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Abstract

Recently a certain thought experiment was discussed which involves the decoherence of a
quantum system due to a black hole. Here we show how this phenomenon is consistent with
standard ideas about quantum black holes. In other words, modeling the black hole as a quantum
system at finite temperature one obtains the same answer. We demonstrate this by analyzing
the problem in terms of an effective theory that can apply both for the black hole case and for an
ordinary matter system, showing that the same qualitative effect is present for ordinary matter
at finite temperature.
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1 Introduction and Motivation

Recently, it was suggested that black holes exhibit a unique decoherence effect [1, 2], and that this
could be of fundamental importance for their quantum description.

Here we explain that this decoherence phenomenon can be understood using standard ideas
about quantum black holes, namely, the idea that we can replace the black hole by a quantum
system with a number of qubits of order the black hole entropy. (This is sometimes called the
“central dogma” of quantum black holes.)

We analyze the thought experiment proposed in [1, 2, 3] (see Figure 1a) in terms of an effective
theory where we replace the black hole by a quantum system. This effective theory then applies
equally well for a black hole as for ordinary matter, which enables us to also compute the effect for
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(a) (b)

Figure 1: Setup for the decoherence problem discussed in [1, 2, 3]. Alice prepares a spatial superposition
of charged (or massive) particles in the vicinity of a black hole. The electromagnetic case is pictured here.
Between the two positions of the +q charge there is a static particle of charge −q. So, her state is a
superposition of an electric dipole pointing in two opposite directions. Alice holds the superposition stationary
for a long proper time T , during which the presence of the horizon destroys its coherence. (a) Spacetime
Penrose diagram. (b) Picture from the outside. The black hole could be replaced by a quantum system,
which we call the “black quantum system.”

the case of ordinary matter. The setup involves two quantum systems, one is Alice’s system and
the other is what we will call a “black quantum system” which could be a black hole or a piece of
ordinary matter.

We show that the effects found in [1, 2, 3] can be viewed as arising due to thermal or quantum
fluctuations of multipole operators describing the black quantum system. In fact, the decoherence
effect can be described purely in terms of two point functions of these multipole operators. These
two point functions govern other interesting observables such as the the absorption cross sections.
In addition, the two point function is related to the dynamical response function, or dynamical
Love number, of the black quantum system through the fluctuation dissipation theorem or KMS
(Kubo-Martin-Schwinger) condition.

In other words, we can describe the decoherence phenomenon in terms of an effective theory
which only involves operators describing the electric dipole moment or mass quadrupole moment
of the black quantum system. The parameters of this effective theory can be read off from a (low
frequency) computation of Schwarzschild observables such as the dynamical Love numbers or the
absorption cross section. Note that even though the static Love numbers are zero for black holes,
there is a first order in frequency, ω, correction which is non-zero and is responsible for the effect
in question [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Comparing the black hole case with ordinary matter at the same temperature we find a qual-
itatively similar effect, as long at the entropy of matter is macroscopic. The effect depends on
the resistivity or viscosity of the material. For the electromagnetic case, it is relatively easy to find
quantitatively similar effects. This is not surprising because we can have black objects which absorb
electromagnetic fields. For the gravitational case, the effect is weaker for ordinary matter, if we
consider objects of the same size as the black hole. This is just a reflection of the smallness of the
Newton constant, or the weakness of gravity’s coupling to matter.

The organization of the rest of the paper is as follows. In section 2, we state the effective
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theory picture. In section 3, we derive an expression for the decoherence of Alice’s superposition
in terms of two point functions of the effective theory operators. In sections 4 and 5, we discuss
the relation between the two point functions and other observables. In section 6, we compute the
decoherence due to a Schwarzschild black hole, reproducing previous results of [1, 2, 3]. In section
7, we estimate the decoherence due to various simple types of matter.1 Finally, in section 8, we
review the implication of the recent results on the Page curve for general decoherence effects by
black holes.

2 The effective theory approach

2.1 Review of the setup for the decoherence thought experiment

We first briefly recall the setup of the decoherence problem described in [1, 2, 3]. There is a
stationary experimenter Alice at a radial position b ≫ R, where R is the Schwarzschild radius, or
here the size of the black quantum system, see Figure 1b. She has a particle of charge q which she
prepares in a superposition of position eigenstates,2 |Ψ⟩Alice =

1√
2

(
| − d

2⟩+ |+ d
2⟩
)
where d denotes

the distance between the spatial positions. Alice maintains the superposition for a long proper time
T and then recombines the particle. The separation and recombination are performed adiabatically
so that negligible radiation is emitted to future infinity. This is possible if Tturn ≫ qd, where Tturn

is the timescale of the separation and recombination processes [18]. We are interested in the limit3

where T ≫ Tturn and T ≫ b. In [1, 2] it is shown that the black hole, and more generally any
bifurcate Killing horizon, will destroy the coherence of the superposition at a rate exponential in
T . The authors explain that this effect can be understood as a consequence of the electromagnetic
fields sourced by the particle falling into the black hole. This causes decoherence because the fields
in the black hole interior contain information which distinguishes | − d

2⟩ from |+ d
2⟩.

We make a tiny modification of the setup where we include a stationary negative charge −q so
that we see more clearly that the two branches of the wavefunction for Alice’s system correspond
to an electric dipole that is pointing in two opposite directions. See Figure 1a. From now on we
will denote Alice’s dipole by P⃗A. Alice’s quantum system then effectively consists of a single qubit
where the σ3 eigenstates correspond to the two opposite directions for this dipole.

