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We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity.
Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system
exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete
set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of
constant all-to-all interaction, the enhanced superradiance persists under the spatially dependent dipolar inter-
action, but shifted in the critical interaction strengths. The diverging susceptibility at these critical points is
captured by emergent quantum Rabi models, each of which comprises a pair of collective atomic states with
different numbers of atomic excitations. These collective states become degenerate at the critical interaction
strengths, resulting in a superradiant phase for an arbitrarily small atom-cavity coupling.

Introduction. Combining strong long-range interac-
tion, flexible spatial configuration, and large polarizability,
Rydberg-atom arrays are emerging as an increasingly impor-
tant platform for quantum simulation and computation [1–
4]. During the past decade, a vast range of intriguing many-
body phenomena have been simulated and investigated in
Rydberg-atom arrays, including magnetism and dynamics in
quantum spin models [5–9], symmetry protected topologi-
cal phases [10], coherent excitation transfer [11–13], as well
as emergent gauge field [14–17] and many-body localiza-
tion [18, 19]. Furthermore, the recent demonstration of error
suppression using logical qubits on reconfigurable Rydberg-
atom arrays represents a seminal first step toward an era of
error-corrected intermediate-size quantum systems [20]. On
the other hand, while the Rydberg states are relatively long-
lived, dissipation in Rydberg atoms is further tunable through
a variety of means, including laser-induced loss, microwave
dressing, or coupling to a cavity. As such, Rydberg atoms
are also ideal for the study of dissipative many-body dynam-
ics [21–27]. A particularly interesting configuration is the
atom-cavity hybrid system involving Rydberg states [28, 29],
where the cavity-induced long-range interatomic interactions
and the back action of cavity dissipation conspire with the Ry-
dberg interactions, leading to exotic non-equilibrium dynam-
ics.

For atoms coupled to a cavity, an outstanding phenomenon
is the superradiant phase transition, which can be traced back
to the study of the Dicke model half a century ago [30, 31]. In
the Dicke model, an ensemble of two-level, non-interacting
atoms are coupled to a single-mode electromagnetic field,
corresponding to the atom-cavity coupling in the hybrid sys-
tems. A superradiant phase transition occurs beyond a crit-
ical atom-cavity coupling strength, wherein the cavity field
becomes macroscopically populated [31–34]. While the su-
perradiant transition also arises in open quantum systems [35–
37], the advent of ultracold quantum gases further enriches its
study [38–42]. In particular, the transition was observed in
a Bose-Einstein condensate of atoms coupled to a dissipative
cavity field, where, driven by the collective light-matter in-
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FIG. 1. Schematic illustration of Rydberg atoms in a microwave cav-
ity. The green stripes indicate the optical tweezers, used for trap-
ping and arranging the atom array. The dissipative cavity, character-
ized by a decay rate κ , off-resonantly couples the Rydberg transition
|s⟩ ↔ |r⟩. Microscopic illustration of the resonant dipole-dipole in-
teraction Vdd is shown to the right, where the polarization angle θ is
tunable through an external electric field.

teraction, the macroscopic population of the steady-state cav-
ity field is accompanied by a self-organized density pattern
in the condensate [43]. By contrast, a Fermi-surface-nesting-
enhanced superradiance was predicted and subsequently ob-
served for degenerate Fermi gases in a cavity [44]. In these
studies, the interatomic interactions are weak at best. Whether
atomic interactions, particularly the long-range interactions of
Rydberg states, can have a significant impact on the steady-
state superradiant transition, remains to be explored.

In this work, we reveal a Rydberg-interaction-enhanced su-
perradiance in an array of atoms with microwave-cavity as-
sisted Rydberg-state coupling. By studying the steady-state
superradiance of the atom-cavity hybrid system, we show that
the critical atom-cavity coupling rate for the superradiant tran-
sition vanishes at a series of discrete interaction strengths,
suggesting divergent susceptibility at these critical points. In-
voking a simplified model with a constant all-to-all interac-
tion, we derive an analytic expression for the critical points,
and find that the divergence of susceptibility thereof coincides
with the two-fold degeneracies of symmetric collective states
in the subspaces with n and n + 1 excitations, respectively.
We then demonstrate, through numerical simulations, that the
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interaction-enhanced superradiance persists when the spatial
dependence of the Rydberg interaction is considered. Com-
pared to the constant-interaction case, the critical interaction
strengths are shifted, but a similar set of degenerate collec-
tive states persists. Notably, these collective states are no
longer symmetric due to the spatial dependence of the inter-
action potential. In either case, we show that the enhanced
superradiance near a critical point can be captured by an emer-
gent quantum Rabi model, which comprises the relevant near-
degenerate collective states.

