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Abstract—In the era of noisy intermediate-scale quantum
(NISQ), variational quantum circuits (VQCs) have been widely
applied in various domains, advancing the superiority of quan-
tum circuits against classic models. Similar to classic models,
regular VQCs can be optimized by various gradient-based
methods. However, the optimization may be initially trapped in
barren plateaus or eventually entangled in saddle points during
training. These gradient issues can significantly undermine the
trainability of VQC. In this work, we propose a strategy that
regularizes model parameters with prior knowledge of the train
data and Gaussian noise diffusion. We conduct ablation studies to
verify the effectiveness of our strategy across four public datasets
and demonstrate that our method can improve the trainability
of VQCs against the above-mentioned gradient issues.

Index Terms—Variational Quantum Circuits, Barren Plateau,
Regularization, Gaussian Noise Diffusion

I. INTRODUCTION

In recent years, there have been significant advancements
in quantum information, particularly with the advent of noisy
intermediate-scale quantum (NISQ) devices [1]. Within this
research landscape, variational quantum circuits (VQCs) have
been widely applied in various domains, such as quantum
machine learning [2], quantum physics [3, 4], and quantum
hardware architecture [5, 6]. Typical VQCs are trainable
random parameterized quantum circuits or classic-quantum
hybrid models [7]. Similar to classic models, VQCs can
be optimized by various gradient-based approaches, such as
Adam [8]. However, optimization processes may encounter
some gradient issues. Primarily, the initialization of VQCs
might be trapped on a barren plateau landscape. McClean
et al. [9] first systematically study the barren plateau (BP)
issues and verify that the gradient variance will exponentially
decrease as the model size increases when the VQCs satisfy
the assumption of the 2-design Haar distribution. Under this
circumstance, most gradient-based approaches would fail. Ad-
ditionally, the optimization may be entangled in saddle points
during training [10, 11]. Both gradient issues can significantly
weaken the trainability of VQCs.

Extensive research has been devoted to solving the barren
plateau problem, where initialization-based strategies have
proven to be very effective by initializing VQC parameters
with diverse distributions [12]. For instance, Zhang et al. [13]
verify the effectiveness of Gaussian initialization on VQCs
with a well-designed variance. Nevertheless, most initialization
strategies neglect the impact of real data distribution. To
address this oversight, Prince argues that applying the data
posterior to model parameters could provide more robust
performance [14]. However, posterior estimation on complex

models may not be practical due to high computational over-
head. To overcome the above drawbacks, we leverage prior
knowledge of the train data to regularize the initial distribution
of model parameters. Our intuition for this regularization
is that applying prior knowledge in initialization can shape
the initial distribution to some extent, thus promoting the
alleviation of barren plateau issues.

Besides mitigating barren plateau issues via initialization-
based strategies, some studies improve the trainability by
adding noise to model parameters to avoid being trapped in
saddle points during training [15]. However, adding excessive
noise may potentially undermine model performance [16].
Inspired by DDPM [17], which models the data distribution by
iteratively diffusing Gaussian noise during data generation, we
gradually diffuse Gaussian noise on model parameters during
training. The intuition behind noise diffusion is that as train-
ing converges, the model will gradually perform better, thus
requiring slighter noise perturbations on model parameters.

By integrating the above two mechanisms, in this study, we
propose a regularization strategy to improve the trainability
of VQCs. In our proposed method, we first leverage prior
knowledge of the train data to regularize the initial distribution
of model parameters, and further diffuse Gaussian noise on
the parameters along each training iteration. In experiments,
we conduct ablation studies to examine the effectiveness of
our proposed methods. First, We validate that leveraging prior
knowledge of the train data can effectively regularize eight
prevalent initial distributions of model parameters and yield
superior mitigation on barren plateau issues. Furthermore,
we affirm that diffusing Gaussian noise to model parameters
during training can efficaciously increase volatility to avoid
being trapped in saddle points while adequately alleviating
the degradation of gradient variance on five Gaussian-based
strategies. Last, we analyze the key hyperparameter, max
diffusion rate (drmax), on Normal distribution as an example.
Extensive results demonstrate the effectiveness of our pro-
posed regularization strategy over four public datasets. Overall,
our contributions to this study can be summarized as follows:

• We propose a strategy that regularizes model parameters
with prior knowledge and Gaussian noise diffusion for
improving the trainability of VQCs.