2.2 The effective theory for the electromagnetic case

We now state a first effective field theory which is a logical stepping stone to the effective theory
that we will eventually use. For this we note that the fields sourced by P⃗A have frequency of order
ω ∼ 1/T . Since T ≫ b ≫ R, their wavelength is much larger than the size of the black quantum
system, see Figure 1b. In this limit the black quantum system can be approximated as a point
particle in flat spacetime. The interactions of the point particle with low-frequency bulk fields are
captured by multipole operators living on the point particle worldline.4 For example, the interaction
which governs the scattering of electric fields off the body takes the form

Se
int = −

∫
dt P⃗B(t) · E⃗(t) (1)

1We work in units where c = ℏ = kB = 1, so that ϵ0 = 1/e2.
2More realistically, we can imagine a superposition of position-space wavepackets with little overlap.
3We are not accounting for the backreaction due to Hawking radiation, and will assume that T is much smaller

than the lifetime of the black hole, T ≪ τBH ∼ G2M3.
4This “worldline effective theory” is implicitly assumed in usual discussions of black holes as quantum systems and

was used in string theory approaches to black hole thermodynamics. It was also discussed in [19, 20], see [21] or [22]
for a review.
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(a) (b) (c)

Figure 2: Three pictures useful for understanding the decoherence effect. Alice’s state is a superposition of
two physical dipoles of opposite sign. (a) We have the full spacetime picture. (b) We replace the black hole
by its electric dipole operator acting on a suitable Hilbert space. (c) We integrate out the electromagnetic
field completely so that we have a direct interaction between the two dipoles. In this approximation the
interaction is instantaneous.

and the full action then takes the form

S = SBlackbody +
1

2e2

∫
d4x(E⃗2 − B⃗2)−

∫
dt P⃗B(t) · E⃗(t)−

∫
dt P⃗A(t) · E⃗(t)σ3 (2)

where SBlackbody governs the black quantum system and P⃗B is an operator acting on that system.

Alice’s quantum system is just a single qubit and σ3 acts on it. P⃗A is a classical vector indicating
the size of the dipole. This first effective field theory is pictured in Figure 2b.

In general, Se
int should include all operators that respect the symmetries of the problem, which

in this case includes SO(3) rotational invariance, diffeomorphism invariance, and worldline repara-
materizaiton invariance. In (1, 2) we have neglected the magnetic dipole moment and all ℓ > 1
operators. Since the decoherence problem involves very slow moving sources, it is sufficient for our
purposes to include only the interactions which are leading order in Rω.

We are interested specifically in the interaction between the black object dipole, P⃗B, and the
electric field sourced by Alice’s dipole, P⃗A. So a simpler effective theory is obtained by integrating
out the electric field completely, leaving only a dipole-dipole interaction. This is the effective theory
we will primarily use throughout the text, and is illustrated in Figure 2c. Integrating out E⃗ gives
the effective action

Se
int = − e2

4πb3

∫
dt

(
P⃗A · P⃗B − 3

(
P⃗A · b̂

)(
P⃗B · b̂

))
σ3 (3)

where b̂ = b⃗/|⃗b|. In writing (3) we have taken the limit where P⃗A varies on a timescale T much
larger than b and much larger than the timescale of variation of P⃗B, which is set by the inverse
temperature β.

2.3 The effective theory for the gravitational case

The analysis of the gravitational case is analogous. Here the leading order interaction is between
the mass quadrupole moments QA and QB of Alice’s superposition and the black quantum system,
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respectively. Again, we make a slight modification of the setup to highlight that the effect involves
Alice’s mass quadrupole moment. While we cannot add particles of negative mass, Alice can create
a superposition of two configurations with opposite mass quadrupole moment in the following way.
We imagine there is a stationary mass distribution that is unchanged by the experiment. We add
a stationary mass dipole by displacing some of the mass from the background mass density. Then
Alice will create an additional dipole that she can move between two alternate locations on either
side of the stationary dipole, see Figure 3.

Figure 3: A convenient setup for the gravitational experiment. There is a background stationary mass
distribution with pockets of higher and lower density. The experiment consists of moving a (red) mass dipole
to the left or to the right, with a stationary (black) dipole in the center. Alice’s state is then a superposition
of two quadrupoles of equal magnitude and opposite sign.

This mass quadrupole interacts with a component of the Riemann curvature. Again we denote
by Qij

A the classical size of the quadrupole of Alice’s system, and σ3 is the operator that acts on the
qubit degree of freedom specifying the sign of this quadrupole.

Beginning with stress energy sources corresponding to Alice’s dipole and the black quantum sys-
tem and integrating out the graviton, we find that the interaction between the two mass quadrupoles
in the limit where T ≫ b and T ≫ β is

Sg
int =

G

12b5

∫
dt

(
2 tr

(
QAQB

)
+ 35

(
b̂⊺QAb̂

)(
b̂⊺QB b̂

)
− 20

(
b̂⊺QAQB b̂

))
σ3 (4)

Qij(t) is the traceless quadrupole moment. For an ordinary matter distribution, Qij is defined as

Qij(t) =

∫
d3x ρ(t, x)

(
3xixj − x2δij

)
(5)

2.4 The effective theory for the scalar field case

Finally, following [3], we can also consider a decoherence effect for spin zero fields, which we imagine
are sourced by a scalar charge j. Unlike in the electromagnetic and gravitational cases, j is not
conserved. So, as pointed out in [3], we can consider an experiment where the two branches of
Alice’s superposition evolve with different time-dependent charge densities ±jA(t) and remain at
the same spacetime location. Each will act as a monopole source for the scalar field.