System configuration. We consider a one dimensional
Rydberg-atom array confined by equidistant optical tweezers
in a single-mode microwave cavity along the horizontal x di-
rection, as illustrated in Fig. 1. For each atom, we consider
two Rydberg states, denoted respectively as |s⟩ and |r⟩. The
Rydberg states are coupled by the cavity mode characterized
by frequency ωc and wavelength λc. In the case that the in-
teratomic spacing is much smaller than λc, the cavity field is
identical for all atoms, leading to a homogeneous atom-cavity
coupling rate G. The Rydberg atoms interact through the res-
onant dipole interaction V

(
R jk

)
∝
(
1−3cos2 θ

)
/R3

jk, where
R jk is the distance between the j th and k th atoms along the
chain, and θ denotes the atomic polarization direction. While
the small interatomic spacing ensures that the dipole-dipole
interaction dominates over the Van der Waals interaction, the
interaction strength is tunable by adjusting the interatomic dis-
tance, or the polarization direction.

We start by studying the simplified case where the dipole-
dipole interaction is approximated by a constant all-to-all in-
teraction V

(
R jk

)
= Vdd. As we show later, all the key results

qualitatively persist when the spatial dependence of the in-
teraction is considered. The simplified atom-cavity coupling
Hamiltonian is a generalized Dicke model with dipole inter-
actions (we take h̄ = 1) [35, 45–47]

Ĥ = Ĥatom +ωcâ†â+

√
2
N
G

N

∑
j=1

(
â† + â

)
σ̂

x
j , (1)

where the atomic Hamiltonian

Ĥatom =
ωa

2

N

∑
j=1

σ̂
z
j + ∑

j<k
Vdd

(
σ̂
−
j σ̂

+
k +H.c.

)
. (2)

Here N and ωa are the total atom number and the energy-level
difference between the two Rydberg states, respectively, â and
â† are the annihilation and creation operators of the cavity
photon, and σ̂

±
j = σ̂ x

j ± iσ̂ y
j , and σ̂

β

j (β = x,y,z) are the Pauli
operators for the j th atom, defined through σ̂

+
j = |r⟩⟨s| j,

σ̂
−
j = |s⟩⟨r| j, σ̂

z
j = |r⟩⟨r| j − |s⟩⟨s| j, with |r⟩ j and |s⟩ j indi-

cating the Rydberg states of the j th atom.
Importantly, we consider an off-resonant coupling between

the microwave cavity field and the inter-Rydberg-state transi-
tion |s⟩ ↔ |r⟩, so that the counter-rotating terms are retained
in Eq. (1). Further, since the dependence of the Hamiltonian
on the atomic degrees of freedom is fully accounted for by the
collective spin operators Ŝβ = ∑ j σ̂

β

j /2 and Ŝ± = ∑ j σ̂
±
j , we

can rewrite Hamiltonian (1) as

Ĥ = ωaŜz +VddŜ+Ŝ−+ωcâ†â+2

√
2
N
G
(
â† + â

)
Ŝx. (3)

In a realistic system, dissipation is inevitable through its
coupling to the environment. For our setup, the lifetime of the
Rydberg states are enhanced as the cavity mode suppresses
the effects of the blackbody radiation on the Rydberg states.
We further assume a negligible spontaneous decay rate from
the Rydberg states |r⟩ and |s⟩ to the electronic ground state, so
that the dominant dissipation channel is the cavity decay. The
dynamics of the atom-cavity hybrid system is then governed
by the Lindblad master equation

˙̂ρ =−i
[
Ĥ, ρ̂

]
+κ

(
2âρ̂ â† − â†âρ̂ − ρ̂ â†â

)
, (4)

where ρ̂ is the density matrix containing both the atomic and
cavity-photon degrees of freedom, and κ is the cavity decay
rate.

