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Recent progress in the study of many-body localization (MBL) in strongly disordered interacting spin chains
has emphasized the importance of distinguishing finite time prethermal behavior from long time and large
volume asymptotics. We re-examine a reported non-ergodic extended (NEE) regime in quasiperiodically
disordered chains from this perspective, and propose that this regime is a prethermal feature. Indeed, we argue
that the NEE regime may be identified through a change in the functional form of spin-spin autocorrelation
functions, demonstrating that the NEE regime is distinguishable within intermediate-time dynamics. This is in
contrast with existing conjectures relating the NEE regime to the presence of an asymptotic mobility edge in
the single-particle spectrum. Thus, we propose a mechanism for the formation of an NEE regime which does
not rely on asymptotic properties of the spin chain. Namely, we propose that the NEE regime emerges due to
regularly spaced deep wells in the disorder potential. The highly detuned sites suppress spin transport across
the system, effectively cutting the chain, and producing a separation of time scales between the spreading of
different operators. To support this proposal, we show that the NEE phenomenology also occurs in random
models with deep wells but with no mobility edges, and does not occur in quasiperiodic models with mobility
edges but with no deep wells. Our results support the broad conclusion that there is not a sharp distinction
between the dynamics of quasiperiodically and randomly disordered systems in the prethermal regime. More
specifically, we find that generic interacting quasiperiodic models do not have stable intermediate dynamical
phases arising from their single-particle mobility edges, and that NEE phenomenology in such models is
transient.

I. INTRODUCTION

Improved understanding of the instabilities of many-body
localization (MBL) with random disorder [1–10] have lead
to substantial revision of the accepted phase diagram for
strongly disordered spin chains [10–23]. There is no longer
consensus regarding the presence of an MBL critical point
at finite disorder strength [23], and it is clear that if such
a critical point does exist, it is at a much larger value of
the disorder strength than estimated prior to the last five
years [19, 20]. One of the key lessons from this recent body
of work is the important distinction between the asymptotic
(large volume and long time) behavior of an eventually-
thermalizing disordered chain and its prethermal behavior at
finite—but potentially extremely long—time scales [19, 22].

Much of the recent progress regarding the asymptotic
behavior of strongly disordered chains comes from analyzing
the effect of rare regions of low disorder [10, 19, 20, 24, 25].
In quasiperiodically disordered chains, such rare regions do
not occur. However, this does not preclude the existence
of some other, still unidentified, instability. While heuristic
arguments have been made for the stability of asymptotic
quasiperiodic MBL in one and two dimensions [26, 27], and
renormalization schemes predict critical exponents for the
MBL transition distinct from the random case [27–30], the
more detailed mathematical analysis of Ref. [9] cannot be
straightforwardly generalized to the quasiperiodic case.

On the other hand, it is not obvious that the prethermal
behavior of quasiperiodically disordered chains should be
distinct from random chains. Very generally, at small system
sizes, it should be very difficult to distinguish whether a
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sequence of L ≈ 20 local disorder potentials come from
a quasiperiodic sequence or a random one. Nonetheless,
several numerical studies at small system size have identified
unexpected features in interacting models with quasiperiodic
disorder, which have not been previously identified in random
models [31–35]. In particular, at intermediate disorder
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FIG. 1. Illustration of the non-ergodic extended (NEE) mechanism in
a fermionic chain. (a) The GPD potential has deep wells (green dots)
between typical segments (orange dots). The separating site between
the segments is highly detuned, so the chain can be approximated as
a similar system where each segment becomes a supersite (dashed
circle). (b) Due to the repulsive interaction, the effective interaction
between two supersites (right) is stronger than the hopping between
them (left), making the particle spreading timescale τparticle longer
than the information spreading timescale τinfo. (c) In finite-size or
finite-time simulations with maximum accessible timescale τfinite,
the system echibits MBL, NEE, or ETH behavior depending on the
relationship between the three time scales.
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strength and intermediate energy densities in the interacting
Ganeshan-Pixley-Das Sarma (GPD) model [36] it has been
observed that eigenstates are volume-law entangled while
eigenstate expectation values of local operators vary wildly
for consecutive eigenstates. That is, eigenstates are extended,
but fail to satisfy the eigenstate thermalization hypothesis
(ETH) [37–39]. This has been identified as a non-ergodic
extended (NEE) regime. Previous work has speculated that
the existence of this regime could be related to the presence
of a mobility edge in the single particle spectrum of the GPD
model [31, 33], or be a signature of an asymptotic many-body
mobility edge (MBME) [3, 31, 33, 40, 41]. (Though, note
that there are analytical arguments against the existence of
asymptotic MBMEs [42, 43].)

However, mobility edges are an asymptotic feature,
and numerics of the kind reported in Refs. [31–35] are
necessarily restricted to the prethermal regime. In this
article, we re-examine several quasiperiodically disordered
models, including the GPD model, from the perspective
of the prethermal regime. In particular, in Sec. III, we
analyze the decay of autocorrelation functions, and compare
their behavior to the predictions of the statistical Jacobi
approximation (SJA)—a technique developed in Ref. [22]
(also see Ref. [44]) to relate the statistics of many-body
resonances [16, 24, 45–48] to autocorrelation functions in the
prethermal regime (Sec. II). The SJA accurately accounts for
the behavior of the interacting Aubry-André (AA) model [49,
50], indicating that its thermalization at intermediate disorder
is controlled by a proliferation of successive resonances, much
like random models. However, the GPD model shows a
regime—qualitatively coinciding with previous estimates for
the position of the NEE regime—where the SJA fails to be
predictive, and autocorrelators decay with a distinct functional
form compared to the AA model and known random models.
We interpret this as a dynamical manifestation of the NEE
behavior.