In this case we have the action

S = −1

2

∫
d4x(∇ϕ)2 +

∫
dtjBϕ+

∫
dtjAϕσ3 (6)
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where jA is the strength of the (non-conserved) scalar charge. Integrating out the scalar field we
find

Ss
int =

1

4πb

∫
dt jA(t)jB(t)σ3 (7)

2.5 Side comment

One minor side comment is the following. In all these cases, we can think of the two possible
orientations of Alice’s qubit as defining two different Hamiltonians for the black quantum system.
The two Hamiltonians have an extra multipole operator inserted whose sign depends on the ori-
entation of Alice’s qubit. The decoherence arises because the black quantum system states evolve
to orthogonal states under these two possible Hamiltonian evolutions. An interesting related effect
was discussed in [23].

3 Decoherence in terms of the two point correlation function

In this section we show how the interaction can create some decoherence. For this purpose we now
assume that the interaction has the form

Sint =

∫
dtO(t)σ3 (8)

where σ3 acts on the Hilbert space of Alice’s quantum system which is effectively a single qubit
parametrizing the two possible configurations that Alice is considering. O is an operator acting on
the black quantum system.

We start with Alice’s system in a general state described by the two-by-two density matrix ρA.
The black quantum system starts in a thermal state ρB. Then Alice’s initial state at t = 0 evolves
to ρA(t) at time t, with

ρA(t) = trB

[
T ei

∫ t
0 dt′O(t′)σ3

(ρA ⊗ ρB)T e−i
∫ t
0 dt′O(t′)σ3

]
= ρA + (σ3ρAσ

3 − ρA)×
∫ t

0
dt′

∫ t

0
dt′′⟨O(t′)O(t′′)⟩+ · · · (9)

where we assumed that the one point functions of the operator O vanish and we expanded only up
to quadratic order in O. We now use the time translation symmetry of the thermal correlators, as
well as the assumption that the two point function ⟨O(t)O(0)⟩ decays after a time of order τe ≪ t
so that ∫ t

0
dt′

∫ t

0
dt′′⟨O(t′)O(t′′)⟩ ∼ tΓ , Γ =

∫ ∞

−∞
dt⟨O(t)O(0)⟩ (10)

For the black hole, the decay τe ∼ β. We now pick a time t that is long compared to τe and b, but
short compared to 1/Γ. Making the small tΓ approximation we can now write (9) as a Lindblad
equation for the density matrix of Alice’s system

ρ̇A = Γ(σ3ρAσ
3 − ρA) = ΛρAΛ

† − 1

2
Λ†ΛρA − 1

2
ρAΛ

†Λ , Λ ≡
√
Γσ3 (11)

This equation exponentially damps the off diagonal components of the density matrix leaving just
the diagonal components.5 More precisely, the off diagonal components decay as e−2Γt.

5The situation described here is an example of a common model for decoherence sometimes called a “dephasing
channel” or “phase-damping channel.”
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Notice that in deriving the Lindblad equation we assumed that after each time step t the black
quantum system returns to thermal equilibrium. This is called the “Markovian” approximation.
This is approximately correct when the system is sufficiently chaotic and we are looking at a simple
operator such as O. Of course, it is not precisely true for a system with finite entropy, but we expect
the corrections to be negligible for times small compared to exponentials of the entropy.

In order to make contact with [1, 2, 3], we note that they start with the pure state density
matrix for Alice’s system

ρA = |Ψ⟩⟨Ψ| , |Ψ⟩ = 1√
2

(∣∣− d/2⟩+ |+ d/2⟩
)
, or ρA =

1

2

(
1 1
1 1

)
(12)

where we wrote it in the qubit basis appropriate for the Hamiltonian (8). Γ is related to the quantity
denoted D in [1, 2] by

D = 2ΓT (13)

We can now write the values of Γ for each case by considering the appropriate operator that
couples to Alice’s qubit degree of freedom. For the electromagnetic case, this is described by the
dipole-dipole interaction (3). In evaluating Γ, we treat Alice’s dipole as a constant, classical function,
turned on for the time T . Plugging the interaction (3) into (10), we find

Γe ≡
(

e2

4πb3

)2

P k
AP

l
AN(b̂)ikN(b̂)jlS

ij(ω = 0) (14)

where we use the following notation for the Wightman function:

Sij(ω) ≡
∫

dteiωt⟨P i
B(t)P

j
B(0)⟩ (15)

and Nij is a tensor describing the dependence on the relative orientation of the two dipoles.

N(b̂)ij = δij − 3b̂ib̂j (16)

We see that, in the large T limit, Γ is only sensitive to the correlator near zero frequency. More
precisely, it is sensitive to the correlator at frequencies ω ∼ Γ, but we are assuming that Γ is very
small.

A similar analysis in the gravitational and scalar cases gives

Γg =

(
G

12b5

)2

Qkl
AQ

cd
AC(b̂)ijklC(b̂)abcdS

ijab(ω = 0) (17)

Γs =

(
1

4πb

)2

jAjAS(ω = 0) (18)

where

Sijkl(ω) ≡
∫

dteiωt⟨Qij
B(t)Q

kl
B (0)⟩ (19)

S(ω) ≡
∫

dteiωt⟨jB(t)jB(0)⟩ (20)

and Cijkl is the tensor

C(x)ijkl = 2δikδjl + 35b̂ib̂j b̂k b̂l − 20b̂iδjk b̂l (21)

We see that the decoherence can be expressed in terms of two point functions of dynamical
multipole operators describing the black quantum system. The precise form of these two point
functions depends on the system in question.
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3.1 A qualitative picture of the decoherence

A qualitative picture of this decoherence effect is as follows. As an example let us consider the elec-
tromagnetic case; the others are similar. The interaction Hamiltonian involves the dipole moment
of the black object. If this were a time-dependent classical function, then the state would acquire a
phase that depends on the integral of this function. This phase is opposite for the two orientations
of Alice’s dipole. Now, the dipole moment of the black object has thermal fluctuations that are
coherent on a timescale τe set by the quasinormal modes, which is of order β for a black hole. For
longer times these fluctuations are uncorrelated. We can then view the phase as a random walk,
and the leading decoherence effect involves the average of the square of this phase, or the average
variance of this random walk, which increases linearly with T . And the amplitude of the effect
involves the typical size of these fluctuations, which is set by the integral of the two point function.