Interaction-enhanced superradiance. We focus on the su-
perradiant transition in the steady state of the atom-cavity hy-
brid system. Adopting a mean-field approximation on the cav-
ity field, we replace â with the expectation value α = ⟨â⟩,
which, under the stationary condition ∂α/∂ t = 0, is given by

α =
−i2

√
2
N G

iωc +κ

〈
Ŝx〉 . (5)

The steady state is solved self-consistently by numerically di-
agonalizing Hamiltonian (3) while enforcing Eq. (5).

In Fig. 2(a), we show the numerically calculated steady-
state cavity-photon number ⟨â†â⟩ = |α|2 (solid curves) with
increasing atom-cavity coupling strength G, for an array of
N = 6 atoms. Under most of the interaction strengths, as well
as in the non-interacting case, a superradiant transition can be
identified at a critical Gc, across which the cavity field starts to
become finite. Importantly, the sign and strength of the Ryd-
berg interaction Vdd have a significant impact on the superradi-
ant transition. As a dramatic example, at Vdd =−1/3, the criti-
cal Gc vanishes—the system becomes superradiant even for an
arbitrarily small atom-cavity coupling rate. The mean-field re-
sults above are consistent with those from a full-quantum cal-
culation [see dashed curves in Fig. 2(a)], for which we evolve
the Lindblad equation (4) for a sufficiently long time so that
the system is close to the steady state. While the superradiant
phase transitions from the full-quantum treatment are not as
sharp compared to the mean-field results, at the critical value
of Vdd =−1/3, both calculations indicate a vanishing Gc.

The overall interaction dependence of the superradiant tran-
sition is more transparent in Fig. 2(b)(c), where the color
contour respectively indicates the steady-state cavity-photon
number and the collective atom correlation ⟨Ŝx⟩, on the 1/Vdd–
G plane. Consistent with the collective nature of superradi-
ance, the macroscopic population of the cavity field is always
accompanied by the emergence of collective atomic correla-
tions. Furthermore, we find that repulsive interactions (Vdd >
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FIG. 2. (a) The steady-state cavity photon number as a function
of the atom-cavity coupling rate for different interaction strengths.
Solid lines represent results under the mean-field approximation,
while dot-dashed lines are obtained by evolving the quantum mas-
ter equation (4) for sufficiently long times, starting from the ini-
tial direct-product state |ss . . .s⟩⊗ |0⟩ of the atom-cavity hybrid sys-
tem. Different colors correspond to different interaction strengths.
(b)(c) Steady-state phase diagrams, characterized by the cavity pho-
ton number and the collective atom correlation Ŝx, respectively. Here
“SR” stands for the superradiant phase, and “NP” stands for the nor-
mal phase. (d) Impact of the cavity dissipation on the critical atom-
cavity coupling rate of the superradiant transition. Different colors
and line shapes correspond to different cavity dissipation rates. For
all calculations, we take ωa as the unit of energy, with other parame-
ters given by N = 6, ωc = 0.75, and κ = 0.25 [for (a)(b)(c)].

0) tend to suppress the transition, leading to an ever increas-
ing Gc for larger Vdd. By contrast, under attractive interac-
tions (Vdd < 0), Gc exhibits an undulating pattern. It vanishes
at some discrete integer values of V c

dd, indicating interaction-
enhanced superradiance, as first observed in Fig. 2(a). Fur-
thermore, while the critical coupling strength Gc generally
depends on the cavity-decay rate κ , the critical interaction
strengths V c

dd where Gc vanishes are independent of the cav-
ity decay [see Fig. 2(d)]. While such independence has po-
tential significance for engineering superradiant transitions in
bad cavities, it also strongly suggests an underlying mecha-
nism hinged upon the atomic correlations.

An emergent quantum Rabi model. In the standard Dicke
model, the superradiant transition can be analyzed by divid-
ing the Hilbert space into subspaces with different numbers of
atomic excitations, and the transition is found to be dominated
by symmetric states in each subspace [48, 49]. Of particular
importance are the ground state and the first excited state, the
former with no atomic excitations and the latter a symmetric
superposition of all instances of a single excitation. The criti-
cal atom-cavity coupling rate of the superradiant transition is
related to the energy difference between these two states. Now

the addition of Rydberg interactions would modify the spec-
tral outlook of the collective atomic excitations, giving rise to
not only level shifts but also degeneracies in the low-lying
collective states. As we show below, it is this interaction-
induced low-energy degeneracy that is directly responsible for
the interaction-enhanced superradiance.

