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Boson sampling, a computational task believed to be classically hard to simulate, is
expected to hold promise for demonstrating quantum computational advantage using near-
term quantum devices. However, noise in experimental implementations poses a significant
challenge, potentially rendering boson sampling classically simulable and compromising
its classical intractability. Numerous studies have proposed classical algorithms under
various noise models that can efficiently simulate boson sampling as noise rates increase
with circuit depth. To address this issue particularly related to circuit depth, we explore
the viability of achieving quantum computational advantage through boson sampling with
shallow-depth linear optical circuits. Specifically, as the average-case hardness of estimating
output probabilities of boson sampling is a crucial ingredient in demonstrating its classical
intractability, we make progress on establishing the average-case hardness confined to
logarithmic-depth regimes. We also obtain the average-case hardness for logarithmic-depth
Fock-state boson sampling subject to lossy environments and for the logarithmic-depth
Gaussian boson sampling. By providing complexity-theoretical backgrounds for the classical
simulation hardness of logarithmic-depth boson sampling, we expect that our findings will
mark a crucial step towards a more noise-tolerant demonstration of quantum advantage with
shallow-depth boson sampling.

I. INTRODUCTION

Boson sampling is a computational task that is complexity-theoretically proven to be hard to
classically simulate under plausible assumptions [1–3]. Accordingly, boson sampling has gathered
significant attention, as it would possibly play a key role in the experimental demonstration of
quantum computational advantage using near-term quantum devices. However, the implementation
of boson sampling in experimental settings with near-term quantum devices is inevitably subject to
various sources of noise [4–7]. The problem is that those noises would possibly rule out the classical
intractability of boson sampling, and thus potentially hinder the experimental demonstration of
quantum advantage with boson sampling. Indeed, both for finite-size near-term experiments and
asymptotic limits as system size scales, numerous studies [8–19] have proposed efficient classical
simulation algorithms of boson sampling under various noise models, such as photon loss, partial
distinguishability, gaussian noise, etc. Their results indicate that as the noise rate of boson sampler
increases, it eventually renders such a noisy sampler classically simulable. Moreover, as the noise is
typically accumulated with each circuit depth, the quantum signal for classical intractability
exhibits exponential decay with increasing circuit depth. Hence, circuits with polynomially
increasing depth with system size would suffer from significantly enlarged noise rates, posing
substantial challenges to achieving quantum advantage in such settings.

A viable alternative to preclude the classical simulability due to the inevitable noise is to consider
boson sampling with shallow-depth linear optical circuits, where the noise rate can be highly
reduced. Specifically, among the shallow-depth regime, our primary focus is on investigating the
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simulation hardness for logarithmic depth circuits; the intuition behind investigating logarithmic
depth circuits lies in the potential to offer a “sweet-spot” regime for the hardness of boson
sampling. Namely, this depth regime may avoid significant increases in noise rates to prevent
classical simulability, while still being sufficiently large to generate quantum correlations and
uphold simulation hardness. Despite such intuitive understanding, the hardness argument of boson
sampling in this shallow-depth regime, particularly from a complexity-theoretical perspective, has
been less studied so far and thus remains widely open. Hence, our goal is to establish the complexity-
theoretical foundations of the classical hardness of shallow-depth boson sampling, to suppress the
classical simulability by noise in a rigorous manner and obtain a more noise-tolerant demonstration
of quantum advantage with boson sampling.

In this work, we investigate the classical simulation hardness of boson sampling in shallow linear
optical circuits. Specifically, as the average-case #P-hardness of estimating output probabilities of
boson sampling is a crucial ingredient to demonstrate the classical intractability of boson sampling,
we make progress on establishing the average-case #P-hardness confined in shallow-depth regimes.
Similarly, we obtain the average-case hardness result in the shallow-depth regime for the Gaussian
boson sampling scheme. Finally, since noise is our main motivation for investigating shallow-depth
boson sampling, we generalize our average-case hardness result to noisy boson sampling subject to
a photon loss channel.

To avoid confusion, we note that the allowed imprecision level of our average-case #P-hardness
result is not sufficient to fully demonstrate the classical intractability of boson sampling in shallow-
depth regimes. However, to the best of our knowledge, the complexity-theoretical analysis on the
average-case hardness of shallow-depth boson sampling has not yet been investigated. Hence, we
believe that our hardness result in shallow-depth regimes will provide a first step toward a stronger
hardness result and, ultimately, toward the full demonstration of the classical intractability of
shallow-depth boson sampling.

A. Outlines: average-case hardness of shallow-depth boson sampling

We set our goal as proving the hardness of classical simulation of boson sampling in the shallow-
depth regime, specifically for approximate simulation within total variation distance error. Two
key ingredients for the current hardness proof of the approximate simulation of boson sampling
are (i) average-case #P-hardness of output probability approximation up to sufficiently large
additive imprecision ǫ, and (ii) hiding property. Informally, average-case hardness means that
approximating the output probability of boson sampling with high probability over randomly
chosen circuits (i.e., on average over circuits) is #P-hard. Here, by choosing random circuit
instances that have the hiding property (i.e., symmetric over outcomes), one can reduce the
average-case instances for the hardness from circuit instances to outcome instances, which is a
crucial step to prove the hardness of approximate simulation within total variation distance error
(See Appendix A for more details).

Most of the current theoretical foundations of the average-case hardness of boson sampling rely
on global Haar random unitary circuits [1–3, 20–22], as they almost satisfy the two conditions
described above. Namely, the outcome instances can be effectively hidden by global Haar random
unitaries, and approximating the output probability within sufficiently large ǫ on average over
global Haar random circuit instances is #P-hard under some conjectures. However, the problem
is that implementing global Haar random unitary requires at least polynomial circuit depth (e.g.,
see [23, 24]), and thus not implementable in sub-polynomial circuit depths. Accordingly, the
hardness results built upon global Haar random unitaries cannot be directly applied to the shallow-
depth boson sampling we are interested in, necessitating a different approach from them.
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Another problem is that there already exist efficient classical algorithms that can approximately
simulate shallow-depth boson sampling in certain circumstances, which directly rule out the
classical simulation hardness in shallow-depth for such cases. Although exact simulation of boson
sampling is classically hard even for constant depth circuits [25], approximate simulation is easy
for 1d local log depth circuits [26, 27] and also for more general dimension local circuits under
some constraints [28, 29]. Specifically, according to their results, if we use circuits composed of
only geometrically local gates, at least polynomial circuit depth is required for a sufficiently large
correlation to obtain the approximate simulation hardness. Those results indicate that we cannot
expect the hardness results in the most general case of shallow-depth circuits composed of local
gates only.

To deal with those problems we take the following approach: first, we consider shallow linear
optical circuit architectures composed of geometrically non-local gates. In fact, implementation
of non-local gates is promising for near-term experimental settings; for example, experiments of
linear optical systems based on trapped ions [30, 31] and photonic architecture [6] implemented
long-range interactions. Also, since we cannot implement global Haar random unitary within
shallow-depth regime, we instead employ local random circuit ensemble for random circuit instances
in shallow circuit architecture, inspired by the hardness results of random circuit sampling [21, 32–
35]. Here, local random distribution in this context means that each gate composing the circuit
is independently chosen Haar random gate; we note that recent experimental setups of boson
sampling [4–7] also follow such circuit distribution, but with geometrically local architectures.

However, local random distribution poses a subsequent challenge toward the average-case
hardness of shallow-depth boson sampling, that is, the absence of the hiding property. Since the
output symmetry of boson sampling over local random circuit distribution is not evident, the
random outcome instances cannot be efficiently hidden by random circuit instances. This means
that even if we find the average-case hardness over randomly chosen circuits for a fixed outcome, it
still does not lead to the classical simulation hardness grounded in Stockmeyer’s reduction from the
average-case approximation over randomly chosen outcomes [1]. To address this issue, we prove
the average-case hardness over both the randomly chosen outcome and randomly chosen circuit, by
establishing a worst-to-average-case reduction for both outcome and circuit instances. Specifically,
our reduction process is composed of two steps: (i) from a given fixed outcome to a randomly
chosen collision-free outcome, and (ii) from a worst-case circuit to a randomly chosen circuit over
local random circuit distribution.