4 The Fluctuation-Dissipation Theorem

In principle, the two point functions S(ω) depend on the microscopic details of the black quantum
system. For ordinary matter systems it would contain information about transport coefficients
such as conductivity, viscosity, etc. To make this connection, it is useful to recall the fluctuation
dissipation theorem [24, 25], which relates S(ω) to the dissipative part of the response function:

S(ω) = 2 (nb(ω) + 1) Im χ(ω) nb(ω) ≡
1

eβω − 1
,

and nb(ω) ∼
1

βω
, for ωβ ≪ 1 (22)

where we have indicated that we will be interested in frequencies smaller than the temperature of
the black quantum system. See appendix A for the derivation. The response function χ(ω), also
known as the retarded Green’s function, describes the expectation value of an operator due to a
small perturbation by an external source that couples to that operator. The precise definition is
given in appendix A. For example, when an electric field is applied to a conductor, the system
acquires a dipole moment which is proportional, via χ(ω), to the external field. χ(ω) is also called
the “dynamical Love number” and we will be interested in its low energy expansion, which is of the
form

χ(ω) = A+ iωB +O(ω2) (23)

with real A and B ≥ 0 for small ω. For black holes in 4d the static response A = 0, but B is
non-zero, which through (22) implies that S(ω) has a finite limit as ω → 0 set by the constant B
in (23). For general matter systems, which are not black holes, A is typically non-zero.

We also see that S(ω) depends only on Imχ(ω), which is also called the spectral function. The
imaginary part of χ(ω) arises from absorptive processes. This alludes to an important connection
between the decoherence effect and the absorption of low-energy fields, discussed further in section
6.

Thermalization in AdS/CFT has been studied extensively. To name just a few examples, see
[26, 27, 28, 29, 30, 31, 32, 33], and [34] for a review of recent developments in non-equilibrium
dynamics from holography.

5 The connection to absorption

In this section, we point out that the same two point correlation function involved in the decoherence
discussion also governs the absorption cross section of low energy waves.
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The connection between classical absorption in gravitational backgrounds and correlators of a
non-gravitational quantum mechanical theory is well known. Notably, this was the idea behind
the matching of D-brane greybody factors calculated from both bulk gravity and the worldvolume
gauge theory which gave early evidence for AdS/CFT [35, 36, 37, 38].

Let us discuss the absorption of scalar fields for simplicity. The amplitude for a transition from
an initial state |i⟩ to a final state |f⟩ of the black quantum system in a time T is

Mi→f =
1√
2ω

∫ T

0
dte−iωt⟨f |O(t)|i⟩ (24)

To get the total transition rate we square the amplitude and sum over final states,

Γi→f =
T

2ω

∫ T

0
dteiωt⟨O(t)O(0)⟩ (25)

where we have assumed that the correlator depends only on the time difference. If there are many
initial states then they would also be averaged over. For example, when the black quantum system
is in a finite temperature equilibrium state, this average produces a thermal correlator.

To get the absorption cross section, we divide the transition rate by the total time and the
incoming particle flux. This yields

σabs(ω) =
1

2ω

∫
dteiωt⟨O(t)O(0)⟩ = 1

2ω
S(ω) = (nb + 1)

1

ω
Imχ(ω) ωR ≪ 1 (26)

In the case of black holes, this absorption cross section is the one computed using the full Hartle-
Hawking vacuum in the near horizon geometry. It is related to the classical absorption cross section
by

σabs(ω) = (nb + 1)σclas
abs (ω) , −→ σclas

abs (ω) =
Imχ

ω
∼ β

2
S(ω) , for ωβ ≪ 1 (27)

In the case of electromagnetism we have a couple of modifications. First, a low energy electro-
magnetic wave couples both to the electric dipole moment as well as to the magnetic one, which
means that there are two dipole operators. In addition, the coupling involves the electric field,
which contains a derivative that introduces an extra factor of ω in the amplitude. The cross section
contains an extra factor of e2ω2. However, it is still the case that the answer involves the zero
frequency part of the two point function of the electric and magnetic dipoles.

In the gravitational case, again we have a second quadrupole operator beyond the one we have
discussed. These operators couple to the Riemann curvature, which means that we have an extra
factor of ω2 in the amplitude and final factor ω4GN in the cross section.

In conclusion, two point functions of the multipole operators describing the black quantum
system measure its ability to absorb low-frequency bulk fields. Using (26) and the analogous ex-
pressions for the electric and gravitational cases, Γ could equivalently be expressed directly in terms
of the absorption cross section. This connection also allows us to make contact with the perspective
of [1, 2, 3], where the decoherence is understood as arising due to the absorption of low frequency
fields by the black hole.

6 Matching to black holes

When the black quantum system is a black hole, we generally do not have a microscopic description
which would allow us to compute S(ω) directly.6 However, S(ω) can be obtained by matching with
known black hole scattering amplitudes or dynamical Love numbers.

6Actually, we do have microscopic descriptions in special cases in string theory.
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The matching can be done to a variety of Schwarzschild observables. For example, we can
compute the absorption cross section as in (26) using the effective theory action, then equate this
with the equivalent absorption cross section in the Schwarzschild background to read off S(ω).

