction sequence which can
project errors and measure their syndromes is in prin-

ciple better suited to preserve coherences of the encoded
logical state over long times due to the ability to refresh
amplitudes, it can be difficult to implement in practice
due to the large number of carefully-engineered pulses
required. Here we consider a continuous approximate er-
ror correction protocol, referred to as dissipative error
correction (DEC), which trades some loss of fidelity over
time for less complex implementation. We first consider
a scheme that extends quantum logic spectroscopy opti-
cal pumping techniques to repump molecular rotational
states back to the JC manifold but without correcting
errors that cause changes in m. Then we concatenate
the implementation of a dissipative Zeeman correction
scheme.

Dissipative δJ correction The hierarchies of
timescales described in Eqs. (14) and (15) still need to
be upheld. The dissipative scheme can be implemented
by applying a continuous optical or microwave field with
frequency and polarization chosen to drive a π-transition
back to JC on a sideband of an additional DOF, e.g.,
a shared motional sideband in a system of co-trapped
molecular and atomic ions. Two modes are required to
cover the two possible directions for decays out of the
JC-manifold. Formally, the Hilbert space is modeled
as the tensor product of the rotational space with a
bimodal Fock space representing the motional state of
the two modes:

H = |J,m⟩︸ ︷︷ ︸
rotation

⊗ |n↓⟩ ⊗ |n↑⟩︸ ︷︷ ︸
motion

, (43)

where the atomic state space is not considered as it is
used for dissipation via cooling and thus contains no log-
ical information.

Such a dissipative interaction on the motional modes
can be realized by sideband cooling of the co-trapped
atomic ion. The irreversibility of dissipation to the envi-
ronment results in a directional coupling from the JC±1
manifolds back to JC. As time evolves, such a scheme
should preserve ⟨J⟩ = JC but results in a mixed state of
different shifts in m from the initial state.

This protocol is described by the Lindblad master
equation, where the interaction Hamiltonian is given by
a coherent blue sideband drive in the unresolved regime.
Thus, we can express the interaction Hamiltonian as a
coupling strength modified by the Slater integral for the
corresponding transition,



10

ĤδJ
DEC =

√
4π

3
ℏ

∑
m∈[−JC,JC]

[
Ω↓c

JC+1(JC,m, 1, 0) T̂ (JC + 1,m,−1, 0)⊗ â†↓ ⊗ Î↑

+Ω↑c
JC−1(JC,m, 1, 0) T̂ (JC − 1,m, 1, 0)⊗ Î↓ ⊗ â†↑

]
+ h.c. (44)

where
√

4π/3Ω↓,↑c
JC±1(JC,m, 1, 0) are the m-specific coupling rates and â†(â) are the creation(annihilation) op-

erators for the corresponding motional mode. The ↓, ↑ notation indicates in which direction the δJ-correction is
performed.

The interaction of the molecular rotational states with
photons in the environment is modeled via collapse op-
erators. These interactions include the effects of BBR
and spontaneous decay. These operators are given by
the family {Ĉ ⊗ Î↓ ⊗ Î↑ : Ĉ ∈ Cenv} with Cenv defined in
Eq. (11). The dissipation of the motional modes, which
can be accomplished via sideband cooling, is modeled by
the collapse operators

Ĉcool
↓ =

√
Γcool
↓ ÎJ,m ⊗ â↓ ⊗ Î↑

Ĉcool
↑ =

√
Γcool
↑ ÎJ,m ⊗ Î↓ ⊗ â↑,

(45)

where Γcool
↓,↑ ∼ Ω↓,↑ ≫ ΓC. The evolutions of the expecta-

tion value ⟨J⟩ and the physical fidelity of the codewords
are shown in Appendix C 1.

Full correction Although repumping a rotational
manifold can stabilize population in that manifold, the
logical fidelity is reduced due to the population spread-
ing out among the Zeeman sublevels that are not in the
codespace.