To sum up, we show the average-case hardness over outcomes and circuit instances for shallow
circuit architectures composed of non-local gates and employing the local random circuit ensemble.
We informally present here our average-case hardness result of boson sampling in the logarithmic
depth regime, for photon number N and mode number M ∝ Nγ with γ ≥ 1.

Theorem 1 (Informal). There exists a O(logN)-depth linear optical circuit architecture such that
approximating output probability of boson sampling within additive error 2−O(Nγ+1(logN)2) with
high probability over randomly chosen circuits in the circuit architecture for high probability over
randomly chosen collision-free outcomes is #P-hard under BPPNP reduction.

Also, since our average-case hardness result considers both the random outcomes and random
circuits due to the absence of the hiding property, it is not straightforward to show the classical
simulation hardness of shallow-depth boson sampling as in the original boson sampling proposal [1].
Accordingly, we show how our average-case hardness result over both the randomly chosen outcomes
and circuits leads to the classical simulation hardness argument. This implies that improving the
additive imprecision for our average-case hardness result is the only remaining problem for the
fully theoretically guaranteed classical intractability of shallow-depth boson sampling.
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FIG. 1. Outlines of our result

Theorem 2 (Informal). If the allowed additive imprecision for the problem in Theorem 1 to be #P-
hard is improved to ǫ = 2−(γ−1)N logN−O(N), the approximate boson sampling for the shallow-depth
circuit in Theorem 1, up to constant total variation distance, is classically hard to simulate.

Now we provide an outline of our results, which is depicted in Fig. 1. We first define in
Sec. II a shallow-depth circuit architecture (BB∗)q composed of non-local gates, which we will use
throughout our results. Next, in Sec. III we prove the worst-case #P-hardness of approximating
output probability ps(C) of a fixed outcome s of boson sampling, for any circuit C in the shallow
circuit architecture previously defined. In Sec. IV we prove the average-case #P-hardness of
approximating output probability ps(U) for randomly chosen outcome s and randomly chosen
circuit U in the shallow circuit architecture, by establishing worst-to-average-case reduction. We
prove in Sec. V how our average-case hardness results over both the random outcomes and random
circuits lead to the classical simulation hardness. We also extend our average-case hardness result
to the Gaussian boson sampling scheme in Sec. VI, and to the lossy boson sampling subject to
photon loss channels in Sec. VII. In Sec. VIII, we conclude with several remarks.

II. NOTATIONS

Let us define the total mode number as M , where we set M as a power of 2 for simplicity. We
set the output photon number N polynomially related to M as M = c0N

γ , for a constant c0 and
γ ≥ 1 satisfying M ≥ 2N . We use the notation s as an M -dimensional output configuration vector
for the collision-free outcome, such that each element si of s denotes photon number in ith mode.
Namely, s = (s1, . . . , sM ) where each si ∈ {0, 1} with

∑M
i=1 si = N , so that the number of possible

configurations of s is
(M
N

)

. We define ps(C) as an output probability of a linear optical circuit
(unitary) matrix C for the outcome s from a predefined input configuration t. For collision-free
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FIG. 2. Schematics of the butterfly circuit architectures in Definition 2 and their unitary matrix form, for
mode number M = 24 = 16.

input and output, ps(C) can be represented as [1]

ps(C) = |Per(Cs,t)|
2 (1)

where Cs,t is a N by N matrix obtained by taking si copies of the ith row and tj copies of the jth
column of the matrix C.

We note that an M -mode linear optical circuit can be represented by an M by M unitary
matrix in U(M) which unitarily transforms M mode operators. Specifically, we can represent a
single-mode gate (i.e., a phase shifter) as a U(1) matrix to the mode, and a two-mode gate (i.e.,
a beam splitter) as a U(2) matrix along the modes. Also, the parallel application of gates can
be represented as a unitary matrix with a block matrix form, and the serial application of gates
can be represented as matrix multiplication of the unitary matrices. Accordingly, throughout this
work, we will interchangeably use the terminology ‘(linear optical) circuit’ and ‘(unitary) matrix’.

We first define the linear optical circuit architecture, for a more rigorous analysis of the hardness
proof.

Definition 1 (Linear optical circuit architecture). The linear optical circuit architecture A is a
linear optical circuit with fixed type (i.e., single- or two-mode) and fixed location of gates, where the
coefficients of each gate are not specified. If the coefficients of each gate are specified with unitary
matrices (in U(1) or U(2)), then the circuit and the corresponding unitary matrix are specified.

For the shallow-depth circuit architecture, specifically in logarithmic depth, we define the
shallow linear optical circuit architecture of circuit depth D = logM , using the convention used
in [36, 37].

Definition 2. We define butterfly circuit architecture B as follows: for each layer L = 1, 2, . . . ,D =
logM of the circuit architecture, allocate two-mode gate between mode number 2L(j − 1) + k and
2L(j − 1) + k + 2L−1, for all j = 1, 2, . . . , 2D−L and k = 1, 2, . . . , 2L−1. Also, we define inverse
butterfly circuit architecture B∗ as a butterfly circuit architecture with the inverse sequence of gate
application along the depth.
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We illustrate in Fig. 2 the circuit architecture B and B∗, and the form of their corresponding
unitary matrix. Next, we define the Kaleidoscope circuit architecture proposed in [36], using the
butterfly circuit architecture defined above.

Definition 3. We define Kaleidoscope circuit architecture BB∗ as a serial application of B over B∗.
We also define q-Kaleidoscope circuit architecture (BB∗)q as a repeat of the Kaleidoscope circuit
architecture, with repetition number q ∈ N.

Here, the circuit depth of q-Kaleidoscope architecture is D = 2q logM , which is indeed a
logarithmic depth in N for q = O(1). Throughout this paper, we will focus on the q-Kaleidoscope
circuit architecture with q = O(1) to demonstrate the hardness results for shallow-depth circuits.
One motivation for employing this linear optical circuit architecture is that it enjoys a useful
property that is crucial for our analysis; Ref. [36] shows that for M a power of 2, any M mode
permutation circuit can be implemented within BB∗.

Lemma 1 (Dao et al [36]). Let P be an arbitrary M ×M permutation matrix with M a power of

2. Then P can be efficiently implemented in BB∗ using two-mode permutation gates, i.e.,

(

0 1
1 0

)

and

(

1 0
0 1

)

.

III. WORST-CASE HARDNESS OF OUTPUT PROBABILITY ESTIMATION

In this section, we find the worst-case #P-hardness of output probability estimation of shallow-
depth linear optical circuits in BB∗, for a fixed input and output s within a certain additive
imprecision. Our worst-case hardness result for the shallow circuit architecture can be represented
as follows.

Theorem 3 (Worst-case hardness). For M ≥ 2N , approximating the output probability ps(C) to
within additive error 2−O(N) for any C over linear optical circuit architecture BB∗ is #P-hard in
the worst case.

We briefly sketch the proof of our worst-case hardness result for the shallow circuit architecture
BB∗. The proof is based on the result by [25], which showed the simulation hardness of exact
boson sampling with constant depth linear optical circuits. Specifically, there exist constant-
depth linear optical circuits that can simulate an arbitrary given quantum circuit using post-
selection. Also, those constant depth circuits can be embedded in our circuit architecture BB∗.
Hence, additively approximating the output probability of any quantum circuit can be reduced to
additively approximating the output probability of any circuit in BB∗, with imprecision blowup
up to the inverse of post-selection probability. Using the fact that the additive approximation of
any quantum circuit is #P-hard for certain additive imprecision [34], we can obtain the worst-case
hardness of our shallow circuit architecture BB∗.

Proof of Theorem 3. See Appendix B.

IV. AVERAGE-CASE HARDNESS OF OUTPUT PROBABILITY ESTIMATION

In this section, we prove the average-case #P-hardness of approximating output probabilities of
shallow-depth boson sampling within a certain additive imprecision. We focus on q-Kaleidoscope
circuit architecture (BB∗)q with q = O(1), where the gate number m for such architecture is
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m = qM logM . From the result of Theorem 3, (BB∗)q has the worst-case hardness of output
probability approximation, for q ≥ 1.