Based on the appearance of NEE signatures well within
the prethermal regime, we propose a mechanism for the
formation of an NEE regime which does not rely on large
system sizes or long times (Sec. IV). Namely, we observe
that the GPD potential has approximately regularly spaced
deep wells which may effectively cut the chain (Fig. 1), and
demonstrate in a toy model that this can lead to a separation
of timescales between the spreading of different operators.
For instance, magnetization may spread much slower than
information in general spreads. At small system size, this
means that eigenstates will be volume law entangled, to
support the spread of information across the whole system,
but the expectation value of, say, the spin projection Sz

i in
different eigenstates can vary greatly, as this operator need
not have thermalized. This is precisely the phenomenology
originally used to identify the NEE regime [31].

To validate our explanation, we further investigate two
more models (Sec. V)—the t1–t2 model, which has a single-
particle mobility edge [51], and a model with random disorder
and regularly spaced deep wells, the single-particle sector
of which is localized at all energies. We refer to this as
the random wells model. In this case, we see that the

quasiperiodic t1–t2 model shows no NEE regime, while
the random wells model does, demonstrating that the NEE
regime is unrelated to the asymptotic behavior of the single
particle sector, and, indeed, does not rely on quasiperiodicity.
Our results support the broad conclusion that there is not
a sharp distinction between the prethermal dynamics of
quasiperiodically and randomly disordered spin chains.

Historically, the observation of the NEE regime [31–
35] (interpreted as an NEE phase) in the interacting GPD
model [36] hinted at a possible role of the SPME in dictating
interacting dynamics. This was supported by the observation
of three different dynamical regimes (MBL, NEE, ETH) in the
interacting GPD model, in contrast to just the two dynamical
regimes (MBL and ETH) observed in the extensively studied
interacting Anderson (random) model and interacting AA
model, which have no SPMEs. The putative existence of
an NEE phase (or equivalently an MBME associated with
the NEE transition) was even reported in an experiment
on a synthetically prepared interacting GPD model in cold
atoms [52]. (We note in this context that the GPD model has
often been called the generalized Aubry-André (GAA) model
in the literature. We find this nomenclature to be misleading
since there are many possible generalizations of the Aubry-
André model, such as the t1–t2 model [51], which have
very different properties compared to the GPD model.) By
contrast, cold atom experiments on a different generalization
of the AA model, closely related to the t1–t2 model, did not
decisively find any NEE phase in the interacting case [53],
although the corresponding noninteracting system showed the
SPME decisively [54]. Our current work takes on particular
significance in this context, establishing the putative NEE
phase of the interacting GPD model to be a prethermal
“effective phase” (that is, long lasting transient), which arises
from the specific details of the GPD model (its deep potential
wells) and not from any SPME or even quasiperiodicity in
the system. The fact that we find NEE features in the
random wells model, but do not find NEE features in the
quasiperiodic t1–t2 model clearly shows that the observed
NEE behavior is a peculiar—though highly interesting—
feature of the interacting GPD model. Our work also
conceptually combines all earlier work on the GPD model
into one unified scenario: the interacting GPD model has
nontrivial prethermal dynamics involving widely different
time scales, which produce the effective NEE behavior,
which is, however, a prethermal transient rather than anything
connected with the existence of a SPME in the noninteracting
GPD model.

The rest of this article is organized as follows. In Sec. II,
we briefly review the statistical Jacobi approximation (SJA);
in Sec. III we study the interacting AA and GPD models; in
Sec. IV we demonstrate that the NEE regime may arise due
to the presence of deep wells in the GPD model; in Sec. V
we study the quasiperiodic t1–t2 model and the random wells
model in the context of the NEE behavior; we conclude in
Sec. VI with a summary and discussions of future directions
of research. Two appendices complement the results in the
main text by providing the eigenstate properties of the random
wells model (Appendix A) and the GPD model with the next-
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nearest-neighbor hopping (Appendix B) as a verification of
our proposal.

II. THE STATISTICAL JACOBI APPROXIMATION

It has been proposed that the thermalization of randomly
disordered spin chains at intermediate disorder is controlled
by the proliferation of many-body resonances [13, 16,
22, 46–48]. Initial states slowly Rabi oscillate between
resonant macroscopically distinct spin configurations of
almost equal energy. Longer evolution times resolve finer
and finer successive resonances, which eventually lead to
thermalization. Refs. [22, 44] introduced the statistical Jacobi
approximation (SJA) to relate the proliferation of resonances
to the observable behavior of autocorrelation functions. The
SJA does not seem to rely on any particular feature of the
disorder potential, and Ref. [22] speculated that it would
continue to be predictive for spin chains with correlated
disorder, including quasiperiodic disorder.

The prediction of the SJA serves as our null hypothesis in
studying a potential non-ergodic extended regime. If the SJA
accurately predicts the behavior of autocorrelation functions,
then it is likely that thermalization is controlled by many-body
resonances, just as in other prethermal models. However,
if the SJA fails to be predictive, it is an indication that
thermalization proceeds through an alternative mechanism, or
potentially that the model is non-ergodic.

The SJA is based on the Jacobi algorithm [55], an iterative
algorithm for matrix diagonalization. In addition to obtaining
the exact eigenstates of the Hamiltonian, this algorithm
provides a way to extract a basis of near-eigenstates associated
to a finite time scale—the Jacobi basis. This makes it a
useful tool for the prethermal regime, as some control over the
statistical properties of the Jacobi basis can be maintained at
intermediate times, which allows the prediction of dynamical
observables.