• We conduct extensive experiments to verify the effective-
ness of our proposed method across four public datasets.

II. RELATED WORK

McClean et al. [9] first investigated barren plateau (BP)
phenomenons and demonstrated that under the assumption
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of the 2-design Haar distribution, gradient variance in VQCs
will exponentially decrease to zero during training as the
model size increases. In recent years, enormous studies have
been devoted to mitigating barren plateau issues in VQCs. In
this study, we categorize these studies as initialization-based
strategies [18], optimization-based strategies [19], model-
based strategies [20], and measurement-based strategies [21].
First, initialization-based strategies mainly aim to initialize
model parameters with different distributions. Within this
category, Grant et al. [22] propose an identity block strategy
that can initialize the VQCs as a sequence of blocks of identity
operator. Sauvage et al. [23] propose a flexible initializer
(FLIP) for arbitrarily sized VQCs. Kulshrestha et al. [15]
initialize the circuit parameters from a beta distribution. Zhang
et al. [13] verify that applying Gaussian initialization with
well-designed variance can mitigate barren plateau issues.
Second, optimization-based strategies primarily improve the
efficiency of optimization while mitigating barren plateaus
as well. For example, Ostaszewski et al. [24] propose a
new method for effectively optimizing VQCs’ structure and
parameters with lower computational overhead. Suzuki et
al. [25] propose a new normalized gradient descent (NGD)
method that can converge faster than the naive NGD-based
method. Heyraud et al. [26] design an efficient method to
compute the gradient for a wide range of VQCs. Third, model-
based strategies address barren plateau problems via various
model architectures. For example, Li et al. [7] propose a
hybrid quantum-classical framework, namely VSQL, to avoid
barren plateaus. Concurrently, Bharti and Haug [27] propose a
hybrid quantum-classical algorithm for dynamically simulating
quantum circuits. Du et al. [28] design an efficient search
scheme, QAS, to automatically seek a near-optimum during
VQCs’ training. Tüysüz et al. [29] propose a model to divide
the VQCs into multiple sub-circuits to avoid barren plateaus.
Kashif et al. [30] introduce residual quantum neural networks
(ResQNets) by splitting QNN architectures into multiple quan-
tum nodes. Last but not least, measurement-based strategies
investigate the barren plateau landscape in hybrid variational
quantum circuits from the perspective of measurement [21].

III. METHODOLOGY

A. Preliminary

a) Variational Quantum Circuits: Typical VQCs consist
of a finite sequence of unitary gates U(θ) parameterized by
θ ∈ RNRL, where N , R, and L denote the number of qubits,
rotation gates, and layers. U(θ) can be formulated as:

U(θ) = U(θ1, ..., θL) =

L∏
l=1

Ul(θl)Wl, (1)

where Ul(θl) = e−iθlVl , Vl is a Hermitian operator, and Wl is
unitary operator that doesn’t depend on θl ∈ RNR.