Another option would be to match response functions. In the effective theory, χ(ω) is directly
related to S(ω) by the fluctuation-dissipation theorem (22). On the gravitational side, the black
hole response to long wavelength external fields is described by the tidal response coefficients or
so-called Love numbers. Note that while the static Love numbers vanish for 4d Schwarzschild black
holes, the dissipative response or “dynamical Love numbers” do not, and this first correction is
imaginary and linear iω. It is this part of the response function which contributes to Imχ(ω).
Schematically, χ(ω) is computed in gravity as follows. We solve the wave equation for the external
field in Schwarzschild with ingoing boundary conditions at the horizon. One finds a solution to the
radial equation in the region rs ≪ r ≪ 1/ω which scales as rℓ and 1/rℓ+1. The former is interpreted
as setting up the source field, and the latter is response of the black hole. χ(ω) is proportional to
the ratio between the coefficients of the rℓ and 1/rℓ+1 solutions. When the external field is time-
dependent, the response is ω-dependent. There is a large body of literature on dynamical black
hole Love numbers. Recent papers include [15, 16].

Either of these matching procedures suffice for our purposes. We will not write the details of
the matching computation here; the results can be found in the literature [39, 40].

We now turn to checking that the decoherence rates found in [1, 2, 3] can be reproduced by
thinking in terms of the effective theory variables described above.

6.1 The electromagnetic case

In the eletromagnetic case, matching the effective theory absorption cross section to the appropriate
absorption cross section in Schwarzschild gives7 [20, 41]

Sij(ω) =
1

3e2
r3sδij rsω ≪ 1 (28)

To compare with [3], we take Alice’s dipole P⃗A to point radially, in the b̂ direction. The dipole has
magnitude |P⃗A| = qd/2. Plugging these values into (14),

Γe =

(
e2

4πb3

)2

× 1

3e2
r3s × 4

(
qd

2

)2

=
1

4π

1

6π

q2e2d2r3s
2b6

(29)

This is the scaling found in [2]. The numerical prefactor also matches the one computed in [3].8

6.2 The scalar case

For scalars, the matching computation gives [39, 41, 42]

S(ω) = 2rs rsω ≪ 1 (30)

To make contact with the results of [3], we let |jA| evolve from 0 to Q/2 and back, so Q is the total
difference in charge between the two branches of the superposition. Plugging these values into (18),

Γs =

(
1

4πb

)2

× 2rs ×
(
Q

2

)2

=
1

(4π)2
Q2rs
2b2

(31)

This is also the scaling found in [3].9

7In [41] the classical absorption cross section was computed, which differs from the full quantum cross section, see
(27).

8To compare with their result, note that q2theirs =
e2q2

4π
.

9The numerical prefactor here differs from that of [3] due to the scalar action normalization.
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6.3 The gravitational case

For gravitons, the matching computation gives the ⟨QBQB⟩ correlator10 [40, 42],

Sijkl(ω) =
8

45π
G4M5

(
δikδjl + δilδjk −

2

3
δijδkl

)
rsω ≪ 1 (32)

where M is the black hole mass.
For the computation of Γg we will not keep track of numerical prefactors but focus on the scaling

with dimensionful quantities. The quadrupole moment of the superposition isQij
A ∼ md2b̂(ix̂j) where

x̂ is a unit vector orthogonal to b̂. Plugging this into (17),

Γg ∝
(
G

b5

)2

×G4M5 × (md2)2 =
G6M5m2d4

b10
(33)

This is also the scaling found in [1].

6.4 Zero temperature black holes

So far, we have considered systems at finite temperature. We could wonder whether the decoherence
effect persists for zero temperature black holes. In [3] they compute the decoherence due to an
extremal Kerr black hole in the scalar and electromagnetic cases. For the scalar field, they find that
the coherence of Alice’s state does not decrease exponentially with time but instead has a power
law dependence. Here we discuss a quick way to arrive at this conclusion from the effective theory
reasoning.

At zero temperature, (10) no longer holds. However, we can still use (9), which gives the time
dependence of ρA(t) to leading order in perturbation theory. This is valid for times t such that the
correction does not become large. The near horizon geometry of an extremal black hole develops an
SL(2) approximate symmetry that fixes the form of the correlators. A massless field corresponds
to an operator of dimension ∆ = 1 so that we have∫ T

0
dt

∫ T

0
dt′⟨jB(t)jB(t′)⟩ ∝

∫ T

0
dt

∫ T

0
dt′

1

(t− t′ − iϵ)2
(34)

∝ lnT + endpoints (35)

The second term of (35) depends on the details of how we turn on and off the perturbation.11

So at zero temperature (35) has a logarithmic, rather than linear time dependence. This is the
leading order contribution in a perturbative expansion and is consistent with [3]. We are also
assuming that T is not too large, so that quantum gravity effects described by the Schwarzian mode
[43, 44, 45, 46, 47, 48] are not important, though it seems possible to include such effects too, if
desired.

For operators with dimension ∆ > 1,∫ T

0
dt

∫ T

0
dt′⟨O(t)O(t′)⟩ ∝

∫ T

0
dt

∫ T

0
dt′

1

(t− t′ − iϵ)2∆
(36)

∝
(
1

T

)2(∆−1)

+ endpoints (37)

10The numerical prefactor of (32) depends on the normalization of both Sg
int and Qij , which we have chosen

differently than some places elsewhere in the literature.
11The end result has the form log(T/Tturn) where Tturn is the time scale over which we turn on and off the scalar

charge, assuming b ≪ Tturn ≪ T .
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where we see that T dependent terms go to zero in the T → ∞ limit. The remaining contribution
to the decoherence depends on the details of how we turn on an off the scalar charge of Alice’s
system. If these details are independent of T , then we do not get any T dependence at long times
(again neglecting Schwarzian corrections).