For a Hamiltonian H represented as a matrix in a local
tensor product basis, the algorithm starts by finding the off-
diagonal element Hab (a ̸= b) with the largest absolute value,
diagonalizing the block

U†
(
Haa Hab

Hba Hbb

)
U =

(
H ′

aa 0
0 H ′

bb

)
(1)

and extending this to the entire H as

H ′ = (U† ⊕ I)H(U ⊕ I). (2)

This procedure is then repeated iteratively, so that H becomes
increasingly diagonal (that is,

∑
a ̸=b |Hab|2 decreases strictly

and converges to zero). If at some step |Hab| is much larger
than |Haa − Hbb|, the corresponding basis state at a and b
becomes resonant. That is, the new basis has

|a′⟩ ≈ |a⟩+ |b⟩√
2

, |b′⟩ ≈ |a⟩ − |b⟩√
2

. (3)

The quantity of interest in the SJA is the number density
of the resonant decimated elements w = |Hab|, which we

called the distribution of resonances ρres(w). Moreover, this
can be energy-resolved by targeting a specific energy E and
collecting only the decimated elements with either Haa or
Hbb close to E [44]. The distribution of resonances as a
function of w = |Hab| can be characterized by a power
law at intermediate timescales (that is, intermediate values of
w−1) [22],

ρres(w,E) ∝ w−1+θ(E), (4)

where θ(E) is called the resonance exponent.
Under some mild assumptions [22], the SJA then relates

ρres, and more specifically θ(E), to the functional form of
autocorrelation functions. In particular, the main observable
used in the numerical calculation of this paper, where the
system is a one-dimensional (1D) spin-1/2 chain, is the
energy-resolved spin-spin connected autocorrelator,

C(E, t) =
[
⟨ψE |Sz

L/2(t)S
z
L/2(0)|ψE⟩

]
−
[
⟨ψE |Sz

L/2(0)|ψE⟩
]2
, (5)

where L is the length of the chain, |ψE⟩ is a Haar-
random superposition of the 100 energy eigenstates with
energy closest to E, Sz

j (t) is the Heisenberg picture spin-
z operator on site j at time t, and square brackets indicates
an average over disorder and the states |ψE⟩. The term
[⟨ψE |Sz

L/2(0)|ψE⟩] coincides with the expectation value of
Sz
L/2 in a microcanonical shell around energy E, with the

average over Haar random states serving as a low variance
estimator of the trace [56].

The SJA predicts that C(E, t) is described by a stretched
exponential at intermediate timescales [22],

C(E, t) ≈ A(E) exp

[
−
(

t

τ(E)

)β(E)
]
, (6)

where τ(E) is the thermalization timescale and β(E) =
−θ(E) is the stretch exponent. We numerically calculate
C(E, t) by first obtaining the eigenstates closest to
E using the polynomially filtered exact diagonalization
(POLFED) algorithm [57], and then time evolving the
random superposition |ψE⟩, as well as Sz

L/2|ψE⟩ under
the Hamiltonian H using the Krylov subspace projection
method [58, 59]. The disconnected piece of C(E, t) can
then be computed for a particular disorder realization as
the matrix element (⟨ψE |eiHt)Sz

L/2(e
−iHtSz

L/2|ψE⟩). The
term ⟨ψE |Sz

L/2(0)|ψE⟩ can be computed from the initial
conditions.

After obtaining C(E, t), least-squares fitting is used to
estimate β(E) and τ(E). However, for a finite size system,
C(E, t) will approach a fixed nonzero value at large t,
and hence we add a constant shift B(E) as an additional
phenomenological parameter to fit C(E, t). This allows
us to fit the curve using a larger time range, which we
observe makes the fit more constrained, compensating for the
additional freedom of using an extra fit parameter.
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FIG. 2. The decay of the spin-spin connected autocorrelation
function C(t) of the AA and GPD models (Eqs. (7, 8) with α = 0
and α = −0.8 respectively) at various energy densities. Dashed
curves are the shifted stretched exponential fit of Eq. (6).

Either the failure of the stretched exponential fit, unphysical
fit parameters, or the deviation of β from the value of −θ
computed from the Jacobi algorithm indicates a failure of the
SJA. This failure may be an indication that the system is non-
ergodic.

III. THE GPD MODEL

The interacting GPD model [36] is a spin-1/2 Heisenberg
model

H =

L−1∑
j=1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 + Sz

j S
z
j+1

)
+W

L∑
j=1

hjS
z
j ,

(7)
with on-site quasiperiodic potential

hj =
cos(2πφj + ϕ)

1− α cos(2πφj + ϕ)
. (8)

Here, Sα
j is the spin-1/2 operator at site j along the axis

α, W is the disorder strength, the spin exchange amplitude
has been set to 1, φ = 1+

√
5

2 is the golden ratio, ϕ is an
initial phase (which are averaged over 50 to 400 random
choices), and α ∈ (−1, 1) is a dimensionless parameter.
When α = 0, Eq. (7) reduces to the interacting Aubry-André
(AA) model [49, 50]. When α < 0 (> 0), the cosine potential
of the AA model is distorted so that the peaks become sharper
at negative (positive) energy. We focus on the case of α = 0
(AA) and −0.8 (GPD), where in the latter case the sharp peaks
at negative energy cause some hj to become deep wells which
are highly detuned from their neighboring sites (Fig. 1a). We
fix the filling fraction to 1/4 (that is, 1/4 of the spins are

up), since the proposed effect of an MBME would be more
distinguished at a lower filling fraction, and 1/4 is still high
enough to make the effect of interaction significant.