Our main strategy for the average-case hardness is the establishment of the worst-to-average-
case reduction, using the result of Theorem 3. In other words, we prove that if we can well-
approximate the output probability on average , we can also well-approximate the worst-case output
probability in Theorem 3. Here, our average-case approximation regards both the randomly chosen
outcome and the randomly chosen circuit, since we cannot rely on the hiding property that enables
us to fix the outcome. For this reason, we define both the random circuit ensemble and the random
outcome ensemble as follows.

Definition 4 (Random circuit ensemble). Let A be the circuit architecture with m number of gates.
We define HA as the distribution over circuits with architecture A, whose gates are independently
distributed local Haar random matrices {Hi}

m
i=1.

Definition 5 (Random collision-free outcome ensemble). We define GM,N as the uniform distribution
over

(M
N

)

collision-free outcomes of boson sampling with M modes and N photons. Each outcome
s ∼ GM,N is an M -dimensional output configuration vector for the collision-free outcome, such

that s = (s1, . . . , sM ) where each si ∈ {0, 1} with
∑M

i=1 si = N .

Using the definitions above, we first state our result on the average-case hardness over the
outcome and circuit instances, for shallow-depth linear optical circuit architecture (BB∗)q≥2 with
q = O(1).

Theorem 4 (Average-case hardness). The following problem is #P-hard under a BPPNP reduction:
for any constant δ, η ≥ 0 with δ + η < 1

4 , on input a random circuit U ∼ HA with A = (BB∗)q≥2

and a random outcome s ∼ GM,N , compute the output probability ps(U) within additive imprecision

ǫ = 2−O(Nγ+1(logN)2), with probability at least 1− δ over the choice of U for at least 1− η over the
choice of s.

In the following, we sketch the proof of Theorem 4, by briefly describing the worst-to-average-
case reduction process; we leave in Appendix C a detailed proof of Theorem 4. Since our average-
case hardness regards both outcomes and circuits, we first describe how to effectively fix the
outcome, so that the remaining problem is to establish worst-to-average-case reduction for fixed
output probability over random circuit instances. To do so, our strategy is to randomly permute
both a given worst-case circuit and a given fixed outcome. That is, we sample random M -mode
permutation P and permute the worst-case circuit C0 and the fixed outcome s0 equally with P ,
where the permuted outcome s = Ps0 now follows the random outcome ensemble GM,N . Then the
fixed worst-case output probability ps0(C0) is equal to ps(PC0), and thus we can obtain the value
ps0(C0) by inferring ps(PC0) via worst-to-average-case reduction over random circuit instances.
Here, ps(PC0) now becomes a new worst-case output probability, such that the revised worst-case
circuit C is the randomly permuted circuit PC0, and the revised fixed outcome s is the randomly
chosen outcome from GM,N .

To establish the worst-to-average-case reduction from the revised worst-case circuit C to the
average-case circuit over HA for a fixed outcome s, our strategy is to perturb the circuit from
HA with the given worst-case circuit C parameterized by a constant θ ∈ [0, 1]. That is, θ = 0
corresponds to the average-case distribution HA and θ = 1 corresponds to the worst-case circuit C.
Specifically, we choose a perturbation method such that for small enough θ, the success probability
of average-case approximation over perturbed random circuits would not have largely deviated from
the ideal case (θ = 0), and as θ grows, the perturbed circuit converges to the worst-case circuit
C. Using such perturbation method and as long as θ values are small enough, one can obtain the
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average-case approximate output probability values with high probability over perturbed circuits,
parameterized by different values of θ. Also, we can expect that those average-case values contain
some information about the worst-case value ps(C), depending on the perturbation method and
the values of θ. Assuming that worst-case value ps(C) can be inferred using the average-case values
with small values of θ, one can finally infer the worst-case value ps(C), within a certain imprecision
determined by the average-case approximation imprecision and the method for the inference.

Therefore, it is crucial to choose a proper perturbation method to establish the worst-to-average-
case reduction successfully. Throughout this work, we use the Cayley path for the perturbation,
which was employed in Refs. [21, 33, 34] for the hardness proposals of the random circuit sampling.

Definition 6 (Cayley transform [33]). The Cayley transform of an n by n unitary matrix H
parameterized by θ ∈ [0, 1] is a unitary matrix defined as

H(θ) := ((2 − θ)H + θIn)(θH + (2 − θ)In)−1, (2)

where In is the n by n identity matrix. Also, for the diagonalization of the n by n unitary matrix
H = LDL†, with unitary matrix L and diagonal matrix D = diag(eiφ1 , . . . , eiφn), the equivalent
form of the Cayley transform is

H(θ) =
1

q(θ)
L diag({pj(θ)}nj=1)L

†, (3)

where

q(θ) =

n
∏

j=1

(1 + iθei
φj
2 sin

φj

2
), (4)

pj(θ) = eiφj (1 − iθe−i
φj
2 sin

φj

2
)
∏

k∈[n]\j

(1 + iθei
φk
2 sin

φk

2
). (5)

Using the Cayley transform defined above, we now define the perturbed random circuit
distribution.

Definition 7 (Perturbed random circuit ensemble). Let A be the circuit architecture with m
number of gates. For the given circuit C0 in A with gates {Gi}

m
i=1, the circuit U(θ) is defined with

each gate of C0 replaced by Gi → Hi(θ)Gi, where each Hi(θ) is a Cayley transform of independently
distributed local Haar random gate Hi (i ∈ [m]) parameterized by θ ∈ [0, 1]. We define HC0

A,θ as the
distribution for such U(θ). Here, the distribution of the U(0) is HA, and U(1) = C0.

Before proceeding, we should make sure that the success probability of average-case approximation
over circuits is still large enough after the perturbation, to establish the reduction process
successfully. This is evident in the case that the total variation distance over circuits induced
by the perturbation is small enough, as the success probability over circuits perturbs by, at most,
the total variation distance.

In fact, Ref. [33] proved that total variation distance between HA and HC0

A,θ is small for
comparably small perturbation θ.

Lemma 2 (Movassagh [33]). Let A be the circuit architecture with m number of gates. For θ ≪ 1
and for any circuit C0 in A, total variation distance between HC0

A,θ and HA is O(mθ).

Therefore, by using small θ = O(m−1), one can upper-bound the total variation distance by an
arbitrarily small constant, which implies that the success probability of average-case approximation
over circuits also perturbs by at most a small constant.
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For the worst-to-average-case reduction, we first sample a random circuit U(θ) ∼ HC0

A,θ with
A = (BB∗)q and worst-case circuit C0. Using U(θ) with the same random seed {Hi}

m
i=1 but with

different values of θ satisfying θ = O(m−1), we obtain the average-case approximation of the output
probability ps(U(θ)) for each θ, which may enable us to infer the worst-case output probability
value ps(U(1)) = ps(C).

To investigate the feasibility of the inference of the worst-case value, we examine the behavior of
the function ps(U(θ)) characterized by the parameter θ. Using Definition 6, we find that ps(U(θ))
can be represented as a low-degree rational function in θ.

Lemma 3. Let A be the q-Kaleidoscope circuit architecture (BB∗)q with m = qM logM number of
gates, and U(θ) ∼ HC0

A,θ for any C0 in A. Then for any outcome s, the output probability ps(U(θ))
can be represented as a degree (4mN, 4mN) rational funtion in θ.

Proof. For given circuit unitary matrix U(θ) ∼ HC0

A,θ with C0 composed of {Gi}
m
i=1 gates, one can

decompose U(θ) with m = qM logM product of unitary matrices, such that each matrix element
of U(θ) can be represented as

[U(θ)]j,k =
M
∑

l1=1

M
∑

l2=1

· · ·
M
∑

lm−1=1

U
(1)
j,l1

U
(2)
l1,l2

· · ·U
(m)
lm−1,k

, (6)

where each U (i) denotes an M -dimensional unitary matrix, with a single gate unitary matrix
Hi(θ)Gi applied to the modes participating in the gate and identity for the rest of the modes. For
example, if the ith gate Hi(θ)Gi is a two-mode gate between the first two modes, U (i) is a block
diagonal matrix of Hi(θ)Gi and identity matrix, namely, U (i) = Hi(θ)Gi

⊕

IM−2.

For circuit architecture A = (BB∗)q which is composed of only two-mode gates, matrix elements
of U (i) can be represented as degree (2, 2) rational functions in θ, where the common denominator
for the elements is given by qi(θ), defined in Eq. (4) but with index i appended for ith random
gate Hi(θ). Using reduction to the common denominator for all of the m gates, [U(θ)]j,k can be
represented as (2m, 2m) rational function in θ with the common denominator

∏m
i=1 qi(θ); note that

it does not change with the indices j, k.