A full DEC scheme for |δJ | = 1 decays must also cor-
rect for these Zeeman errors, which require corrections
of the form T̂ (JC,mC ± 1, 0,∓1). Thus the transitions
must be sufficiently non-degenerate as to be able to ap-
ply frequency-selective δJ = 0 Raman sigma transitions
on the correctable error subspace. Given the need for
frequency-resolvability to apply the required polarization
for the correction, the rate of the correction is necessarily
slow. Frequency-resolvability of the Raman transitions
between Zeeman sublevels allows the coupling strengths
for each transition to be independently controlled and
thus equal coupling for all m-sublevels can be applied.
In a counter-symmetric Æ code, a σ+-correction acts
on the 4 states

{
|JC,mC − 1⟩ : mC ∈ {±m1,±m2}

}
simultaneously, while a σ−-correction acts on the set{
|JC,mC + 1⟩ : mC ∈ {±m1,±m2}

}
.

We utilize separate motional modes for the dissipation
in the correction scheme in order to avoid coherent pop-
ulation trapping [41]. Utilizing two additional motional
modes results in the promotion of the Hilbert space to
include the tensor product of the rotational space with a
four-mode Fock space:

H = |J,m⟩︸ ︷︷ ︸
rotation

⊗ |n↓⟩ ⊗ |n↑⟩ ⊗ |n→⟩ ⊗ |n←⟩︸ ︷︷ ︸
motion

, (46)

where again the atomic state space is not considered as
it is used for dissipation via cooling and thus contains no
logical information.
We can model the Zeeman DEC with the Hamiltonian

Ĥδm
DEC = ℏ

∑
mC

[
Ω→ T̂ (JC,mC − 1, 0, 1)⊗ â†→ ⊗ Î←

+Ω← T̂ (JC,mC + 1, 0,−1)⊗ Î→ ⊗ â†←

]
+ h.c. (47)

where Ω →← are the Rabi rates and â†(â) are the cre-
ation(annihilation) operators for the corresponding mo-
tional mode. Here, the modes |n↓⟩⊗|n↑⟩ are neglected for
simplicity. The →← notation indicates in which direction
the δm-correction is performed. Dissipation of these mo-
tional modes is again accomplished via sideband cooling,
modeled by collapse operators similar to the ones defined
in Eq. (45). For details of the evolution of the physical
fidelity under Zeeman DEC, refer to Appendix C 2.
The full DEC scheme is then realized by applying

ĤδJ
DEC + Ĥδm

DEC and the four cooling collapse operators.
The implementation of the scheme in an ion trap com-
prises of a co-trapped “logical” molecular ion and “cool-
ing” atomic ion for which an efficient closed cycling tran-
sition exists for dissipation. The preservation of the pop-
ulation in the states comprising the codewords is evident
under the full DEC protocol in Appendix C 3.
Numerical simulation We simulate the dynamics of

this protocol under simplified conditions similar to those
considered in the sequential QEC scheme. We neglect
spontaneous decay and only consider the BBR collapse
operators. We consider a generic system and fix ΓC = 1
with γBBR

J = γBBR = 1. We consider the initial states
ρ̂0 = |0⟩⟨0| and ρ̂+ = |+⟩⟨+| and simulate the evolution
of these states over t = [0, 2Γ−1C ].
We utilize the CS(7,2,5) code with the Hilbert space

truncated at Jmax = 10. This cutoff must be finite, and
kept relatively small to save resources in the numerical
simulation, but nonetheless should be large enough to
not immediately reflect population which leaks out be-
yond JC. All initial states are defined by their molecular
rotational component and are initialized in the motional
ground state for all modes. We examine the performance
of the dissipative J-repumping scheme in the presence of
BBR-type interactions for repumping rates Ω↓ = Ω↑ =
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FIG. 6. Evolution of the logical fidelities after tracing out
the motional modes for two initial logical states comparing
the full DEC scheme (blue) to the J-repumping only scheme
(orange) to doing nothing (red).

1000ΓC and cooling rates Γcool
↓ = Γcool

↑ = 2 Ω↓,↑. A
higher repumping rate reduces the rate of leakage.

The logical fidelities are improved with the dissipative
repumping scheme over doing nothing as shown in Fig. 6,
although the logical fidelities deteriorate due to eventual
leakage out of the codespace and correctable error sub-
space. The F0 fidelity evolution of an initial state ρ̂0 is
in general better than that of the F+ fidelity evolution of
an initial state ρ̂+. This is because the X operator is sen-
sitive to the logical density operator coherences, whereas
the Z operator is only sensitive to the populations, and
over time the system decoheres due to the inability to
perform amplitude refreshment.