In Fig. 2, we plot C(t) for several energy densities E/L, as
well as the shifted stretched exponential fit Eq. (6) for the AA
and GPD models. The fit parameters, and also the density of
states (DOS) at thatE/L, are shown in Fig. 3. We find that the
AA model shows the expected stretched exponential behavior
as predicted by the SJA. However, at higher energy densities
(E/L ≳ 0.15) of the GPD model, we observe a sudden drop
of the characteristic timescale τ toward zero, indicating C(t)
becomes essentially scale-invariant, which is not consistent
with the stretched exponential prediction. The value of β also
decreases.

This observation holds across the entire range of W where
it is sensible to make the fit at the available timescale. That
is, where C(t) slowly decays to a value substantially smaller
than its initial value. For smaller or larger W , the decay is
either too fast or too slow to observe the functional form of
the decrease in C(t), such that a meaningful and stable fit is
impossible. Also note that we only show the data for energy
densities such that the normalized density of states (DOS) is
larger than 2 (roughly the middle two-thirds of the spectrum),
since the fit at the edge of the spectrum is again very unstable.
This crossover occurs near the peak of the DOS, rather than at
the edge of the spectrum.

However, we do not expect this phenomenon to survive the
thermodynamic limit. This can be seen in the comparison
between L = 20 and L = 24 in Fig. 3, where the sudden drop
of τ appears to be less dramatic and happens at slightly larger
E/L for the L = 24 curves. This means that the stretched
exponential fit, and therefore the SJA, is better at larger L.
Therefore, we suspect that the failure of SJA is a finite-size
effect.

We also compare the stretch exponent β to the resonance
exponent θ obtained directly by running the Jacobi algorithm.
The result is shown in Fig. 4. The distribution of resonances
ρres(w) shows power-law behavior except for very large w,
which is dominated by short-time effects. The expected power
law curves from the stretched exponent are shown in dashed
lines. For the AA model, the two sets of curves agree very
well. However, for the GPD model, they do not agree for
some values of W . This indicates that the AA model agrees
with the model of resonances even at fixed energy density, but
the GPD model does not.

These results suggest that thermalization in the interacting
GPD model is not described well by the proliferation of
many-body resonances. In particular, the failure of the SJA
in the higher energy part of the model may indicate that
the system is non-ergodic on these time scales. Moreover,
the position of this regime agrees qualitatively with previous
proposals for the position of the NEE regime in the GPD
model [31–33, 35, 60]. (Note that the regimes obtained
by the studies based on finite-time dynamical simulation
are expected to differ quantitatively from those based on
eigenstate properties.) Therefore, we interpret the regime of
the GPD model where the stretched exponential fit fails as the
NEE regime, and conclude that thermalization in this regime
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FIG. 3. The coefficients β (top) and log τ (middle) obtained from the shifted stretched exponential fit of C(t), and the normalized density of
states (bottom) for the AA (left) and GPD (right) models at two selected values of W , each as a function of energy density. The GPD model
shows a sudden drop to τ → 0 at high energy density (especially for L = 20). Error bars indicate the 68% bootstrap confidence interval due
to the random choice of ϕ.
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(a) AA, W = 0.9, L = 20
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(b) GPD, W = 0.3, L = 20

E/L ≈ 0.0

E/L ≈ 0.05

E/L ≈ 0.1

E/L ≈ 0.15

E/L ≈ 0.2

∝ w−1−β

FIG. 4. The distribution of resonances ρres obtained from the Jacobi
algorithm and the comparison with the predicted power law from the
stretched exponent β. These agree well for the AA model but not for
the GPD model.

proceeds through a different mechanism than the AA model
and typically studied random models.

IV. ORIGIN OF THE NEE BEHAVIOR

The NEE regime has been conjectured to be related to the
presence of a single-particle mobility edge (SPME) in the
GPD model [31, 33]. The AA model has no energy-dependent
mobility edge, and does not exhibit an NEE regime. However,
we observe that the NEE behavior manifests in the functional
form of autocorrelation functions at intermediate timescales
and small system sizes, where the influence of a mobility
edge in the asymptotic single particle spectrum would be
expected to be minimal. In addition, the drift with L of the
crossover position suggests that the regime will not survive
the thermodynamic limit, and hence is not due to a many-body
mobility edge (MBME) (and there are theoretical arguments
against the stability of an MBME [42, 43]). Instead, we
propose that the NEE behavior comes from the presence
of deep wells in the GPD potential. The large detuning
effectively cuts the chain into several segments, with spin
exchange being strongly suppressed between segments, but
other interactions being less suppressed.

In this section, we first construct a toy model with the
deep well structure whose NEE behavior can be derived
analytically using perturbation theory, and discuss the
relationship between the toy model and the actual GPD model.
In the next section, we provide further numerical evidence to
support this theory.

For convenience, we formulate the toy model Hamiltonian
in fermionic notation. It takes the form of a Hubbard model

H =
∑
j

(
J (c†jcj+1 + H.c.) + Unjnj+1 + Vjnj

)
, (9)
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where cj is the fermion annihilation operator and nj = c†jcj
is the fermion number operator. The on-site potential consists
of random variables Vj ∈ [∆j −W,∆j +W], where

∆j =

{
0 if j ̸= 0 mod N + 1,

−∆ if j = 0 mod N + 1.
(10)

Here, N is the size of the supersites which we introduce
below. We take the intra-supersite disorder width W ≪ J ,
and ∆ ≫ J , so that there is a large detuning (deep well)
every N + 1 sites that suppresses the particle from hopping
across the deep well. On the other hand, we choose the scale
of the repulsive interaction U to satisfy ∆ ≫ ∆ − U ≫ J .
We show below that this leads to a parametric separation of
the particle spreading and information (and, indeed, energy)
spreading timescales.