7 Comparison to ordinary matter

Now we address ordinary matter systems. We estimate the response function for various simple
types of matter such as a conductor in the electromagnetic case and a self-gravitating fluid or elastic
solid in the gravitational case. We will consider systems at finite temperature, since we have also
mainly considered black holes at finite temperature.

For the systems we consider this also implies a fairly large entropy, which means that the energy
levels are exponentially close to each other and can absorb the low-frequency modes ω ∼ 1/T . It
turns out that ordinary macroscopic materials have sufficiently large entropy that this is true for
all practical purposes; that is, when T is less than the age of the universe.

As we explained previously, the response functions set the decoherence rate, so comparing the
response functions of black holes versus those of ordinary matter is the same as comparing the
decoherence effects.

7.1 Electric response by ordinary matter versus black holes

The dissipative response function for the black hole interacting with an external electric field is
given by the dynamical love number [12, 13], or from (28) after using the fluctuation dissipation
theorem,

Imχe
BH(ω) ∼

1

e2
ωr4s (38)

We want to compare this to the response function of an ordinary material. To make a fair comparison
we consider objects of the same size and at the same temperature as the black hole.

7.1.1 Conducting solid

We begin by estimating the response function of a conductor subject to an external, time-varying
electric field E⃗ext. For this purpose we are interested only in rough estimates, and will not be careful
about numerical prefactors.

Let us consider a conducting sphere of radius R and resistivity ρ. We first consider a static E⃗ext.
The charges on the sphere rearrange themselves so as to cancel the electric field inside the sphere,
resulting in a net dipole moment. Let Q denote the order of magnitude of the charge on the top half
of the sphere. The electric field due to these charges is of order E⃗cond ∼ e2Q

R2 , and the dipole moment

of the conductor is of order P⃗ ∼ QR. Setting E⃗ext ∼ E⃗cond gives χ = (QR) /
(
Q/R2

)
= 1

e2
R3. This

is the zero frequency response.
When E⃗ext is time-dependent, the cancellation is incomplete due to the finite resistivity which

prevents charges from rearranging immediately. We now have

E⃗ext − E⃗cond = ρJ⃗ (39)
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where J⃗ is the current density and ρ the resistivity. J⃗ is related to the time derivative of the dipole

moment by
∫
d3xJ⃗ = dP⃗

dt , which implies R3J⃗ ∼ −iωP⃗ . Plugging this into (39),

Eext −
e2Q
R2

∼ Eext −
e2P

R3
∼ ρ

(
−iωP

R3

)
⇒ P⃗ ∼ 1

e2
R3

(
#+

iωρ

e2

)
E⃗ext (40)

where we have assumed ωρ ≪ 1. Therefore

Imχcond(ω) ∼
1

e4
ωρR3 (41)

To be comparable to a black hole, we see that ρ/R should be of order e2.
In general, higher resistivity corresponds to greater absorption of low-frequency fields. So, we

should consider a relatively impure metal such as an aluminum alloy. The electrical resistivity of
aluminum alloy at very low temperatures is typically on the order of ρ/ℏ ∼ 60 µm [49].12

As an example consider a black hole of size R = rs = 50 µm, chosen so that its temperature,
T ∼ 4 K is not too low. Then an aluminum ball of this size would then have ρ/R ∼ 1 > e2.

In order for the conductor to absorb very low frequency modes, its energy level spacings should
be sufficiently small. For a system with sufficient interactions this is ensured if it has a large
entropy. A metal can be approximated by an ideal Fermi gas. The entropy of a Fermi gas at low
temperatures scales as S ∝ N

βEF
where N is the number of particles and EF is the Fermi energy.

For the aluminum ball, we find S ∼ 1013 and so ∆E ∼ e−1013E0, which is exponentially small.
Here E0 is a characteristic energy, whose precise size does not matter for this argument, given the
exponential prefactor.

7.1.2 Aside on the membrane paradigm

It is well known from the membrane paradigm [51] that we can think of the black hole horizon as
having a surface resistivity ρs/ℏ = e2, or ρs = 377 Ω [52].13 This is a value achievable by choosing
a suitable material, as we essentially discussed above, except that above we were using a solid ball
rather than a spherical shell. For a spherical shell, instead of (41) we get Imχcond ∼ 1

e4
ωρsR

4.

7.2 Gravitational response by ordinary matter versus black holes

We now compare how soft gravitons are absorbed by ordinary matter versus black holes. The black
hole response function for gravitational fields is [8, 10, 11, 12, 13, 15, 16]

Imχe
BH(ω) ∝ ω

r6s
G

(42)

We will again compare the black hole to ordinary matter at the same temperature. Since this
is a gravitational interaction, we will compare the black hole both to a matter configuration with
the same mass, and separately to one with the same size. Not surprisingly, we will find that an
ordinary object of the same mass as a black hole absorbs much more than a black hole, while the
opposite is true for an object of the same radius as a black hole.

12The resistivity of metals goes to a constant at low temperatures due to the scattering with impurities, which is
temperature independent [50]. Note that while pure aluminum is a Type I superconductor, aluminum alloys are not.

13We are using the standard particle physics normalization of the Lagrangian. Then, ρs = 4π in [52] becomes
ρs = e2 for us, with the same value in Ohms, of course!
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7.2.1 A self-gravitating fluid with the same mass as a black hole

First we consider the case of equal mass. A simple type of matter is a self-gravitating fluid. We take
a fluid of radius R and mass M , and estimate the response of its gravitational quadrupole moment
to an external gravitational potential Φext.