From Eq. (1), the output probability ps(U(θ)) has the form of

ps(U(θ)) =

∣

∣

∣

∣

∣

∣

∑

σ∈SN

N
∏

j=1

[U(θ)s,t]σj ,j

∣

∣

∣

∣

∣

∣

2

, (7)

where t is an input configuration vector, and SN is N -mode permutation group. One can easily
check that the common denominator for

∏N
j=1 [U(θ)s,t]σj ,j

is [
∏m

i=1 qi(θ)]N , and it does not change

with permutation σ. Let us define Q(θ) = [
∏m

i=1 |qi(θ)|2]N , which is a degree 4mN polynomial in
θ. Then Q(θ) serves as the common denominator for the output probability. Hence, the output

probability can be represented as ps(U(θ)) = P (θ)
Q(θ) , with P (θ) also a degree 4mN polynomial in

θ.

We are now ready to turn to the proof of Theorem 4, i.e., the average-case hardness of
the shallow-depth boson sampling. We prove that for high probability over s ∼ GM,N , well-
approximating output probability ps(U) with high probability over U ∼ HA for the shallow-depth
architecture A = (BB∗)q is #P-hard under a BPPNP reduction.

Proof of Theorem 4. See Appendix C
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V. AVERAGE-CASE HARDNESS IMPLIES CLASSICAL SIMULATION HARDNESS

As we have previously discussed, since our average-case hardness result considers both the
random outcomes and random circuits, it is not straightforward to show the classical simulation
hardness of shallow-depth boson sampling as in the original boson sampling proposal [1]. Therefore,
in this section, we provide a self-contained analysis of how our average-case hardness result leads
to the classical simulation hardness arguments of shallow-depth boson sampling. Specifically, we
show that if the allowed additive error in Theorem 4 for the hardness is improved to a certain
imprecision level, an efficient classical algorithm that can approximately simulate the shallow-depth
boson sampling is unlikely to exist. This emphasizes that improving the imprecision level of the
average-case hardness in Theorem 4 is a crucial step for the classical intractability of shallow-depth
boson sampling.

Similarly to Refs. [1, 32], we define an approximate boson sampler as follows.

Definition 8 (Approximate boson sampler). Approximate boson sampler is a classical randomized
algorithm that takes input linear optical circuit C and outputs a sample from the output distribution
D′

C such that

||D′
C −DC || ≤ β (8)

where DC is the ideal output distribution of the circuit C and ||·|| represents total variation distance.

Given the total variation distance error, the above approximate sampler can have an arbitrarily
large additive error for a fixed output probability. Nevertheless, it still has a comparably small
additive error for most of the output probabilities due to Markov’s inequality. Accordingly, finding
the average-case solution of the output probability of the ideal sampler over randomly chosen
collision-free outcome s ∼ GM,N , up to a certain additive imprecision, is in complexity class BPPNP

by Stockmeyer’s theorem [38].

Lemma 4 (Average-case approximation [1]). If there exists an approximate boson sampler S with

total variation distance β, then for any linear optical circuit C, the following problem is in BPPNPS

:
find the average-case approximate solution p̃s(C) of ps(C), which satisfies

Pr
s∼GM,N

[

|p̃s(C) − ps(C)| ≥
κ
(M
N

)

]

≤ ξ, (9)

where s is over all collision-free outcomes, and κ, ξ > 0 are the fixed error parameters satisfying
β = κξ/12.

We leave the proof of Lemma 4 in Appendix D for a more self-contained analysis. The complexity
BPPNP is known to be inside the finite level of PH, i.e., BPPNP ⊆ PH. Also, by Toda’s theorem [39],
PH problems can be solved given the ability to solve any #P problem, i.e., BPPNP ⊆ PH ⊆
P#P. If finding the average-case solution of output probabilities of sampler S is #P-hard, then
P#P ⊆ BPPNPS

. Therefore, if an efficient classical algorithm exists that can simulate S, then
P#P ⊆ BPPNP which implies the collapse of PH. Consequently, under the assumption of the
non-collapse of the PH, there is no efficient classical algorithm capable of simulating S.

Based on the above arguments, we show that for the case that allowed additive imprecision of
Theorem 4 for the hardness can be improved, then it is classically hard to simulate shallow-depth
boson sampling within a constant total variation distance.
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Theorem 5. Suppose that the allowed additive imprecision for the problem in Theorem 4 to be
#P-hard can be improved to ǫ = 2−(γ−1)N logN−O(N). Then the efficient classical simulation of
approximate boson sampler S with respect to circuits from the shallow architecture A = (BB∗)q≥2

implies the collapse of PH.

Proof. We establish a reduction from the problem in Theorem 4 with allowed additive error
ǫ = 2−(γ−1)N logN−O(N) to the problem in Lemma 4. Let O be an oracle that solves the problem in
Lemma 4, i.e., on input a circuit C and a randomly chosen collision-free outcome s ∼ GM,N ,

O outputs an estimate of output probability ps(C) up to additive imprecision κ
(M
N

)−1
, with

probability at least 1− ξ over outcomes for any circuit. For convenience, we refer to the outcomes

which O estimates with error larger than κ
(M
N

)−1
as bad outcomes, such that the portion of bad

outcomes over possible collision-free outcomes is at most ξ for any circuit.

For the randomly chosen circuit input, bad outcomes can vary with the circuit instances, as the
sampler S has the freedom to choose its error distribution according to the input circuit. However,
no matter how the bad outcomes vary with circuit instances, O succeeds at least 1 − ξ

η fraction
over circuit instances for at least 1 − η fraction of the outcomes, for any η satisfying ξ < η < 1.
Otherwise, the failure probability over outcomes and circuits would exceed ξ, which contradicts
the proposition that the success probability of O is at least 1 − ξ over randomly chosen outcomes
and circuits. As the above argument holds for any random circuit families, we choose the random
circuit distribution as HA with the shallow architecture A = (BB∗)q≥2.

To sum up, on input a random circuit H ∼ HA and a random outcome s ∼ GM,N , the oracle O

estimates the output probability ps(H) up to imprecision κ
(M
N

)−1
, with probability at least 1 − ξ

η
over the choice of H for at least 1 − η over the choice of s. Here, the additive imprecision can be
bounded as

κ

(

M

N

)−1

= κ
N !(M −N)!

M !
(10)

= 2−(γ−1)N logN−O(N), (11)

for constant β and so as κ, where we used the relation M = c0N
γ with a constant c0 and γ ≥ 1.

By setting η and ξ small constant satisfying η + ξ
η < 1

4 , we can solve the problem in Theorem 4

up to additive imprecision ǫ = 2−(γ−1)N logN−O(N) using the oracle O. Hence, assuming that
the above problem is #P-hard under BPPNP reduction, we can obtain the complexity-theoretical
relation P#P ⊆ BPPNPS

, which implies the collapse of PH if S with respect to shallow-depth circuit
architecture (BB∗)q≥2 can be done in classical polynomial time. This completes the proof.

VI. CLASSICAL SIMULATION HARDNESS OF SHALLOW-DEPTH GAUSSIAN

BOSON SAMPLING

In this section, we show that our hardness results of the shallow-depth boson sampling can be
generalized to the Gaussian boson sampling scheme [2]. Our specific setup for the Gaussian boson
sampling is as follows. Let the total mode number M of the circuit be a power of 2, and now
the input state is an M product of single-mode squeezed vacuum (SMSV) state |SMSV〉⊗M with
equal squeezing parameter r and equal squeezing direction. Also, let us define the output mean
photon number as an integer N (i.e., N = M sinh2 r) where M and N are polynomially related as
M = c1N

γ for a constant c1 and γ ≥ 1. We define qs(C) as an output probability of the Gaussian
boson sampling, for an N photon outcome s from an M mode linear optical circuit matrix C on
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input M SMSV states. For collision-free outcome s, qs(C) can be expressed as [2]

qs(C) =
∣

∣

∣
〈s| Û(C) |SMSV〉⊗M

∣

∣

∣

2
=

tanhN r

coshM r
|Haf((CCT )s)|2, (12)

where |s〉 is an M -mode Fock state corresponding to the outcome s, Û(C) is a unitary operator
corresponding to the circuit C, and (CCT )s is an N by N matrix obtained by taking si copies of
the ith row and column of the matrix CCT .