We construct an effective Hamiltonian for the middle-
energy subspace (not involving the scales −∆ or U )
treating J as a small parameter. This effective Hamiltonian
describes energy densities corresponding to the typical sites.
The middle-energy subspace is spanned by the particle
configurations in which every deep site j = 0 mod N + 1
is unoccupied, and such that no two particles are occupying
consecutive sites. In particular, the deep wells effectively cut
our chain into segments, which we call the supersites, each
of size N . The leading inter-supersite terms in the effective
Hamiltonian can be calculated from second-order perturbation
theory. Let j = 0 mod N + 1 be a deep well. The inter-
supersite hopping is described by a particle hopping from j−1
to j + 1 (and its reverse), through the process (left part of
Fig. 1b)

| · · · 100 · · · ⟩ 7→ | · · · 010 · · · ⟩ 7→ | · · · 001 · · · ⟩, (11)

where the three numbers in each ket are the occupation of j−
1, j, and j+1, respectively. This gives the term in the effective
Hamiltonian:

J2

∆
c†j+1cj−1 + H.c.. (12)

On the other hand, the inter-supersite interaction is described
by that of two particles at j−1 and j+1, though the processes
(right part of Fig. 1b)

| · · · 101 · · · ⟩ 7→
{

| · · · 011 · · · ⟩
| · · · 110 · · · ⟩

}
7→ | · · · 101 · · · ⟩, (13)

which is to be compared with the processes without the other
particle,

| · · · 100 · · · ⟩ 7→ | · · · 010 · · · ⟩ 7→ | · · · 100 · · · ⟩,
| · · · 001 · · · ⟩ 7→ | · · · 010 · · · ⟩ 7→ | · · · 001 · · · ⟩. (14)

This gives the term in the effective Hamiltonian:(
2

J2

∆− U
− 2

J2

∆

)
nj+1nj−1. (15)

Note that 1/∆ ≪ 1/(∆ − U) by our assumption. This
indicates that, in the effective model, particle exchange

(hopping) between the supersites is suppressed much more
strongly than the information exchange (interaction) between
them. Suppose the disorder in Vj is weak enough such that
the system in the thermodynamic limit eventually thermalizes
(satisfying ETH). We can define the time scale τparticle at which
particles can spread across the entire system and τinfo for
information similarly, so that we have τinfo ≪ τparticle.

Now suppose that we try to use some finite-size or finite-
time probe to study the ergodicity and extendedness of the
system, so that there is another time scale τfinite which is
the largest time scale that we can probe. The observable
properties of the system will depend on the relationship
between the three scales τfinite, τparticle, and τinfo. In the case
of τfinite ≪ τparticle, the effect of particle spreading will not
be observed, and there will appear to be a set of conserved
quantities. Namely, the number of particles in each supersite.
Thus, the system will appear non-ergodic. For example, the
system will show large fluctuations of the half-chain density
among nearby eigenstates, which was used in Ref. [31] to
support the existence of an NEE regime. Conversely, there
are no such apparent conserved quantities if τfinite ≫ τparticle
and if there are no still larger time scales, we will see the
asymptotic ergodic behavior. On the other hand, if we have
τfinite ≪ τinfo, the entanglement entropy will show area law
behavior, while for τfinite ≫ τinfo the entanglement entropy
will be volume law—interpreted in Ref. [31] as meaning
that the system is extended. Therefore, we may numerically
observe the behavior of three different regimes in dynamics at
accessible system sizes, even though the system thermalizes
in the thermodynamic limit (Fig. 1c). In particular, if τinfo ≪
τfinite ≪ τparticle, this finite-size or finite-time probe will show
that the system is in the NEE regime.

We can further transform our toy model to a more familiar
form for the simplest case of N = 2 and the 1/3 filling sector.
The middle-energy Hilbert subspace has a simple basis

{|n1, 1− n1, 0, n2, 1− n2, 0, . . .⟩}n1,n2,...∈{0,1}, (16)

where the first position denotes site 1. We can map the basis
states to |n1, n2, . . .⟩, which is the state space of the Ising
model. In this new Hilbert space, the effective Hamiltonian
at leading order becomes

Heff =
∑
i

(
Jσx

i +
V3i−1 − V3i−2

2
σz
i

− J2

2(∆− U)
σz
i σ

z
i+1

)
, (17)

which is a mixed-field random Ising model. Previous
numerical evidence strongly supports that this model
thermalizes in the thermodynamic limit if the intra-supersite
disorder is not too strong [61]. The deep well structure can
thus simultaneously support an extensive number of almost-
conserved local operators (the supersite occupation numbers)
and extended eigenstates.

In the general case of arbitrary N and filling fractions, the
effective model will be much more complicated, but it is still
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FIG. 5. Comparison between the GPD and the random wells model.
The gray curve in the top figure is the periodic function whose values
at integer points give the GPD potential. We put a horizontal dashed
line to separate the deep (green) and shallow (orange) sites. The
threshold is chosen such that the number density of deep sites is
1/5. The random wells model is constructed such that the deep sites
are equally spaced with the same number density, and the potentials
on the deep and shallow sites are both independently uniformly
distributed with the same mean and variance as the corresponding
type of sites in the GPD model (the ranges are shown in gray
horizontal bars in the bottom figure).

likely to thermalize for weak disorder, so that an NEE regime
emerges.