Suppose first that Φext is static. Φext corresponds to a background curvature R ∼ ∂2Φext, which
will induce a change in the mass distribution of the fluid, δm, which in turn generates its own
potential, δϕ ∼ Gδm/R. The mass redistribution will be such that δϕ = Φext. Solving for δm,
δm ∼ R3R/G. The quadrupole moment Q generated by the mass deformation is

Qij ∼ δmR2 ∼ R5

G
R (43)

So the static response is χ(ω = 0) ∼ R5/G. Now let Φext oscillate with a small frequency, ωR ≪ 1.
The nonzero total potential generates a matter current,

dδm

dt
∼ ρvR2 (44)

where v is the velocity of a fluid element and ρ is the mass density. The matter flow is related to
the potential by the Navier-Stokes equation,

ν∇2v ∼ ∇ (Φext − δϕ) (45)

where we have dropped terms that are second order in ω. Here ν is the kinematic viscosity. Solving
for v from (44), plugging this into (45), and expanding in ωνR/M ≪ 1,

χ(ω) ∼ R5

G

(
#+ iω

νR

GM

)
Imχ(ω) ∼ ω

νR6

GRs
(46)

where we have used ρR3 = M . Here Rs denotes the Schwarzschild radius of a black hole with the
same total mass as the fluid.

It is interesting to note that if we interpret the black hole as a viscous fluid, we find

νBH ∼ rsc (47)

where we momentarily restore c to make the following point. From kinetic theory, the shear viscosity
η of a fluid can be estimated as

η ∼ ρ ℓmfp⟨v⟩ (48)

where ℓmfp is the mean free path of a particle and ⟨v⟩ is the average velocity of a particle. So the
largest possible ν would roughly be when ℓmfp = r and ⟨v⟩ = c, which is the kinematic viscosity of
a black hole (47) above.14 This indicates that, when interpreted as a fluid, black holes have a very
high kinematic viscosity relative to other types of matter.15

Then the ratio of the responses for an sphere of fluid with the same mass as a black hole is

Imχfluid

Imχg
BH

∼ νfluid
νBH

(
R

rs

)6

(49)

14Thanks to Zihan Zhou for pointing this out to us.
15This is contrast with the η/s = 1/(4π) ratio for black holes [53], which is very small compared to ordinary matter.
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We consider a self-gravitating ball of water at room temperature.16 A black hole at this tem-
perature has a radius rs ∼ 0.6 µm and the same mass as a sphere of water of radius R ∼ 5× 105 m.
Using that the kinematic viscosity of water at room temperature is ν ∼ 10−6 m2/s we find

R

rs
∼ 1012

ν

νBH
∼ 10−8 Imχfluid

Imχg
BH

∼ ν

νBH

(
R

rs

)6

∼ 1064 (50)

which implies that the ball of water absorbs gravitons more easily than a black hole of the same
mass.

Again, since we have a macroscopic amount of water, the entropy is large enough to ensure that
the level spacings are small enough for all practical purposes.

7.2.2 An elastic solid of the same size as a black hole

Since most liquids freeze at the low temperatures corresponding to macroscopic black holes, we
consider an elastic solid with some viscosity.

As before, the gravitational potential induces a background curvature R ∼ ∂2
xΦext, which in

turn causes a deformation u⃗ of the material body,

∂2
t u⃗ ∼ −∇Φext ∼ xR (51)

The displacement u⃗ is governed by wave equations propagating transverse and longitudinal modes.
For the purpose of this estimate we will not distinguish between the transverse and longitudinal
sound waves and simply write cs for the speed of sound. Similarly, we will not distinguish between
shear and bulk viscosity. The wave equation is then

∂2
t u⃗ ∼

(
c2s − iων

)
∇2u⃗ (52)

where ν includes the effects of the kinematic viscosities and thermal conductivity. Equating (51)
and (52) and expanding in ων/c2s ≪ 1, we find the quadrupole moment

Q ∼
∫

d3xρ(x)xu ∼ R3ρR4 1

c2s

(
#+ iω

ν

c2s

)
R (53)

So, the dissipative response function which describes the quadrupole moment tidally induced by
Φext is

Imχ(ω)metal ∼ ωνR3ρR4 c
2

c4s
∼ ων

R5

G

(
Rs

R

)(
c

cs

)4

(54)

where we have restored c and rewritten Rs ∼ ρR3G/c2 for the Schwarzschild radius of a black hole
with the same mass as the metal ball. Note that this is not the Schwarzschild radius of the black
hole we are comparing to, which is rs = R. Using (42) and (47), the ratio of response functions is

Imχmetal

ImχBH
∼ ν

νBH

(
Rs

R

)(
c

cs

)4

(55)

While the ratio c/cs is large, the Schwarzschild radius, Rs, of a black hole of the same mass as the
metal is much smaller than its physical size. This is a consequence of the weakness of gravity, since

16We are ignoring the fact that water boils at zero pressure and room temperature. We imagine surrounding the
ball with a thin film preventing its evaporation.
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the Schwarzschild radius is suppressed by a factor of G. We already see that χmetal contains an
extra factor of G relative to χBH by comparing (54) and (42).

As an example, we consider a black hole of size about 100 µm, which has a temperature of ∼ 1.5
K. We compare with a similar sized lead ball. At this temperature, ν for lead is ν ∼ 10−5 m2/s
and the speeds of sound are of order cℓ ∼ ct ∼ 10−6c [54]. The Schwarzschild radius of a black hole
with the same mass as the ball of lead, Rs, is of order of the Planck scale. Then we find

ν

νBH
∼ 10−10 Rs

R
∼ 10−30

(
c

cs

)4

∼ 1021 , → Imχmetal

Imχg
BH

∼ 10−19 (56)

In this case, we see that the metal does absorb fewer gravitons than a black hole, or would produce
a smaller decoherence effect, though the same qualitative effect is present.