We then turn on the Zeeman correction to realize the
full DEC scheme. For this, we choose the Zeeman cor-
rection rate Ω→,← = Ω↑,↓/100. The cooling rates for the
Zeeman correction modes are set to be a factor of 2 faster
than the Zeeman correction Rabi rates.

The evolution of the logical fidelities after tracing out
the motional modes is shown in Fig. 6. There is a clear
gain in the logical fidelities with the full DEC scheme over
J-repumping only because the population rarely leaks
out of the codespace. The gain in the F0 fidelity of an
initial state ρ̂0 is more pronounced over that of the F+ fi-
delity of an initial state ρ̂+ than in the J-repumping-only
scheme. This is because the Zeeman DEC protocol can
nearly perfectly stabilize the population in the codespace,
but the coherences in the X-basis still drop due to the
aforementioned rotations in the amplitudes which mani-
fest as logical errors.

IV. CONCLUSION AND OUTLOOK

We have developed implementation strategies for ex-
act and approximate Æ codes in the rotation of a linear
rotor within the framework of trapped ion systems em-
ploying quantum logic spectroscopy for error syndrome
readout. We verified that these approaches can improve
the logical fidelity evolution of a logical quantum state
against decoherence from noise modeled as unresolved
direct rotational transitions. The main findings can be
summarized as follows:

1. A hierarchy of timescales has to be fulfilled in order
to minimize the extent to which the logical infor-
mation leaks into the environment.

2. An approximate encoding with sufficient distance
between the Zeeman sublevels can perform better
than an exact code with amplitude refreshment un-
der sequential correction.

3. Dissipative error correction can perform similarly
to the sequential error correction approach. It is
attractive as an autonomous, non-measurement-
based approach, which removes the need for classi-
cal processing and error syndrome readout and can
thus be performed at a higher rate.

4. The presented strategies can be implemented us-
ing trapped ion systems, where a molecular ion
can be coupled to a co-trapped atomic ion for er-
ror syndrome or state readout via quantum logic
spectroscopy.

Finding a molecular species that is well suited to im-
plement the outlined strategies is a natural next step to-
wards an experimental demonstration. Polar molecules
are natural candidates as they allow |δJ | = 1 transi-
tions induced by BBR and spontaneous decay, and the
rotation can be controlled via electric dipole transitions.
A heteronuclear diatomic molecule seems to be a good
candidate as it has the fewest vibrational modes. Ad-
ditionally, it has only one rotational degree of freedom.
These criteria are fulfilled in a molecule with nuclear and
electronic spin singlet states. Such a molecule is in the
unresolved |δJ | = 1 regime as the transitions between
different m-sublevels in each J-manifold are degenerate
and thus approximates an ideal linear rotor.
There exist many candidate neutral molecular species

with no nuclear or electronic spin in the ground state.
However, it is not possible for singly-charged molecu-
lar ions to simultaneously possess zero nuclear and zero
electronic spin, as these conditions are mutually exclu-
sive. These conditions can be met in positive doubly-
ionized diatomic molecules, known as diatomic dications
(DIDIs). Polar DIDIs, such as CaSi2+, which can fulfill
the zero nuclear and electronic spin conditions and have
a charge-to-mass ratio suitable for co-trapping with an
atomic ion could host these codes without any complica-
tions from additional sources of angular momentum [42].
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However, many DIDIs are metastable molecules and dis-
sociate on the second timescale or shorter and thus seem
not to be suitable for QLS experiments [43].

On the other hand, these codes can be adapted to al-
low relaxing the zero nuclear spin requirement. By allow-
ing nuclear spin 1/2, many singly-ionized molecules with
electron spin multiplicity 1 can be found. Conversely,
requiring zero nuclear spin but relaxing the constraint
on the electron spin multiplicity, combinations of nuclear
spin zero elements in the even parity groups of the pe-
riodic table are possible. Implementing these codes in
such systems requires further research, but we are hope-
ful that the codes can be adapted by either operating
in the Paschen-Back regime [24], where the rotation and
spin decouple, or modifying the correction pulses to also
“refresh” the quantum number encoding the spin char-
acteristics. The latter approach is the focus of our future
research.