We emphasize that in the NEE regime of our toy model,
where the particle hopping across the deep wells may be
neglected, the number of particles in each supersite constitutes
an extensive set of conserved local integrals of motion
(LIOMs), even if it is not a complete set. Thus, the
effective model for the NEE regime is, in fact, many-body
localized. The system retains partial memory of generic initial
conditions for all time, and particle transport coefficients
vanish. Nonetheless, the eigenstates of this model are volume
law entangled, and energy can diffuse through the system.
While the model is localized, it is not fully localized, in the
sense of Ref. [62]. One could call our picture of the NEE
regime one of partial many-body localization.

It is also apparent that thermalization in the toy NEE model
has more structure than apparent from the distribution of
resonances ρres(w) obtained from the Jacobi algorithm. Some
operators spread much more slowly than others, which is
information not resolved by the distribution ρres(w). While
many-body resonances may play a role in the melting of
the almost-conserved quantities of the NEE toy model, this
process must be distinguished from the much more rapid
spread of other operators.

Now we return to the GPD model. Although formally there
is no rigorous definition of what constitutes a “deep well”,
we can still compare scales with our toy model based on
the visual appearance of the GPD potential. In the range
of disorder strengths used in our numerical calculations, we
estimate ∆ ∼ 1.3, W ∼ 0.4, and N ∼ 5 (see Fig. 5).
Also, we have J = 0.5 and U = 1 by Jordan-Wigner
transformation. We see that the assumption that the detuning
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FIG. 6. The decay of the spin-spin connected autocorrelation
function C(t) of the t1–t2 and the random wells models at various
energy densities. Dashed curves are the stretched exponential fit.

of the deep well is compensated by the interaction is indeed
satisfied. If we use the perturbative formulae above, we get
the inter-supersite hopping strength to be ∼ 0.2 and the inter-
supersite interaction strength to be ∼ 1, indicating the rates of
particle hopping and interaction are separated by a factor of
∼ 5, lending support to our proposed mechanism for the NEE
behavior. Although perturbation theory may not work well
for these parameters, since the energy scales are all roughly
at the same order of magnitude, we propose that the essential
feature caught by our perturbative toy model is responsible for
the observed NEE regime of the interacting GPD model.

V. THE t1–t2 MODEL AND THE RANDOM WELL MODEL

We propose that any one-dimensional model with regularly
spaced deep wells in its disorder potential will display an NEE
regime at intermediate timescales. In particular, our proposal
does not rely on the presence or absence of a mobility edge in
the single particle spectrum, nor, indeed, on quasiperiodicity.
In this section, we investigate two additional models: the
t1–t2 model, a quasiperiodic model with a single particle
mobility edge but no deep wells, and a randomly disordered
model in which we insert deep wells. The single particle
sector of the latter is always localized [1], but we will see that
it exhibits an NEE regime, while the t1–t2 model does not.

The t1–t2 model is just the AA model with an additional
next-nearest-neighbor hopping term [51, 54]. In the spin
representation, its Hamiltonian is

H =

L−1∑
j=1

[
1

2
t1
(
S+
j S

−
j+1 + S−

j S
+
j+1

)
+ USz

j S
z
j+1

]



8

−0.2 −0.1 0.0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

−0.2 −0.1 0.0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

−0.2 −0.1 0.0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

−0.2 −0.1 0.0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

−0.2 −0.1 0.0 0.1 0.2 0.3
−1
0
1
2
3
4

−0.2 −0.1 0.0 0.1 0.2 0.3
−1
0
1
2
3
4

−0.2 −0.1 0.0 0.1 0.2 0.3
−1
0
1
2
3
4

−0.2 −0.1 0.0 0.1 0.2 0.3
−1
0
1
2
3
4

−0.2 −0.1 0.0 0.1 0.2 0.3
0
1
2
3
4
5

−0.2 −0.1 0.0 0.1 0.2 0.3
0
1
2
3
4
5

−0.2 −0.1 0.0 0.1 0.2 0.3
0
1
2
3
4
5

−0.2 −0.1 0.0 0.1 0.2 0.3
0
1
2
3
4
5

FIG. 7. The coefficients β (top) and log τ (middle) obtained from the shifted stretched exponential fit of C(t), and the density of states
(bottom) for the t1–t2 (left) and random wells (right) models at two selected values of W , each as a function of energy density. The random
wells model shows a sudden drop to τ → 0 at high energy density (especially for L = 20). Error bars indicate the 68% bootstrap confidence
interval due to the random choice of ϕ or disorder realizations. (Compare to Fig. 3.)

−
L−2∑
j=1

t2
(
S+
j S

z
j+1S

−
j+2 + S−

j S
z
j+1S

+
j+2

)
+W

L∑
j=1

cos(2πφj + ϕ)Sz
j . (18)

Here, t1 and t2 correspond to the strength of nearest-neighbor
and next-nearest-neighbor hopping respectively, and U is the
interaction strength. We fix t1 = 1, t2 = 1/6 (as in Ref. [51])
and U = 1.