Using the above settings, we first prove the worst-case hardness of Gaussian boson sampling for
a fixed outcome s, with the shallow-depth circuit architecture BB∗.

Theorem 6. Approximating the output probability qs0(C) of Gaussian boson sampling to within

additive error 2−
γ−1

2
N logN−O(N) for any C over linear optical circuit architecture BB∗ is #P-hard

in the worst case.

Proof. We establish a reduction from the worst-case hardness of boson sampling in Theorem 3 to
the problem in Theorem 6. Let ps0(C0) be the output probability of a fixed input and output s0 of
boson sampling in Theorem 3, for mode number M0, photon number N0, and the circuit C0 in M0

mode circuit architecture BB∗. In the following, we show that ps0(C0) can be efficiently reduced to
the output probability qs(C) of Gaussian boson sampling, for mode number M = 2M0 and mean
photon number N = 2N0, with output s and circuit C determined by s0 and C0 each.

Our strategy is to employ the scheme in Ref. [40], which used M0 product of equally squeezed
two-mode squeezed vacuum (TMSV) state as an input state to perform M0 mode boson sampling
task. Specifically, a single TMSV state with squeezing parameter r can be represented as

|TMSV〉 =
1

cosh r

∞
∑

n=0

tanhn r |n〉 |n〉 , (13)

and thus M0 product of the TMSV state is

|TMSV〉⊗M0 =
1

coshM0 r

(

∞
∑

n=0

tanhn r |n〉(1) |n〉(2)

)⊗M0

=
1

coshM0 r

∞
∑

n=0

tanhn r
∑

sn

|sn〉(1) |sn〉(2) ,

(14)

where the summation of sn is over all possible configurations of Fock state with a total M0 mode
and n photon.

For each mode in the given M0 mode circuit C0, one-half of the TMSV state (i.e., subscript (2)
in Eq. (14)) is input into it, and the other half of each state (i.e., subscript (1) in Eq. (14)) is sent
directly to a photon counter. By setting each |sin〉 and |sout〉 as a total M0 mode and total N0

photon Fock state, the output probability can be represented as

∣

∣

∣
〈sin|(1) 〈sout|(2) Û(2)(C0) |TMSV〉⊗M0

∣

∣

∣

2
=

tanh2N0 r

cosh2M0 r

∣

∣

∣
〈sin| Û(C0) |sout〉

∣

∣

∣

2
, (15)

which is the output probability of M0 mode and N0 photon boson sampling in circuit C0, with an
additional multiplicative factor.

Note that two M0 mode BB∗ architecture can be embedded in the middle of an M = 2M0

mode BB∗ architecture. Accordingly, we define a circuit C in M mode BB∗ by embedding the
given M0 mode circuit C0 in one side of BB∗, setting gates located right in front of the input
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FIG. 3. Schematics of an mode number M = 16 circuit C in BB∗ which contains a given M0 = 8 mode
circuit C0 in BB∗

ports as balanced beam splitters, and setting the remaining gates as identity gates; we leave in
Fig. 3 an illustration of M = 16 mode circuit C for more clarity. Here, the input M SMSV states
with squeezing parameter r combined with the balanced beam splitters at the front becomes M0

TMSV states with squeezing parameter r. Therefore, our overall setup exactly follows the scheme
in Ref. [40], such that the first M0 mode is the photon counter sector to determine the input
configuration of boson sampling, and the last M0 mode is to simulate the boson sampling for the
given circuit C0.

We also define an M -dimensional vector s as a serial concatenation of two s0 vectors, so that
s represents N photon outcome over M modes. Then the output probabilities ps0(C0) and qs(C)
are related as

qs(C) =
∣

∣

∣
〈s| Û(C) |SMSV〉⊗M

∣

∣

∣

2

=
∣

∣

∣
〈s0|(1) 〈s0|(2) Û(2)(C0) |TMSV〉⊗M0

∣

∣

∣

2

=
tanh2N0 r

cosh2M0 r
ps0(C0).

(16)

Hence, approximating the output probability ps0(C0) can be reduced to approximating the
output probability qs(C) of Gaussian boson sampling, with a blowup in the additive imprecision.
The size of the additive imprecision blowup is

cosh2M0 r

tanh2N0 r
=

(

M + N

M

)M0+N0
(

M

N

)N0

= 2
γ−1

2
N logN+O(N), (17)

using the relation N = M sinh r and M ∝ Nγ . Since the allowed additive error for the worst-case

hardness of ps0(C0) is 2−O(N), the allowed additive error for the reduction is 2−O(N)2−
γ−1

2
N logN−O(N)

= 2−
γ−1

2
N logN−O(N). This completes the proof.

Using the results of Theorem 6 and the previous proof of the average-case hardness of boson
sampling in Theorem 4, it is straightforward to find the average-case hardness of Gaussian boson
sampling, for randomly chosen N photon outcomes s ∼ GM,N and randomly chosen circuits U ∼ HA

in shallow-depth architecture A = (BB∗)q≥2.
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Theorem 7. The following problem is #P-hard under a BPPNP reduction: for any constant δ, η ≥
0 with δ+η < 1

4 , on input a random circuit U ∼ HA with A = (BB∗)q≥2 and a random outcome s ∼
GM,N , compute the output probability qs(U) of Gaussian boson sampling within additive imprecision

ǫ = 2−O(Nγ+1(logN)2), with probability at least 1− δ over the choice of U for at least 1− η over the
choice of s.

Proof. The procedure is the same as the proof of Theorem 4, namely, establishing a worst-to-
average-case reduction from the problem in Theorem 6 to the problem in Theorem 7. The only
different part for the Gaussian boson sampling case is the functional form of the output probability
qs(U(θ)) parameterized by θ. Hence, we show that qs(U(θ)) can also be represented as a degree
(4mN, 4mN) rational function in θ, the same degree as the boson sampling case in Lemma 3.

From Eq. (12), the output probability qs(U(θ)) has the form of

qs(U(θ)) = tanhN r sechM r

∣

∣

∣

∣

∣

∣

∑

µ∈PMP

N/2
∏

j=1

[

(U(θ)U(θ)T )s
]

µ(2j−1),µ(2j)

∣

∣

∣

∣

∣

∣

2

, (18)

where µ is along all possible perfect matching permutations over N modes. From the proof of
Lemma 3, using reduction to the common denominator for all of the m = qM logM gates, [U(θ)]j,k
can be represented as (2m, 2m) rational function in θ with the common denominator

∏m
i=1 qi(θ).

Using this fact, one can easily check that
∏N/2

j=1

[

(U(θ)U(θ)T )s
]

µ(2j−1),µ(2j)
can be represented as

(2mN, 2mN) rational function in θ, with the common denominator [
∏m

i=1 qi(θ)]N which does not

change with µ. Therefore, the output probability can be represented as qs(U(θ)) = P (θ)
Q(θ) , with each

Q(θ) = [
∏m

i=1 |qi(θ)|2]N and P (θ) a degree 4mN polynomial function in θ.
Given that qs(U(θ)) can be represented as a degree (4mN, 4mN) rational function with the

same denominator Q(θ) = [
∏m

i=1 |qi(θ)|2]N from the boson sampling case in Lemma 3, we can
repeat all the steps identically to the proof of Theorem 4 and obtain the same result.

VII. EXTENSION OF HARDNESS RESULTS FOR LOSSY ENVIRONMENTS

In this section, we generalize our hardness results for lossy environments, namely, shallow-
depth linear optical circuits suffering from photon loss channels after each gate implementation.
The reason we consider such a noise channel is that photon loss is indeed a major source of error in
optical systems [4–7]. Also, photon loss ruins the classical intractability of boson sampling, as there
exist many efficient classical algorithms that can simulate lossy boson sampling within a constant
total variation distance [12–14]. Therefore, we mainly deal with the photon loss error here; our
goal is to provide evidence for the hardness of the approximate simulation of boson sampling in
lossy shallow circuits within total variation distance error. For simplicity, we do not consider any
photon gain error here, such as thermal radiation noise subjected to the circuits.