With the physical understanding above, we define the states
{|ψn⟩}, which are the symmetric superpositions of all possible
n-atom excitations, with

|ψn⟩=
1√
Cn

N
∑

{ j...k}
|s . . .r j . . .rk . . .s⟩, (6)

where { j . . .k} in the summation denotes all possible combi-
nations of n excitation locations. In the absence of the cav-
ity field, the corresponding eigenenergies for these collective
states are ωn = −

(N
2 −n

)
ωa + n(N −n)Vdd. As illustrated

in Fig. 3(a), with increasing attractive interaction Vdd, the en-
ergies of some symmetric excited states shift downward sig-
nificantly, and the ground state becomes degenerate with at a
discrete set of interaction strengths

V c
dd(n) =− ωa

N − (2n+1)
, (7)

where n ≤ N/2. More specifically, at each of the critical inter-
action strength V c

dd(n), the two-fold degenerate ground-state
subspace is spanned by |ψn⟩ and |ψn+1⟩. It follows that the
superradiant transition near V c

dd(n) is dominated by the two
near-degenerate states |ψn⟩ and |ψn+1⟩. To quantitatively con-
firm this point, we divide 1/Vdd into different regions, cen-
tered at the critical points with vanishing Gc. These regions
are separated by the vertical dotted lines in Fig. 3(b). As the
background of Fig. 3(b), we show the color contour of the
overlap P(n,n+1) between the steady state (denoted as |ψs⟩)
and the ground-state manifold at the critical V c

dd of the cor-
responding region. For instance, we consider {|ψ0⟩, |ψ1⟩} in
region I, {|ψ1⟩, |ψ2⟩} in II, {|ψ2⟩, |ψ3⟩} in III, and P(n,n+1) =

|⟨ψn|ψs⟩|2 + |⟨ψn+1|ψs⟩|2 in the corresponding region. Ap-
parently, P(n,n+1) is close to unity in the broad vicinity of the
superradiant phase transition.

The observation above inspires us to examine an emergent
quantum Rabi model

Ĥ(n,n+1)
eff =

∆n

2
(|ψn+1⟩⟨ψn+1|− |ψn⟩⟨ψn|)+ωcâ†â

+

√
2
N
Gηn

(
â† + â

)
(|ψn+1⟩⟨ψn|+H.c.) , (8)

where ∆n = ωn+1 − ωn is the energy-level difference be-
tween the lowest-lying states |ψn⟩ and |ψn+1⟩, and ηn =
⟨ψn+1|2Ŝx |ψn⟩ =

√
(N −n)(n+1) is the modifier for the

atom-cavity coupling in the symmetric-state subspace. The
corresponding superradiant tranition point for the quantum
Rabi model is analytically given as [50]

Gc =
1

2ηn

√
N |∆n|

2
ω2

c +κ2

ωc
. (9)
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FIG. 3. (a) Schematic illustration of the energy shift and degenera-
cies of different symmetric states (bold lines) with different interac-
tion strengths. The left subplot illustrates the energy levels of the
Dicke model with Vdd = 0. From bottom to top, the colored bold
lines correspond to subspaces with n = 0,1,2,3, respectively, where
collective states in the same subspace have the same energy. The sub-
plot on the right illustrates the energy levels at the critical interaction
strengths 1/V c

dd =−5,−3,−1 (left, middle, right), respectively. Here
the bold lines indicate the energy levels of the symmetric states, their
colors indicate different excitation numbers, consistent with those in
the case of Vdd = 0 (left subplot). The thin grey lines denote asym-
metric collective states. (b) The critical atom-cavity coupling rate for
the superradiant transition with varying interaction strengths, calcu-
lated from the effective quantum Rabi models (dashed lines) and the
full Hamiltonian (solid lines), respectively (see main text for detailed
discussion). The three regions (marked with I, II, and III), separated
by the vertical dotted lines at 1/Vdd = −4,−2, are centered at the
critical interaction strengths 1/V c

dd =−5,−3,−1. The color contour
in the background represents the overlap P(n,n+1) between the steady
state and the degenerate ground-state manifold at the central critical
interaction strength V c

dd of the corresponding region. Other parame-
ters and the unit of energy are the same as those in Fig. 2(b)(c).

Naturally, when the states |ψn⟩ and |ψn+1⟩ become degenerate
at the critical interaction strengths, we have ∆n = 0 and Gc = 0,
meaning a divergent susceptibility and superradiance for an
arbitrarily small atom-cavity coupling.