The random wells model is based on the perturbative
toy model in Sec. IV, with parameters chosen to make the
potential visually mimic the GPD model. The Hamiltonian
is the same as Eq. (7), except that the potentials hj are
each independently drawn from a j-varying uniform random
distribution. There is no canonical choice of what points
are considered deep in the GPD model, and we do not think
the exact definition is important. However, to have some
consistency between the GPD and our artificial model, we
make an arbitrary choice of threshold −2.28, and consider
sites with hj < −2.28 to be a deep well. This choice makes
the number density of deep sites in the GPD model exactly
1/5. In this way, we can design the artificial model to have a
deep well for every five sites, such that the density of deep
wells is the same as the GPD model under this definition.
The range of the uniform random variable hj is chosen to
be [−5.38,−2.36] for j mod 5 = j0 (deep); otherwise it is
chosen to be [−1.33, 1.19] (shallow). The values are chosen
so that the mean and variance of the potential for a type of
site (deep or shallow) is the same as that of the corresponding

type in the GPD model. Each of the five possible choices of j0
are used in exactly one-fifth of the disorder realizations. The
visual comparison between the GPD and our artificial random
wells model is shown in Fig. 5.

As a remark, the eigenstate properties of the random wells
model show essentially the same signatures to those of the
GPD model that in Ref. [31] were used as evidence for the
NEE regime (Appendix A).

In Figs. 6–7, we plot the C(t) curve and the fit parameters
for the t1–t2 and the random wells models, similar to Figs. 2–
3. The results show that the interacting t1–t2 model, despite
having a single particle mobility edge, shows similar behavior
to the interacting AA model, in that the stretched exponential
fit is good (shows sensible parameters). On the other hand, the
interacting random wells model, despite being random rather
than quasiperiodic, and thus being localized everywhere in
the single particle spectrum, shows similar behavior to the
interacting GPD model in that the stretched exponential fit
crosses over to τ → 0 behavior in the higher energy spectrum.

Our proposed mechanism based on deep wells also predicts
that adding a next-nearest-neighbor hopping term to a model
with deep wells will destroy the NEE regime, as a particle can
directly hop from one side of the deep well to the other. Thus,
there will be much less suppression of particle spreading, and
therefore the NEE regime should disappear. We verify this
numerically for the GPD model with next-nearest-neighbor in
Appendix B.
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VI. CONCLUSION

The asymptotic properties of randomly disordered
interacting spin chains are predicted to be distinct in
several ways from quasiperiodically disordered spin
chains [26, 27, 29, 30]. However, at accessible system sizes,
few robust differences between the behavior of quasiperiodic
and random disorders have been observed [28]. This
indicates that the prethermal regime—in which the system
eventually thermalizes, but does so extremely slowly—is
phenomenologically the same in random and quasiperiodic
spin chains. One of the few observed differences between
these cases in past work has been the presence of an
apparently non-ergodic extended (NEE) regime in the
quasiperiodic GPD model, which has been attributed to the
presence of a single-particle mobility edge [31–33, 35].

By diagnosing the presence of the NEE regime through
the functional form of spin-spin autocorrelation functions,
we have demonstrated that the NEE phenomenology can be
observed within the prethermal regime, and so is unlikely
to be due to the asymptotic presence of a single-particle
mobility edge. Rather, we propose that this regime emerges
due to the presence of deep wells in the GPD potential,
which suppress spin exchange across the chain. This proposal
is also consistent with the failure of the statistical Jacobi
approximation (SJA) to describe the decay of autocorrelators,
as the thermalization process is different for different
operators, and the SJA does not resolve such differences.
Notably, this mechanism does not rely on quasiperiodicity.
Indeed, we can replicate the same phenomenology in a
randomly disordered model with deep wells. Thus, while
our results show the unremarkable feature that details of the
disorder potential may influence thermalization, they also
demonstrate that there is not a sharp distinction between
random and quasiperiodic disorder in the prethermal regime.

Based on the interpretation of the NEE phenomenology as
belonging to the prethermal regime, we see little evidence for
the presence of an asymptotic many-body mobility edge in
past numerics [31–33, 35]. Rather, the various observations
which led to this conjecture seem to be well explained by
the maximum accessible timescale τfinite crossing between
the information spreading timescale τinfo and the particle (or
magnetization) spreading timescale τparticle, as illustrated in
Fig. 1.

That we can see signatures of the NEE regime in
autocorrelation functions, rather than past entanglement-
based probes, indicates that this regime can in principle
be observed in experiments [54, 63–70]. However, our
dynamical probes are rather indirect, and likely difficult
to use in an experimental setting. The proposal that the
τ → 0 feature of the stretched exponential fit is related
to non-ergodicity is speculative, with a more conservative
conclusion being merely that the model has additional features
other than many-body resonances which control the decay of
autocorrelation functions. This feature of the fit is also likely
to be greatly affected by experimental noise. Thus, it would
be desirable to have a direct and reliable measurement of τinfo
and τparticle to more directly test our proposed mechanism for

the NEE regime. Due to our lack of direct probes, further
investigation is still required to settle the nature of the NEE
regime. Studies of the eigenstate properties of the random
wells model are currently underway [71], and preliminary
results show that the behaviors of the GPD and random wells
models appear almost identical to the machine learning model
of Ref. [32].

There may, in general, be several more time scales than
τinfo and τparticle, associated to the spreading of different
classes of operators. Even at the time scales accessible
to current numerics and experiments, we suspect there
can be multiple distinct intervening NEE regimes between
apparent localization and clear thermalization. Verifying
this conjecture also requires developing reliable ways of
identifying these timescales directly.

Asymptotically, we expect that the delocalization of any
operator will generically cause the delocalization of all
operators. A generic perturbation will couple the previously
localized operators to the delocalized class, allowing them
to spread. Thus, there should be no NEE regime, in the
form of partial localization, in the thermodynamic limit.
However, it is interesting to ask whether the NEE regime can
be considered a distinct dynamical phase to MBL in a non-
standard thermodynamic limit [72, 73].