Our analysis shows that implementing Æ codes and
error correction in the rotation of polar molecular ions
seems possible. Extending these simulations to molec-
ular systems with more complex Hamiltonians and re-
alistic noise models for spontaneous decay and thermal
radiation is required to prove their practical feasibility.
Thus, future research should focus on the analysis of
other sources of noise that can contribute to decoherence.
Such sources of noise include magnetic and electric field
fluctuations, collisions, quantum logic infidelity due to
motional heating, Stark shifts, and noisy operations [44].
The full time dependence of the interaction Hamiltonians
describing radiation-molecule coupling, where counter-
rotating terms are included, is also relevant for some pro-
cesses such as far-detuned Raman and thus is important
to consider in certain systems.

We assumed that the trapped ion system possesses 4
motional modes for the dissipative protocol, which for a
string of N ≥ 2 ions can be realized with certain combi-
nations of the N axial or the 2N radial modes. If only
a single mode is available for the DEC protocol, signif-
icantly different Rabi rates or sequencing could be em-
ployed, but it is important to avoid coherent population
trapping. Furthermore, the fact that it is difficult to drive
sideband transitions on rotational transitions in the mi-
crowave to terahertz regime needs to be considered in
future analysis. One solution is to replace direct side-
band transitions which couple a pair of manifolds with
a microwave carrier transition coupling from one of the
levels to an ancillary level, and a Raman |δJ | = 2 side-
band transition completing the intended coupling. This
results in the desired change in the rotational and mo-
tional state with a larger Lamb-Dicke factor η possible
in the infrared or optical regime.

On the other hand, complete control of the rotational
state might even be possible in the unresolved regime.
This can be achieved by using three distinct and pure
polarized resonant electromagnetic fields [45, 46]. Such
control sequences can have their own challenges due to
the number of required microwave operations, but could

be attractive as it is not required to lift degeneracy in
the rotational sublevels.
Ultimately, applications in quantum sensing or quan-

tum computing utilizing polar molecules could benefit
from employing these encoding and correction strate-
gies. Demonstration of the improvement in logical fi-
delity via QEC protocols over bare encoding of quantum
information in molecular systems provides the commu-
nity with more options in the search for controllable yet
robust quantum platforms. Future theoretical work to-
wards fault-tolerant operations, including one-qubit ro-
tation and 2-qubit entangling gates, is required in order
to design a large-scale QC architecture based on the ro-
tation of trapped molecules.

ACKNOWLEDGEMENTS

This research was funded by FWF 1000 Ideas project
TAI-798 and ERC Horizon 2020 project ERC-2020-STG
948893. B.F. thanks Benjamin Stickler for reviewing this
manuscript and discussions on system dynamics, Christo-
pher Reilly for discussions on implementation and error
models, and Christian Marciniak for discussions regard-
ing calculations. The authors also acknowledge Victor
Albert and Chin-wen Chou for discussions on Æ codes
and error mitigation, Christiane Koch for discussion of
coherent control, Florentin Reiter for discussions on dis-
sipation engineering, Kenneth Brown for discussions on
molecular ions, and the Quantum Optics & Spectroscopy
Group and associated ion trapping groups at the Univer-
sität Innsbruck for general assistance.
Author Contributions B.F., Z.W., and P.S. devel-

oped the implementation protocols. In particular, B.F.
focused on the DEC protocol, P.S. focused on the sequen-
tial QEC protocol, and Z.W. assisted with both. B.F.
and P.S. performed the numerical simulations, analyzed
the results, and contributed to the manuscript. Z.W.,
M.I.M., and S.W. contributed to discussions on imple-
mentation. All authors reviewed the manuscript. P.S.
supervised the project.

CONFLICT OF INTEREST

The authors have no conflicts of interest to disclose.