VQCs can be optimized by gradient-based methods. To
achieve this goal, we first define the loss function E(θ) of
U(θ) as the expectation over Hermitian operator H:

E(θ) = ⟨0|U(θ)†HU(θ)|0⟩. (2)

Given the loss function E(θ), we can further compute its
gradient by the following formula:

∂kE ≡
∂E(θ)

∂θk
= i⟨0|U†

−

[
Vk, U

†
+HU+

]
U−|0⟩, (3)

where U− ≡
∏k−1

l=0 Ul(θl)Wl, U+ ≡
∏L

l=k Ul(θl)Wl. Also,
U(θ) is sufficiently random s.t. both U− and U+ (or either
one) are independent and match the Haar distribution up to
the second moment.

b) Barren Plateaus: McClean et al. [9] first investigate
Barren Plateau issues in VQCs. They conduct experiments on
random VQCs to verify that gradient variance V ar[∂kE] will
exponentially decrease as the number of qubits N increases
when the VQCs, such as U− or U+, match 2-design Haar
distribution. This relationship can be approximated as follows:

V ar[∂kE] ∝ 2−2N . (4)

The Equation 4 indicates that in most cases, V ar[∂kE] will
approximate zero when the number of qubits N is very large.
In other words, most gradient-based approaches will fail to
train VQCs under the above circumstances.

B. Our Proposed Regularization Strategy

To improve the trainability of VQCs, in this study, we
propose a strategy that regularizes model parameters with i)
prior knowledge of the train data in the initialization and
ii) Gaussian noise diffusion during optimization. To better
illustrate our proposed strategy, we briefly introduce the overall
process in Figure 1. In the following subsections, we will
introduce these two mechanisms in detail.

𝑈(𝜃(")) 𝑈(𝜃($))𝑈(𝜃(%))

𝜕E(𝜃("))
𝜕𝜃(")

𝜃($)

1&$ Epoch 2'( Epoch 𝑡$) Epoch

𝜕E(𝜃($))
𝜕𝜃($)

𝜃(%)

…

𝜕E(𝜃(&))
𝜕𝜃(&)

𝜃(&)

…

𝜃(&'$)

…

𝜃(")

𝐼𝑛𝑖𝑡(𝐷$*)

𝐷$* 𝑇𝑟𝑎𝑖𝑛

𝑃𝑟𝑖𝑜𝑟

Fig. 1: The overall process of our proposed strategy. Given a
train data Dtr, we first initialize the model parameters with the
prior knowledge of Dtr as θ(0) and feed both Dtr and θ(0) to
the VQC U(·) for iterative training. In each iteration, let’s say
in the tth iteration, we update θ(t) with the gradient ∂E(θ(t))

∂θ(t)

via a gradient-based approach and further diffuse Gaussian
noise on model parameters θ(t+1) for the next iteration.

a) Regularization with Prior Knowledge: Regularizing
the model parameters via Bayesian inference is a popular
regularization technique [31]. Specifically, the Bayesian ap-
proach can regularize the parameters by initializing the model
weights using the approximated posterior distributions. This
approach regards the model parameters θ as unknown variables
and computes a posterior distribution P (θ | D) over θ given



the data D as a condition. According to the Bayes’ rule, the
posterior can be approximated as follows:

P (θ | D) ∝ P (D | θ)P (θ) , (5)

where P (D | θ) denotes the maximum likelihood and P (θ)
denotes the prior distribution of model parameters.

Employing posterior as the initial distribution of model
parameters can provide a more robust initialization than only
using maximum likelihood [14]. However, this approach has a
significant drawback. For complex models, such as deep neural
networks, it is not practical to compute the full probability
distribution over model parameters due to high computational
costs. To overcome this drawback, we simplify the process
by considering the prior distribution of the given data D,
such as the train data Dtr, as the initial distribution of model
parameters. Our intuition is that utilizing such prior knowledge
in initialization is equivalent to setting a constraint on the
search space, thereby providing a robust initial optimization
landscape against barren plateau issues. In Table I, we present
the distinctions of three classic initial distributions between
using original distributions (“Original”) and considering prior
knowledge (“Ours”) as examples. We also visualize the initial
distributions as an example to better demonstrate their distinc-
tions among the three original distributions in Figure 2.