To proceed, we start with a brief review of the results presented by Ref. [41], which shows
the hardness of simulating noisy quantum circuits. Specifically, one can simulate a noiseless
circuit using a larger noisy circuit up to the desired imprecision, by establishing error-detecting
code in the noisy circuit and post-selecting null syndrome measurements. Therefore, given the
probability to post-select the no-error syndromes, one can approximate the output probability of
the noiseless circuit from the output probability of the noisy circuit. Based on this argument,
Ref. [21] demonstrates the average-case hardness of approximating output probabilities of noisy
quantum circuits, under some plausible assumptions of the noise model. This result gives evidence
of the approximate simulation hardness of noisy quantum circuits, within total variation distance
error.
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The main strategy of the above hardness results is approximating ideal output probabilities by
post-selecting error-free results from noisy circuits. Here, we can directly apply their strategy to our
case, i.e., lossy shallow-depth linear optical circuits. The crucial observation is that considering
photon loss error on boson sampling, the error syndrome is the output photon number itself .
Specifically, if the output photon number is the same as the input photon number, this implies
that no loss occurred throughout the circuit. Therefore, by post-selecting the event that the
measured output photon number is the same as the input photon number, we can infer ideal
output probabilities.

For a more detailed analysis, we set the loss model as follows. Let the photon loss model N be
local and stochastic. Specifically, N is a set of loss channels {Ni}

l
i=1, such that after each unitary

gate is applied, loss channel Ni acts on each mode participated in the unitary gate. Hence, the
number of loss channels is l = O(m) for gate number m in a given circuit architecture. We can
decompose each noise channel Ni as follows:

Ni = (1 − ρi)I + ρiEi, (19)

where I is identity, Ei is an CPTP map representing photon loss, and ρi is a loss rate for each
channel satisfying ρi ≤ ρ for a constant ρ. The validity of such modeling for photon loss channel
is represented in [3, 12].

To simplify, we assume that we know a priori each error rate ρi for all i ∈ [l], and the noise
model N is fixed so that it does not change with random circuit instances. Then we can obtain
the hardness of approximating output probabilities of lossy shallow circuits, from our previous
hardness proposals. To do so, let ps(C,N ) be the output probability of N photon outcome s from
a M mode linear optical circuit C which undergoes loss model N we set. By post-selecting ‘no
loss event’, which can be accomplished by counting the output photon number, the ideal output
probability ps(C) can be inferred from ps(C,N ) by

ps(C) =
ps(C,N )

Pr[‘no loss event’]
. (20)

From Eq. (19), the probability of ‘no loss event’ is
∏l

i=1(1−ρi), which can be efficiently calculated.
This implies that approximating ps(C,N ) can be reduced from approximating ps(C), with at most
Pr[‘no loss event’]−1 =

∏l
i=1(1 − ρi)

−1 ≤ (1 − ρ)−l = 2O(ρm) blowup in the additive imprecision.

Given Eq. (20), we can repeat the same steps from the previous hardness arguments, for the
lossy shallow-depth boson sampling; the only difference is the imprecision blowup by 2O(ρm). For
our shallow-depth architecture (BB∗)q, the gate number m is qM logM , so the size of imprecision
blowup is 2O(Nγ logN) in our case. Such imprecision blowup does not affect the allowed additive
accuracy ǫ = 2−O(Nγ+1(logN)2) for our average-case hardness result. Based on the arguments so far,
the following corollary is straightforward.

Corollary 1. Suppose we have the photon loss model N with each loss rate ρi ≤ ρ for a constant ρ.
Then the following problem is #P-hard under a BPPNP reduction: for any constant δ, η ≥ 0 with
δ+η < 1

4 , on input a random circuit U ∼ HA with A = (BB∗)q≥2 and a random outcome s ∼ GM,N ,

compute the lossy output probability ps(U,N ) within additive imprecision ǫ = 2−O(Nγ+1(logN)2), with
probability at least 1 − δ over the choice of U for at least 1 − η over the choice of s.

We remark that for our noise model, the imprecision blowup grows exponentially with the gate
number m. Therefore, shallow-depth circuits can be more advantageous in this perspective, since
they are likely to have less gate number and thus have small imprecision blowup. For example,
the current hardness results are based on M by N submatrices of M -dimensional Haar random
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unitaries, and the implementation of such matrices requires gate number m = Ω(Nγ+1). This
arouses the imprecision blowup at least 2O(Nγ+1), which restricts the allowed additive error for the
average-case hardness at most 2−O(Nγ+1).

VIII. CONCLUDING REMARKS

Here we provide a few remarks about our overall results and related open questions.
1. Our result demonstrates the average-case hardness for additive imprecision 2−O(Nγ+1(logN)2).

Indeed, there still remains a gap to the desired additive imprecision for the simulation hardness
2−(γ−1)N logN−O(N) in Theorem 5. Hence, closing this gap would be an ultimate challenge to the
full achievement of classical intractability; more advanced proof techniques are required to reduce
this gap. Here, one can take the following approach: finite-size numerical experiments suggest that
the output distributions of local random circuits in the butterfly circuit architecture (Definition 2)
are close enough to those of global Haar random circuits [37]. Accordingly, if one can analytically
prove that the distance between those output distributions is close enough, we can directly obtain
a better imprecision level 2−O(N logN) by results in [3, 21, 22], which employed the global Haar
random circuits.

Another possible approach for reducing the imprecision gap is to perturb a random circuit matrix
in a different way from the Cayley transform (Definition 6), i.e., as depicted in [22]. Specifically,
instead of perturbing each random gate, one can perturb a submatrix X of our random circuit
matrix U with a worst-case matrix A as X(θ) = (1 − θ)X + θA for θ ∈ [0, 1]. Here, a degree
of polynomial |Per(X(θ))|2 is 2N , which is lower than ours derived by the Cayley transform.
Therefore, if one can prove that X(θ) is distributed similarly to X for small θ, we expect that we can
also obtain a better imprecision level by using the same interpolation method. However, the above
approach requires one to figure out a global circuit distribution generated by the convolution of
local circuit distributions. Although we believe that this problem can be resolved using techniques
from random matrix theories, we have not yet developed a complete analysis. Hence, we leave it
as an open question.

2. Another important challenge that should be addressed is to find the classical simulation
hardness of noisy boson sampling, for general types of physical noise beyond the photon loss noise
model we have dealt with so far. To do so, as described in [3, 21, 41], employing the threshold
theorem would be a viable choice for this goal. Specifically, the threshold theorem for general types
of noise in boson sampling setups has to be developed. This requires an efficient error detection
code for general types of error using linear optical elements, for any multi-mode Fock state or
Gaussian state input. However, to the best of our knowledge, such an error detection code does
not exist. Hence, constructing this error detection code would be a crucial step toward the hardness
of noisy boson sampling, which will contribute to a more noise-tolerant demonstration of quantum
advantage with boson sampling. We leave this problem as another open question.
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Appendix A: Previous foundations: Average-case hardness of boson sampling

In this appendix, we argue the existing proof technique employed for the simulation hardness
of boson sampling, specifically in the context of the approximate simulation within total variation
distance error [1]. The current state-of-the-art proof technique for the hardness of sampling
problems like boson sampling essentially builds upon Stockmeyer’s algorithm about approximate
counting [38]. Specifically, given a classical sampler that outputs a sample from a given output
distribution, Stockmeyer’s algorithm enables one to multiplicatively estimate a fixed output
probability of the sampler, within complexity class BPPNP.

Now suppose there exists an approximate classical sampler capable of simulating ideal boson
sampling up to total variation distance error, as in Definition 8. This approximate sampler can have
a large additive error for a fixed output probability, but have a comparably small additive error
for most of the output probabilities due to Markov’s inequality. Then, Stockmeyer’s algorithm,
combined with the approximate sampler, can well approximate the ideal output probability of
boson sampling within a certain additive error, with a high probability over randomly chosen
outcomes (See Lemma 4 for more details). For convenience, let us refer to this computational task
as an average-case approximation problem of boson sampling. If the complexity of the average-case
approximation problem is outside the Polynomial Hierarchy (PH), it implies the collapse of PH,
since the complexity of Stockmeyer’s algorithm is indeed inside the finite level of PH.