13

APPENDIX

Appendix A: Rotational transitions

1. Rotational part of transition dipole moment

The Slater integrals are the integrals over the prod-
uct of three spherical harmonics defined as follows, and
are related to products of Clebsch-Gordon coefficients or
Wigner 3-j symbols by

cJ1(J3,m3, J2,m2)

=

∫∫
Y ∗J3,m3

(θ, ϕ)YJ2,m2
(θ, ϕ)YJ1,m1

(θ, ϕ)

sin θ dθ dϕ

=

√
(2J3 + 1)(2J2 + 1)

4π(2J1 + 1)
CJ1,0

J3,0;J2,0
CJ1,m1

J3,m3;J2,m2

=

√
(2J1 + 1)(2J2 + 1)(2J3 + 1)

4π
(−1)m3(

J3 J2 J1
−m3 m2 m1

)(
J3 J2 J1
0 0 0

)
(A1)

The Clebsch-Gordon coefficients are defined as
CJ3,m3

J1,m1;J2,m2
= ⟨J1,m1; J2,m2|J3,m3⟩.

Note that ϵ̂ · r̂ =
√
4π/3

[
ϵzY1,0(θ, ϕ) + ϵ+Y1,1(θ, ϕ) +

ϵ−Y1,−1(θ, ϕ)
]
.

2. Einstein coefficients and decay rates

All rates in this work are computed in the dipole ap-
proximation. The spontaneous (SD) rate between states
|i⟩ = |J,m⟩ → |j⟩ = |J − 1,m+ δm⟩ is

ΓSD(J,m, δm) = Aij

=
ω3
ij |dij |2

3πϵ0ℏc3

= γSD
J

(
4π

3

)
|cJ(J − 1,m+ δm, 1, δm)|2 ,

(A2)

where Aij is the Einstein A coefficient, dij is the transi-
tion dipole moment, ωij is the transition frequency be-
tween these two states, h is the Planck constant, ϵ0 is the
permittivity of free space, and c is the speed of light.

In this description, we separate the m, δm-dependent
part of the transition rate due to the transition dipole
moment as a coupling strength given by the Slater inte-
gral, and the m, δm-independent part, given by

γSD
J =

8d2BRJ
3

3πϵ0ℏ4c3
, (A3)

where we assume the frequency differences between the
sublevels in each manifold are small such that the rate
is only associated with the difference in frequency ωij =

ωJ,J−1 = 2BRJ/ℏ between the centroids of the rotational
manifolds J and J − 1.
The transition dipole moment is given by

d̂ij = d⟨i|r̂|j⟩ (A4)

with d the electric dipole moment and r̂ the unit position
operator. The projection of this onto the driving electric
field polarization is

ϵ̂δm · d̂ij = d⟨i|ϵ̂δm · r̂|j⟩

= d

√
4π

3
cJ1(J2,m2, 1, δm)

= d

√
4π

3

∫∫
Y ∗J2,m2

(θ, ϕ)Y1,δm(θ, ϕ)

YJ1,m1
(θ, ϕ) sin θ dθ dϕ

= d
√

(2J1 + 1)(2J2 + 1) (−1)m2(
J2 1 J1
−m2 δm m1

)(
J2 1 J1
0 0 0

)
,

(A5)

where YJ,m(θ, ϕ) are the spherical harmonics and (:::) are
the Wigner 3-j symbols.
The BBR rate coupling the states |i⟩ = |J,m⟩ ↔ |j⟩ =
|J − 1,m+ δm⟩ is

ΓBBR(J, δm) = Bijρ(ωij , T )

=
ω3
ij |dij |2

3πϵ0ℏc3
1

eℏωij/kBT − 1

= γBBR
J

(
4π

3

)
|cJ(J − 1,m+ δm, 1, δm)|2 ,

(A6)

where

Bij =
π2c3

ℏω3
ij

Aij (A7)

is the Einstein B coefficient,

ρ(ω, T ) =
ℏω3

π2c3
1

eℏω/kBT − 1
(A8)

is the spectral energy density of an environment treated
as a black body thermal bath (i.e., assumed to follow the
Planck distribution), kB is the Stefan-Boltzmann con-
stant, and T is the temperature of the environment. We
assume the broadband limit, i.e., that the BBR energy
density spectrum is broad compared to the linewidth of
the rotational transition and thus we consider the pairs
of states i and j as interacting with a single, resonant
mode of frequency ωij [47–49]. The m, δm-independent
part of the rates are given by

γBBR
J =

γSD
J

e2BRJ/kBT − 1
, (A9)

where ωij = 2BRJ/ℏ for a linear rigid rotor.
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Interactions with the environment via electric dipole
transitions caused by an emisison event due to sponta-
neous decay (SD) are given by