We mention that the GPD model has been studied
experimentally [52], and it would be interesting to analyze
this experiment in the context of our finding of prethermal
NEE features in the GPD model. In fact, an interesting
experiment would be to directly compare the prethermal
dynamics of the GPD model with the random wells and t1–
t2 models, since all three models are accessible in cold atom
systems. We predict that the noninteracting GPD model
will be similar to the noninteracting t1–t2 model, with both
manifesting SPMEs (with the random wells model having
no SPME) whereas the interacting GPD model will manifest
NEE features similar to the interacting random wells model
with the interacting t1–t2 model showing no such prethermal
NEE features. More broadly, the GPD model exhibits
interesting dynamical features beyond the prethermal NEE
phenomenology discussed here, including the enhancement of
localization by interactions [74].

Our proposal also raises the theoretical question of whether
there are other mechanisms by which the thermalization time
scales for different classes of operators may separate. Any
process which induces this feature should produce an NEE
regime. Our work using the statistical Jacobi approximation
in the interacting GPD model could be a guide for such future
studies of prethermal quantum dynamics.
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FIG. 8. Comparison of the standard deviation of the observable O
(Eq. (A1)) among 100 consecutive eigenstates of energy close to
E, and the half-chain entanglement entropy between the GPD and
the random wells models at W = 0.35. Error bars indicate the
68% bootstrap confidence interval due to the random choice of ϕ
or disorder realizations. The almost quantitative agreement (except
at the very right end of the spectrum) indicates that the two models
are essentially indistinguishable at these system sizes.

paper.

Appendix A: Eigenstate properties of the random wells model

In this appendix, we study the eigenstate properties of the
random wells model using similar quantities to Ref. [31],
which were used to support the existence of an NEE regime
in the GPD model.

In Fig. 8, we show the standard deviation of the collection
of eigenstate expectation values {O(E)}, defined by

O(E) =

L/2∑
j=1

⟨ψE |Sz
j |ψE⟩, (A1)

where E runs over 100 consecutive energy eigenstates.
In a system which satisfies the eigenstate thermalization
hypothesis (ETH), this standard deviation should be very
small, and become smaller with increasing system size [39].
We also show the average half-chain von Neumann
entanglement entropy S(L/2) of an eigenstate in that range.
We compare these quantities between the interacting GPD and
the random wells model, both at W = 0.35, with parameters
the same as in the main text.

Except at very high energy densities, the two quantities
(and the DOS of these two models) not only show qualitative
similarity, but also agree almost quantitatively. This suggests
that the GPD model is essentially indistinguishable from the
random wells model at numerically tractable system sizes.

In particular, the argument in Ref. [31] for the existence
of an NEE regime based on similar numerical data carries
through in exactly the same way for the random wells model.
The decrease of stdO at low to middle energy densities—
between E/L = −0.1 and E/L = 0.05—suggests that
the system may be crossing from a non-ergodic regime
(where consecutive eigenstates are very distinct, producing
large fluctuations in O(E)) to an ergodic regime (where
consecutive eigenstates look similar). On the other hand,
the entanglement entropy shows a change from area law
(S(L/2) ∼ const.) to approximately volume law (S(L/2) ∝
L) at the slightly lower value E/L ≈ −0.15, which suggests
that the system goes from fully localized to extended at that
energy density. The separation of these two crossovers implies
that an NEE regime exists in both the interacting GPD and the
random wells models at middle-low energy densities.

The data presented in Fig. 8 is not as clear as in Ref. [31]
as we only use two different system sizes and work at smaller
system sizes than their study. Note also that we use a higher
filling fraction, among other parameter differences, compared
to Ref. [31]. Ongoing study [71] shows that the random wells
model also reproduces essentially the same data as in Ref. [31]
using the setup of that work.

The difference in the position of the NEE regime as
diagnosed by the dynamical properties presented in the main
text (at middle-high energy densities) and the eigenstate
properties studied here (at middle-low energy densities) is
expected due to the difference in the probing time scale
τfinite. Since eigenstate properties probe the longest possible
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FIG. 9. The fit parameters β (top) and log τ (middle) obtained from
the shifted stretched exponential fit of C(t), and the normalized
density of states (bottom) for the t1–t2 model with GPD potential
at L = 20 and two selected values of W , each as a function of
energy density. This model shows no signature of an NEE regime,
consistent with the arguments of Sec. IV. (Compare to the GPD
model in Fig. 3.)
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timescale at a given system size, the τfinite here is longer than
the dynamical study in the main text. From Fig. 1c, we see
that the parameter regime which shows the MBL behavior
will drift to the NEE behavior, and the one that shows the
NEE behavior will drift to the ETH behavior, upon increasing
τfinite. Therefore, in our case, the NEE regime is expected to
drift towards lower energy densities when using a larger τfinite.

Appendix B: The t1–t2 model with the GPD potential

In this appendix, we provide another verification of our
proposed mechanism for the NEE regime described in Sec. IV

by adding next-nearest-neighbor hopping to a model with
deep wells. Our proposed mechanism predicts that this
addition should remove the NEE regime.

The model is defined by replacing the cosine term in
Eq. (18) with the GPD potential in Eq. (8), with the same
parameters as in the main text. This is equivalent to adding
next-nearest-neighbor hopping to the GPD results presented in
Sec. III. The next-nearest-neighbor hopping avoids the large
detuning of the deep well, making the NEE regime disappear.
The results shown in Fig. 9 support this picture, as there is no
sudden decrease of τ at higher energy densities. This result
supports our explanation of the NEE regime in Sec. IV.
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