Here, average-case hardness comes into the proof of the classical simulation hardness argument,
which means that approximating the ideal output probability of boson sampling with high
probability over randomly chosen outcomes is #P-hard. More precisely, if the average-case
hardness holds up to the imprecision level of the average-case approximation problem, this comes
down to the classical simulation hardness of the approximate sampling unless PH collapses, by the
complexity-theoretical foundation PH ⊆ P#P [39].

Moreover, by choosing random circuit instances that have symmetry over the outcomes, one
can reduce the average-case instances for the hardness from outcome instances to circuit instances,
which is called the hiding property. For the boson sampling case, global Haar random unitary (i.e.,
unitary matrix drawn from Haar measure on U(M), for mode number M) satisfies this condition.
In detail, instead of randomly choosing the outcome, we can fix the outcome by applying a random
permutation to the global Haar random unitary distribution, which is still Haar distributed from
its symmetric property. This hiding property plays an important role in the current proofs of the
average-case hardness, as it enables one to establish worst-to-average-case reduction. Specifically,
as the output probability of boson sampling can be written as a low-degree polynomial of input
circuit (matrix) values, it allows one to infer the value of a worst-case instance from the output
probability of many average-case circuit instances. Hence, the average-case hardness argument for
boson sampling is typically used in this context, i.e., average-case hardness over random circuit
instances, for a fixed outcome [1, 3, 21].

Accordingly, the crucial step for the classical simulation hardness of approximate sampling is
to prove the average-case hardness for the desired imprecision level. While there have been many
impressive results about the average-case hardness of boson sampling [1, 3, 21, 22], the average-
case hardness for the desired imprecision level is not yet fully demonstrated. Still, there exists a
gap between the imprecision level of average-case hardness in the strongest existing results and
the imprecision level of average-case approximation problem. Hence, closing this imprecision gap
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remains the ultimate challenge for the fully theoretically guaranteed computational advantage of
approximate boson sampling.

Appendix B: Proof of Theorem 3

The proof of Theorem 3 can be greatly simplified by introducing the following two Lemmas.

Lemma 5 (Brod [25], revised). For an arbitrary given poly-sized n-qubit quantum circuit Q, there
exists a constant depth linear optical circuit C such that for M ≥ 2N and N = poly(n),

| 〈I|Û(C)|I〉 |2 = cQ| 〈0|
⊗nQ |0〉⊗n |2, (B1)

where cQ is a Q dependent constant which can be efficiently computed, Û(C) is a unitary operator
corresponding to the circuit C, and |I〉 is an M -mode Fock state composed of N single photon
states and vacuum states for the rest modes.

Proof. We revise the results by [25], for a more rigorous analysis of the allowed additive imprecision
level for the worst-case hardness of shallow-depth boson sampling. Ref. [25] proposed that certain
4-depth linear-optical circuits with post-selection can simulate universal quantum computing.
Specifically, to simulate any poly-sized quantum circuit Q on n qubits, there exists a measurement-
based quantum computation (MBQC) scheme using constant depth brickwork graph state of
maximally poly(n) qubits [42–44]. The corresponding scheme can also be implemented in a linear
optical system via KLM scheme [45] with post-selection, using N = poly(n) number of single
photon states over M ≥ 2N modes (requirements for the dual-rail encoding), which can simulate
the quantum circuit composed of O(N) number of gates.

Therefore, given the circuit in [25] and an appropriate dual-rail encoded state |I〉, the output
probability of any quantum circuit Q can be represented as Eq. (B1), where cQ denotes the product
of post-selection probabilities for gate implementations. To compute cQ, we need to figure out the
required number of gates to implement the circuit Q and their probabilities to be post-selected.
More precisely, from [25], post-selection occurs for two cases: (i) for the CZ gate to implement the
brickwork graph state, and (ii) for the gate set {CX, T, H} (i.e., universal set of gates) which can
be implemented by measurement of the graph state.

Hence, cQ can be expressed as

cQ =
∏

k∈{CZ, CX, T, H}

pΓk

k , (B2)

where pk denotes post-selection probability of k gate (e.g., pCZ is 2/27 in [46]), and Γk denotes the
number of k gate to implement the circuit Q. By counting the number of each gate to implement
the circuit Q, cQ can be computed efficiently.

Lemma 6 (Kondo et al [34]). It is #P-hard to compute | 〈0|⊗nQ |0〉⊗n |2 for an arbitrary given
quantum circuit Q within the additive error less than 2−2n.

Combining the above results, now we prove the worst-case hardness of output probability
approximation of boson sampling in the shallow-depth circuit architecture BB∗, for fixed input and
output corresponding to the |I〉 in Lemma 5. By Lemma 6, approximating output probabilities of
worst-case n-qubit BQP circuits within additive error 2−2n is #P-hard. Also, one can easily check
that the constant depth linear-optical circuit proposed by [25] can be efficiently embedded in the
architecture BB∗. Hence, by Lemma 5, approximating ps(C) of any C over BB∗, for both input
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and output s corresponding to the |I〉, can be reduced from approximating output probabilities
of any BQP circuits, with c−1

Q blowup in the additive imprecision. Since the post-selection occurs

O(N) times to implement n-qubit BQP circuit by Lemma 5, cQ has its amplitude cQ = 2−O(N),
and thus the allowed additive error for the reduction is 2−(2n+O(N)) = 2−O(N).

Appendix C: Proof of Theorem 4

In this proof, we establish the worst-to-average-case reduction, from the problem in Theorem 3
to the problem in Theorem 4. Let O be an oracle that solves the problem in Theorem 4, i.e., on
input s ∼ GM,N and U ∼ HA with A = (BB∗)q for fixed q ≥ 2, the oracle outputs ps(U) within
additive error ǫ for high constant probability over U and s. Let C0 be the worst-case circuit in
(BB∗)q0 with q0 ≥ 1, and s0 the fixed collision-free output given in Theorem 3. In the following, we

show that approximating ps0(C0) to within additive error 2−O(N) (i.e., Theorem 3) is in BPPNPO

,
which implies that the average-case approximation of ps(U) to within ǫ is #P-hard under BPPNP

reduction.

Our main idea for the reduction from the fixed outcome s0 to the randomly chosen outcome
s ∼ GM,N is to permute the worst-case circuit in correspondence with the random outcome s.
Specifically, we first sample permutation matrix P uniformly over all possible M mode permutation,
where the sampled P can be efficiently implemented in the circuit architecture BB∗ from Lemma 1.
Let sP be the permuted outcome Ps0 by the sampled permutation P , where one can easily check
that sP ∼ GM,N . Also, let CP be the permuted circuit PC0, where now the circuit CP is in
(BB∗)q0+1. In this case, from Eq. (1), the output probability of the permuted outcome from the
permuted circuit is identical to the worst-case output probability, i.e., psP (CP ) = ps0(C0). From
now on, we set psP (CP ) as a worst-case output probability, and our new goal is to estimate psP (CP )
given access to the oracle O.

For the reduction from the worst-case circuit CP to the average-case circuits, we sample
random circuit U(θ) in (BB∗)q with q = q0 + 1, by sampling independently distributed local Haar
random gate {Hi}

m
i=1 for gate number m = qM logM , perturbing them by the Cayley transform

parameterized by θ and multiplying the worst-case circuit gates from CP as in Definition 7. Then,
U(θ) follows the distribution HCP

A,θ, with A = (BB∗)q, and U(1) = CP .

Given randomly chosen outcome sP ∼ GM,N and circuit U(θ) ∼ HCP

A,θ, we input them in the
oracle O. For at least 1 − η over sP , the failure probability of O is at most

Pr
U(θ)∼H

CP

A,θ

[|O(sP , U(θ)) − psP (U(θ))| > ǫ] < δ + DTV(HCP

A,θ,HA), (C1)

where DTV denotes total variation distance. This is evident as we can interpret the total variation
distance as the supremum over events of the difference in probabilities of those events (Viz., circuits
corresponding to the failure) [32]. By Lemma 2, DTV(HCP

A,θ,HA) is O(mθ). By setting 0 ≤ θ ≤ ∆

with ∆ = O(m−1), we can upper bound DTV(HCP

A,θ,HA) by an arbitrarily small constant.