To further illustrate the utility of the emergent quantum
Rabi model (8), we examine the effectiveness of the model
across the critical points. Again, we apply quantum Rabi mod-
els associated with the central critical point of each region.
Specifically, we apply Ĥ(0,1)

eff in region I, Ĥ(1,2)
eff in region II,

and Ĥ(2,3)
eff in region III. Following Eq. (9), the superradiant

transition points are given by the dashed curves in Fig. 3(b).
The phase boundaries from the quantum Rabi models agree
well with those from the full Hamiltonian (3), when the inter-
action parameter is close to V c

dd. The agreement deteriorates
near the region boundaries, where we expect high-lying sym-
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FIG. 4. Critical atom-cavity coupling rate as a function of the Ryd-
berg interaction strength Vdd. The grey solid curve represents results
from a constant all-to-all interaction. The purple solid curve repre-
sents results from the full Hamiltonian (1) with spatially dependent
dipole-dipole interaction, while the grey dashed curve represents re-
sults from the quantum Rabi models (8) in the corresponding region.
The spatially dependent interaction is given by V

(
R jk

)
= Vdd/R3

jk,
where the interatomic distance is taken in the unit of the lattice con-
stant. Other parameters and the unit of the energy are the same as
those in Fig. 3.

metric excitations to play an increasingly important role.
Spatially dependent interactions. When the spatial de-

pendence of the Rydberg interactions is taken into account,
the homogeneity of the configuration is broken, and the
symmetric-state picture above no longer applies. Neverthe-
less, we find that the interaction-enhanced superradiance per-
sists, with vanishing Gc at discrete values of Vdd that are
shifted with respect to Eq. (7). This is explicitly demonstrated
in Fig. 4, where we take V

(
R jk

)
= Vdd/R3

jk (the lattice con-
stant of the atom array is set as the unit of length). Inter-
estingly, near the critical points where Gc = 0, the emergent
quantum Rabi models still apply, though a different set of col-
lective states must be considered. Specifically, we redefine
|ψn⟩ as the lowest-energy state in the subspace with n atom
excitations, and update ∆n and ηn in the quantum Rabi model
(8) accordingly. The resultant phase boundaries according to
Eq. (9) are shown as dashed curves in Fig. 4, which are in
good agreement with the full mean-field calculations near the
critical points (purple solid). Similar to the previous case, the
interaction-enhanced superradiance is due to the near degen-
eracy of the low-lying collective states in the atomic sector.

Discussion. We show that interatomic interactions can dra-
matically enhance the superradiant phase transition for Ryd-
berg atoms in a dissipative cavity. Specifically, near a dis-
crete set of attractive interaction strengths, the susceptibility
of the system diverges, and the steady state becomes superra-
diant for an arbitrarily small atom-cavity coupling rate. The
phenomenon is attributed to the interaction-induced degener-
acy of low-lying collective atomic excitations, which allow for
the application of emergent quantum Rabi models near these
critical points. Our configuration is readily accessible un-
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der typical experimental conditions. Take the Rydberg states∣∣90S1/2,m j = 1/2
〉

and
∣∣90P3/2,m j = 3/2

〉
of 87Rb as |s⟩ and

|r⟩ for instance [51], we then have ωa ∼ 2π ×4.87 GHz. Con-
sider a typical microwave cavity with ωc ∼ 2π × 3.65 GHz,
and κ ∼ 2π × 1.21 GHz, the critical interaction strengths are
V c

dd ∼−2π ×2.42 GHz,−2π ×3.74 GHz,−2π ×10.85 GHz,
which are experimentally accessible by tuning the atomic po-
larization direction θ and the interatomic distance. For in-
stance, with θ = 0, the critical interaction strengths above cor-
respond to the interatomic distances 1.46 µm, 1.26 µm, and
0.89 µm, respectively.