8 More general decoherence effects and the Page curve

The idea that black holes cause a unique form of decoherence goes back to Hawking [55].
Similar comparisons to the ones we have performed in this paper were discussed about 30 years

ago in the context of the connection between D-branes and black holes, see e.g. [35, 37]. In fact,
more was understood in those cases, since the explicit quantum mechanical system that describes
the black hole is known in some special cases.

All we have done here is to rephrase that discussion in the context of ordinary Schwarzschild
black holes, for which the same paradigm is expected to work, though we do not know the explicit
quantum mechanical dual.

Very interesting recent developments [56, 57] (see [58] for a review) can also be rephrased in
terms of bounds for the decoherence effects of black holes.

Namely, Alice could have a large number of qubits as opposed to a single qubit. In fact, it could
be a number that is larger than the black hole entropy. If Alice starts with all these qubits in a low
entropy state, then the presence of the black hole will decohere them and increase the entropy of
her system. The leading semiclassical solution would lead one to believe that the entropy of Alice’s
system can increase to a value larger than the initial black hole entropy, provided that the Hilbert
space of Alice’s system has a large enough dimension. However, as Page argued in [59], the picture
of a black hole as an ordinary quantum system implies that the entropy of Alice’s system cannot
become larger than the entropy of the initial black hole.

In this discussion we are assuming that Alice’s system does not introduce extra energy into the
black hole (but this case can also be treated). The black hole might evaporate, or we might have
a mirror that reflects the Hawking radiation back to the black hole, after interacting with Alice’s
system.

The recent work has shown that the entropy of Alice’s system computed using the modern fine
grained gravitational entropy formulas of Ryu-Takayanagi-· · · -Engelhardt-Wall gives a result for
Alice’s system that never exceeds the entropy of the original black hole [56, 57]. Actually, since
Alice’s system is in a gravitating region the proper formulas to use were conjectured in [60, 61].

9 Conclusion

In this paper, we studied the decoherence due to black holes using an effective theory that is equally
applicable to both black holes and ordinary matter systems. We showed that the same qualitative
effect is present for ordinary matter at finite temperature. In other words, the decoherence effect
is consistent with the hypothesis that, from the outside, black holes are described by ordinary
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quantum systems. In this framework, the decoherence is seen to arise from thermal fluctuations
of the multipole moments of the black hole/matter system. For the electromagnetic effect, the
decoherence can be of equal magnitude for black holes and ordinary objects. For the gravitational
effect, ordinary matter produces a much weaker effect than black holes of the same size.

We also reviewed the recent results on the Page curve which bound the amount of entropy that
can be generated by the interaction of a black hole with a very complex system in Alice’s possesion.

Note: As we were about to submit this paper, [62] appeared which has some overlap with the
discussion in this paper.
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A Quick review of some properties of thermal correlators

The response function is computed by the correlator

χ(t) ≡ GR(t) = θ(t)i⟨[O(t), O(0)]⟩ , χ(ω) =

∫
dteiωtχ(t) (57)

This comes from the fact that under a perturbation

ei
∫
dtg(t)O(t) (58)

the first order change in the expectation value of O(t) is

⟨O(t)⟩ =
∫ 0

−∞
dt′i⟨[O(t), O(t′)]⟩g(t′) =

∫
dt′χ(t− t′)g(t′) , or ⟨O(ω)⟩ = χ(ω)g(ω) (59)

Note that (57) implies that χ(ω) is analytic in the upper half complex ω plane. In addition, we
have

χ(ω)∗ = χ(−ω) , for ω ∈ Reals (60)

for real frequencies. This implies the reality of A and B in the low energy expansion (23).
The fluctuation dissipation theorem is obtained as follows. We start by writing

2Imχ(ω) =

∫
dteiωt⟨[O(t), O(0)]⟩ (61)

We shift the integration contour of the term containing ⟨O(0)O(t)⟩ to t → t + iβ and we use the
Kubo-Martin-Schwinger condition ⟨O(0)O(t+ iβ)⟩ = ⟨O(t)O(0)⟩. Here we used that the correlators
are computed on the thermal vacuum. This then gives

2Imχ(ω) = (1− e−βω)

∫
dteiωt⟨O(t)O(0)⟩ (62)

which relates the two types of correlators. We used that the correlators were on the thermal vacuum
when we used the Kubo-Martin-Schwinger condition.

Imχ(ω) is related to the energy absorbed by the system. If we consider a classical source g(t)
and the Lagrangian g(t)O(t) then the change in energy is due to the explicit time dependence of
g(t),

dH

dt
= −dg

dt
O(t) (63)
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So that

∆⟨H⟩ =
∫ ∞

−∞
dt
dH

dt
= −

∫ ∞

−∞
dtdt′

dg(t)

dt
χ(t− t′)g(t′) = 2

∫ ∞

0

dω

2π
ωIm[χ(ω)]|g(ω)|2 (64)

where we used that g(t) is real so that g(−ω) = g(ω)∗ as well as (60).
We see from (64) that the system is absorbing energy since Imχ(ω) is positive for ω > 0. One

way to see this is by inserting a complete basis of energy eigenstates and rewriting Imχ(ω) as

2 Imχ(ω) =
∑
m,n

|⟨m|O|n⟩|2
(
e−Emβ − e−Enβ

)
2πδ(ω − (En − Em)) (65)

which is manifestly positive for ω > 0.
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