By Lemma 3, psP (U(θ)) is a (4mN, 4mN) degree rational function P (θ)
Q(θ) , where the denominator

is given as Q(θ) =
[
∏m

i=1 |qi(θ)|2
]N

. We note that Q(θ) can be computed in Θ(m) time, as it only
depends on the constant number of eigenvalues of local gate matrices (i.e., φj values in Eq. (4) for
each local gate matrix Hi). Also, given that θ ≤ ∆ = O(m−1), Q(θ) is very close to the unity, as
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Q(θ) ≥ 1 and

Q(θ) =

[

m
∏

i=1

|qi(θ)|2

]N

=





m
∏

i=1

2
∏

j=1

|(1 + iθei
φi,j
2 sin

φi,j

2
)|2





N

(C2)

≤





m
∏

i=1

2
∏

j=1

(1 + θ2)





N

≤ (1 + O(m−2))2mN

= 1 + O(Nm−1),

where φi,j denotes the phase of the jth eigenvalue of the ith gate.
Therefore, psP (U(θ)) is very close to the degree d = 4mN polynomial P (θ) in θ ∈ [0,∆], which

allows us to use polynomial interpolation technique for P (θ). Specifically, we obtain estimations
of P (θ) for different values of θ ∈ [0,∆] by querying the oracle O, use polynomial interpolation
for given P (θ) values to estimate P (1), and infer the value psP (U(1)) = psP (CP ) by multiplying
Q(1)−1. However, Q(1)−1 becomes arbitrarily large for the case that even a single φi,j in Eq. (C2)
is near ±π, which will arbitrarily enlarge the imprecision of the approximation of psP (U(1)). To
avoid this issue, we employ the strategy from Ref. [21], which only considers the case that all φi,j

values of randomly chosen gates {Hi}
m
i=1 are in [−π+ζ, π−ζ], and regards the other case as failure.

This happens with probability at least 1 − O(mζ) over the random circuit instances. By setting
ζ = O(m−1), we can make O(mζ) arbitrarily small constant, and as a result, we can upper bound
Q(1)−1 (see Eq. (C6) below) with high probability over random circuit instances.

Now the problem reduces to approximating degree d = 4mN polynomial P (θ) with the value
O(sP , U(θ))Q(θ) in θ ∈ [0,∆] within additive error smaller than ǫ(1 + O(Nm−1)) ≈ ǫ; such
approximations will later be used for the estimation of the value P (1) via polynomial interpolation
technique. The failure of O depends on the outcome sP ∼ GM,N whose failure probability is at

most η, and the circuit U(θ) ∼ HCP

A,θ whose failure probability is at most δ+O(m∆) from Eq. (C1).
Also, the probability that at least one φi,j of randomly chosen gates {Hi}

m
i=1 is outside of the regime

[−π+ ζ, π− ζ] is at most O(mζ). Putting everything together and applying a simple union bound,
the total failure probability of the approximation of P (θ) is at most

Pr[|O(sP , U(θ))Q(θ) − P (θ)| > ǫ] < η + δ + O(m∆) + O(mζ)

≤ δ′,
(C3)

where δ′ is an upper bound of η + δ + O(m∆) + O(mζ), and given η + δ < 1
4 , we can make δ′ < 1

4
by setting O(m∆) and O(mζ) arbitrary small constants.

Let {θi}
O(d2)
i=1 be the set of equally spaced points in the interval [0,∆]. For each θi, we obtain

the unitary matrix U(θi) using the same random gate {Hi}
m
i=1 and worst-case circuit CP . Let

yi = O(sP , U(θi))Q(θi). By Eq. (C3), each set of points (θi, yi) satisfies

Pr[|yi − P (θi)| > ǫ] ≤ δ′ <
1

4
. (C4)

By using the interpolation algorithm introduced in Theorem 8, we can obtain the additive
approximation of P (1) as p̃ with an access to NP oracle, such that

Pr
[

|p̃− P (1)| > ǫ′
]

<
1

3
, (C5)
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where ǫ′ = ǫe−d log∆ = ǫ2O(Nγ+1(logN)2) using d = 4mN and m = qM logM . Note that the failure
probability in Eq. (C5) can be arbitrarily reduced by taking a polynomial number of trials, and thus
we can obtain the estimated value P (1) within additive error ǫ′ with arbitrarily high probability.

From the estimated value P (1), we can infer the worst-case output probability value psP (U(1)) =
P (1)/Q(1). As the value of Q(1) depends on the values φi,j in Eq. (C2), the φi,j independent lower
bound of Q(1) is required to set an upper bound of the additive imprecision of psP (U(1)). Since
we only consider the case that all of φi,j values are in [−π + ζ, π − ζ] with ζ = O(m−1) for all
randomly chosen gates {Hi}

m
i=1, we have

Q(1) =





m
∏

i=1

2
∏

j=1

|(1 + iei
φi,j
2 sin

φi,j

2
)|2





N

=





m
∏

i=1

2
∏

j=1

(

1 − sin2 φi,j

2

)





N

≥





m
∏

i=1

2
∏

j=1

(

1 − sin2 π − ζ

2

)





N

=
(

O(m−2)
)2mN

= 22mN logO(m−2).

(C6)

Therefore, the total additive error for estimating psP (U(1)) is bounded by ǫ′2−2mN logO(m−2) =

ǫ2O(Nγ+1(logN)2). By setting ǫ = 2−O(Nγ+1(logN)2)2−O(N) = 2−O(Nγ+1(logN)2), we can estimate the
worst-case output probability value psP (U(1)) = psP (CP ) = ps0(C0) within additive error 2−O(N),
and the whole reduction process is in BPPNP. This completes the proof.

For the polynomial interpolation, we employ the Robust Berlekamp-Welch algorithm recently
proposed in Ref. [21].

Theorem 8 (Robust Berlekamp-Welch [21]). Let P (x) be a degree d polynomial in x. Suppose
there is a set of points D = {(xi, yi)} such that |D| = O(d2) and {xi} is equally spaced in the
interval [0,∆]. Suppose also that each points (xi, yi) satisfies

Pr[|yi − P (xi)| ≥ ǫ] ≤ δ, (C7)

with δ < 1
4 . Then there exists a PNP algorithm that takes input D and outputs p̃ such that

|p̃− P (1)| ≤ ǫe−d log∆, (C8)

with success probability at least 2
3 .

Appendix D: Proof of Lemma 4

Let p̄s(C) be the output probability distribution from the approximate sampler S with the given
linear optical circuit C. Also, let CM,N be the set of collision-free outcomes of boson sampling, for
mode number M and photon number N . Then p̄s(C) satisfies

E
s∼GM,N

[|p̄s(C) − ps(C)|] =
1
(M
N

)

∑

s∈CM,N

|p̄s(C) − ps(C)| ≤
2β
(M
N

) . (D1)
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Using Eq. (D1) and Markov’s inequality, p̄s(C) satisfies

Pr
s∼GM,N

[

|p̄s(C) − ps(C)| ≥
βk
(M
N

)

]

≤
2

k
(D2)

for all k > 2. Also, using Stockmeyer’s algorithm [38] whose complexity is in BPPNP, obtaining
the estimate p̃s(C) of p̄s(C) satisfying

Pr [|p̃s(C) − p̄s(C)| ≥ αp̄s(C)] ≤
1

2N
, (D3)

in polynomial time in N and α−1 is in BPPNPS

. Using Es∼GM,N
[p̄s(C)] =

(M
N

)−1∑

s∈CM,N
p̄s(C) ≤

(M
N

)−1
,

Pr

[

|p̃s(C) − p̄s(C)| ≥
αl
(

M
N

)

]

≤ Pr

[

p̄s(C) ≥
l
(

M
N

)

]

+ Pr [|p̃s(C) − p̄s(C)| ≥ αp̄s(C)] (D4)

≤
1

l
+

1

2N
, (D5)

for all l > 1. Putting all together, by applying a triangular inequality, finding an average-case
approximation p̃s(C) of ps(C) satisfying

Pr

[

|p̃s(C) − ps(C)| ≥
βk + αl
(M
N

)

]

≤
2

k
+

1

l
+

1

2N
(D6)

is in BPPNPS

. Let κ and ξ be fixed error parameters such that k/2 = l = 3/ξ and β = κξ/12 = α/2.
As βk + αl = κ and 2

k + 1
l + 1

2N
= 2

3ξ + 1
2N

≤ ξ, we finally obtain the Eq. (9).
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