Throughout the work, we consider the resonant dipole-
dipole interactions, which can be mapped to a spin-1/2 XY
model. For off-resonant interactions, the corresponding spin
model becomes of the Ising type. Therein, the Van der Waals
interactions tend to suppress superradiance [48]. For future
studies, it would be interesting to explore the impact of in-
teraction on the superradiant transitions for Rydberg arrays in
higher dimensions. Understanding such processes can prove
useful for the ongoing study of quantum computation and sim-
ulation with neutral-atom arrays.
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S1

SUPPLEMENTAL MATERIAL FOR “INTERACTION-ENHANCED SUPERRADIANCE OF A RYDERG-ATOM ARRAY”

I. SYMMETRIC STATE SUBSPACE

For superradiance, states with symmetric atomic excitations play a crucial role. To see this, we first define a symmetric
subspace composed of all symmetric states {|ψn⟩}, and project the Hamiltonian into the subspace to obtain Ĥeff = P̂ĤP̂, with
P̂ = ∑

N
n=1 |ψn⟩⟨ψn|. The effective Hamiltonian can be written as

Ĥ [0,Nc]
eff =

Nc

∑
n=1

ωn (|ψn⟩⟨ψn|)+ωcâ†â+

√
2
N
G
(
â† + â

)Nc−1

∑
n=0

ηn (|ψn+1⟩⟨ψn|+H.c.) , (S.1)

where ωn is the energy of the state |ψn⟩, and ηn = ⟨ψn+1|2Ŝx |ψn⟩ =
√
(N −n)(n+1) is the modifier for the atom-cavity

coupling in the symmetric-state subspace. The superscript of the Hamiltonian [0,Nc] indicates that the subspace is cutoff at Nc
atomic excitations.

We then numerically confirm that the effective Hamiltonian can fully characterize the superradiant phase transition on the
mean-field level. Specifically, as shown in Fig. S1(a)(b), we calculate the steady-state cavity photon number as a function of the
atom-cavity coupling rate, with increasing Nc, that is, by sequentially enlarging the symmetric-state subspace to include more
symmetric atomic excitations. As we consider more symmetric states, the results gradually converge. When we include all
symmetric states with Nc = N, the obtained results are completely consistent with those obtained using the full Hamiltonian (1).
In Fig. S1(c), we reproduce the results of Fig. 2 of the main text, using the effective Hamiltonian (S.1) with Nc = N.
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FIG. S1. The steady-state cavity photon number with increasing atom-cavity coupling rate for (a) Vdd = 0 and (b) Vdd = −1/5. The solid
curves with different colors represent calculation results using an increasing number of symmetric states [with increasing Nc in the model
(S.1)]. The green dashed curves represent the results from the full Hamiltonian. (c) The steady-state phase diagram obtained from Ĥ [0,N]

eff under
the mean-field approximation. All parameters are the same as those in Fig. 3 of the main text.

The effective Hamiltonian (S.1) is useful for calculations of systems with large atom numbers. Therein, the Hilbert-space
dimension d grows exponentially with the number of atoms N. As the atom number increases, the computational scale becomes
significant, whether dealing with the full quantum master-equation evolution or applying the mean-field approximation. How-
ever, the effective model Ĥ [0,N]

eff substantially reduces the dimensionality to d ∝ N +1, thus greatly reduces computational cost.
As an illustrative example, in Fig. S2, we calculate the steady-state phase diagram for N = 20.

II. SYSTEM WITH VAN DER WAALS INTERACTIONS

In the main text, we focus on the resonant dipole interactions. For the off-resonant cases, the long-range Rydberg interaction
is of the Van der Waals type, and the atomic part of the Hamiltonian is modified to

Ĥatom = ωa

N

∑
j=1

σ̂
z
j

2
+ ∑

j<k
Vvdw

1+ σ̂
z
j

2
1+ σ̂

z
k

2
, (S.2)
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FIG. S2. Steady-state phase diagram of the generalized Dicke model with dipole-dipole interactions for N = 20 atoms.

where we consider an all-to-all Van der Waals interaction characterized by Vvdw. The energies of the collective atomic states
with n excitations are then

ωn =−
(

N
2
−n

)
ωa +C2

nVvdw. (S.3)

In Fig. S3(a), we show the energy gap ∆E between the lowest two collective states. When the energy gap is significant, a large
atom-cavity coupling rate is required for the superradiant transition to happen. It is clear that no matter how the interaction
strength is adjusted, the ground-state degeneracy cannot be achieved, unlike in the resonant-dipole case. Figure. S3 shows the
calculated phase diagram of this model. The Van de Waals interaction appears to suppress the superradiance.
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(c), respectively. Other parameters for the calculations are the same as those of Fig. 3 in the main text.
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