ÊSD(J,m, δm) =
√
ΓSD(J,m, δm) T̂ (J,m,−1, δm)

(A10)
which occur with rates

ΓSD(J,m, δm) = Aij

= γSD
J

(
4π

3

)
|cJ(J − 1,m+ δm, 1, δm)|2 , (A11)

where Aij is the Einstein A coefficient for decays between
states |i⟩ = |J,m⟩ to |j⟩ = |J − 1,m + δm, δm⟩ and
cJ(J − 1,m+ δm, 1, δm) is the Slater integral.
In this description, we separate the m, δm-dependent

part of the transition rate due to the transition dipole
moment as a coupling strength given by the Slater inte-
gral, and the m, δm-independent part, γSD

J .
In the unresolved regime, the collapse operators which

describe spontaneous decay from state J are

ÊSD(J, δm) =

J∑
m=−J

ÊSD(J,m, δm) . (A12)

Appendix B: Sequential QEC procedures

1. Effect of an error on rotational state populations

An error alters the relative amplitudes of the |JC,m⟩
states that encode the logical qubit according to the cor-
responding Slater integrals. After correction, the action
on the relative amplitudes is described by the rotation
given in Eq. 31. The rotation angles are given by

θδJ,δm,k = 2 tan−1
[
m1m2(xk − yk)

xkm2
2 + ykm2

1

]
, (B1)

where

(xk, yk) =

{
(aδJ,δm, bδJ,δm) for k = 1

(dδJ,δm, cδJ,δm) for k = 2 .
(B2)

The elements aδJ,δm, bδJ,δm, cδJ,δm, dδJ,δm can be de-
rived as follows: The amplitudes for the states in the
logical codewords after undergoing decays with |δJ | = 1
and subsequent equal coupling correction of J and m
change by

Q̂δJ,δm =
1

nδJ,δm

aδJ,δm 0 0 0
0 bδJ,δm 0 0
0 0 cδJ,δm 0
0 0 0 dδJ,δm


(B3)

in the basis ê1 = |JC,−m1⟩, ê2 = |JC,m2⟩, ê3 =

|JC,−m2⟩, ê4 = |JC,m1⟩. The elements of Q̂ are

aδJ,δm = |cJC(JC + δJ,−m1 + δm, 1, δm)| (B4)

bδJ,δm = |cJC(JC + δJ,m2 + δm, 1, δm)| (B5)

cδJ,δm = |cJC(JC + δJ,−m2 + δm, 1, δm)| (B6)

dδJ,δm = |cJC(JC + δJ,m1 + δm, 1, δm)| (B7)

and the norm is

nδJ,δm =

√
m2a2δJ,δm +m1b2δJ,δm

m1 +m2

=

√
m1c2δJ,δm +m2d2δJ,δm

m1 +m2
.

(B8)

Appendix C: Dissipative QEC

Simulation of the dissipative QEC protocol is per-
formed in QuTiP using the Lindblad master equation
solver. The Lindblad master equation is

dρ̂(t)

dt
= − i

ℏ
[
Ĥ, ρ̂(t)

]
+
∑
n

1

2

[
2Ĉnρ̂(t)Ĉ

†
n − ρ̂(t)Ĉ†nĈn − Ĉ†nĈnρ̂(t)

]
(C1)

where ρ̂(t) is the density operator representing the evo-

lution of the quantum state, Ĥ is the system Hamil-
tonian, Ĉn =

√
Γn Ân are collapse operators, Ân are

the jump operators through which the environment cou-
ples to the system, and Γn are the corresponding decay
rates [39, 40]. In this work, the jump operators have the

form T̂ (J,m, δJ, δm) for |δJ | = 1 and |δm| ≤ 1. Here
we set ℏ = 1 and express the Hamiltonian as an angular
frequency Ω and the decay rates as 1/e rates Γn, which
are related to the natural linewidths in angular frequency
∆ωn = Γn.

1. Dissipative repumping of rotational manifold

To demonstrate the performance of the J-repumping
scheme, we simulate the evolution of the system with-
out any coupling to BBR. We consider the initial
state ρ̂↑(ρ̂↓) = |↑⟩ ⟨↑|

(
|↓⟩ ⟨↓|

)
, where |↑⟩ (|↓⟩) =

T̂
(
7,m,+1(−1), 0

)
|0⟩ which represents a rotational lad-

der operator applied to the |0⟩ codeword. Upon appli-
cation of the J-repumping scheme with the same pa-
rameters as defined in Sec. III C, the density operator
is brought back toward ρ̂0 = |0⟩⟨0|. The expectation
value ⟨J⟩ returns to JC = 7 for either initial error state
as expected, shown in Fig. 7.
The evolution of the physical fidelity F

(
ρ̂0, ρ̂(t)

)
=

tr
(
ρ̂(t)ρ̂0

)
, after tracing out the motional modes, is shown
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FIG. 7. Evolution of the expectation value of J for two dif-
ferent initial error states using the dissipative J-repumping
scheme.
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)

FIG. 8. Evolution of the physical fidelity F
(
ρ̂0, ρ̂(t)

)
after

tracing out the motional modes for two different initial error
states using the dissipative J-repumping scheme.

in Fig. 8. Upon application of the J-repumping scheme
with the same parameters as defined in Sec. III C, the
density is brought back toward ρ̂0. At t = 0.05Γ−1C , the
physical fidelities reach 0.974 for an initial state ρ̂↓ and
0.987 for an initial state ρ̂↑. The downward correction
of ρ̂↑ from J = 8 reaches a higher fidelity than the up-
ward correction of ρ̂↓ from J = 6 in this time due to the
slightly different effective repumping rates arising from
the different Slater integrals for each coupling.

2. Zeeman dissipative error correction

To demonstrate the performance of the full DEC
scheme with rotational manifold repumping and Zee-
man DEC combined, we can simulate without any

0.00 0.01 0.02 0.03 0.04 0.05
Time ( 1

C )

0.0

0.2

0.4

0.6

0.8

1.0

F(
0,

(t)
)

FIG. 9. Evolution of the physical fidelity F
(
ρ̂0, ρ̂(t)

)
after

tracing out the motional modes for two different initial error
states using the Zeeman DEC scheme.

coupling to BBR. We consider the initial states
ρ̂←(ρ̂→) = |←⟩⟨←|

(
|→⟩⟨→|

)
, where |←⟩ (|→⟩) =

T̂
(
7,m, 0,−1(+1)

) ∣∣0〉. This represents a ladder operator
applied to the |0⟩ codeword followed by perfect repump-
ing back to JC = 7. The expectation value ⟨J⟩ is fixed
at JC = 7 as there is no operator which maps out of
the code manifold. Upon application of the Zeeman cor-
rection scheme with the same parameters as defined in
Sec. III C, the density operator is brought toward ρ̂0.
The evolution of the physical fidelity with respect to

ρ̂0, after tracing out motional modes, is F
(
ρ̂0, ρ̂(t)

)
and is

shown in Fig. 9. After a short time, the physical fidelities
for both m-shifted states symmetrically reach a value of
0.994 and approach arbitrarily close to 1. There is a small
oscillation in the fidelity due to the finite cooling rate, as
some population is cycled back to the error state on the
red sideband before being returned on the blue sideband
and cooled further.

3. Full dissipative error correction

The comparison of the action of the full DEC scheme
to J-repumping only to doing nothing can be observed
by examining the final state populations after tracing out
the motional modes. This is shown for the same param-
eters defined in Sec. III C in Fig. 10. The concatenation
of the Zeeman DEC scheme with the J-repumping DEC
scheme significantly improves the population preserved
in HC.



16

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
m

0
1
2
3
4
5
6
7
8
9

10
J

do nothing

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
m

0
1
2
3
4
5
6
7
8
9

10

J

J-repumping

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
m

0
1
2
3
4
5
6
7
8
9

10

J

full DEC

FIG. 10. Final states at t = 2Γ−1
C for initial state ρ̂0 after

doing nothing (top), after J-repumping only (middle), and af-
ter full DEC (bottom) having traced out the motional modes.
The populations of each state are indicated with red squares
with areas proportional to the populations. DEC rate param-
eters are the same as those used in the main text. The code
manifold JC = 7 is outlined in blue.
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