TABLE I: The distinctions of initialization between the orig-
inal distributions and our distributions on three classic distri-
butions. Dmin and Dmax denote the minimum and maximum
values of the given data D, such as the train data Dtr in
the study. µD, σD, αD, and βD denote the corresponding
hyperparameters derived from the data D.

Distribution Original Ours

Uniform Uniform (0, 1) Uniform (Dmin, Dmax)
Normal Normal (0, 1) Normal (µD, σD)

Beta Beta (0.5, 0.5) Beta (αD, βD)

Uniform Normal Beta

Fig. 2: Example of three original distributions for initialization.
The red points in this figure represent the initial values in
model parameters.

b) Regularization with Gaussian Noise Diffusion: Be-
sides the Bayesian approach, adding noise is another popular
approach for regularization [32]. For example, BeInit [15]
mitigates the degradation of gradient variance by adding Gaus-
sian noise in the model parameters during training. However,
adding too much noise will inevitably weaken the model’s
performance [16]. Inspired by DDPM [17], which models

better data distributions via an iterative Gaussian diffusion
process, we iteratively diffuse the Gaussian noise on model
weights during training. In the t-th iteration, we gradually
diffuse the standard Gaussian noise ϵ ∼ N (0, I) to the diffused
model parameters with a decreasing diffusion rate γ as follows:{

θ(t) =
√
Γ(t)θ(t),

ϵ =
√

(1− Γ(t))ϵ,
(6)

where θ(t) and ϵ denote the diffused parameters in the t-th
iteration and diffused Gaussian noise; Γ(t) =

∏t
i=0 γ

(i) is the
accumulated production of previous diffusion rates in the t-th
iteration. The γ linearly decreases with each iteration.

In each iteration, we apply the diffusion process on model
parameters after back-propagation. The diffused parameters
will be used in the next iteration. This diffusion process can
be formulated as follows:

θ(t+1) = θ(t) + ϵ. (7)

As the number of iterations increases, the training will
gradually converge, resulting in better model performance.
Therefore, the model may require lower noise perturbations
for regularization. Based on this intuition, we progressively
diffuse the Gaussian noise on the model parameters as the op-
timization proceeds. We visualize the noise diffusion process
in Figure 3 as an illustration example.

Fig. 3: The process of diffusing Gaussian noise. The red points
in this figure represent Gaussian noise added as regularization.

Algorithm 1: OUR training procedure.
Input: Variational quantum circuits U(·), Train data

Dtr, Learning rate, η, Train epochs T
1 θ(0) ← Init (Dtr);
2 Compute Γ = [Γ(0),Γ(1), ...,Γ(T−1)];
3 for t = 0← T do
4 θ(t) ← θ(t) − η ∂E(θ(t))

∂θ(t) ;
5 θ(t) ←

√
Γ(t)θ(t);

6 ϵ←
√
(1− Γ(t))ϵ, where ϵ ∼ N (0, I);

7 θ(t+1) ← θ(t) + ϵ;
8 end

c) The Training Procedure: As presented in Algo. 1,
we first initialize the model parameters θ(0) with the prior
knowledge of the train data Dtr (line 1), and then compute
the hyperparameter, Γ, for each train step (line 2). After
initialization, we train the variational quantum circuit U(·)
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Fig. 4: Investigation of the mechanism that leverages prior knowledge of the train data on eight popular initialization methods.
“w. Pr” and “w.o. Pr” denote whether or not we apply prior knowledge.

with T epochs (line 3-8). In the t-th iteration of the train
loop, we update the model parameters θ(t) via optimization
approaches, such as gradient descent, with a learning rate η,
where the gradient denotes ∂E(θ(t))

∂θ(t) (line 4). After updating the
model parameters θ(t), we apply diffusion to θ(t) and Gaussian
noise ϵ with Γ(t) using Equation 6 (line 5-6) and further update
θ(t+1) using Equation 7 for the next iteration (line 7).

d) Analysis of Time and Space Complexity: We propose
two mechanisms for regularization in the training procedure.
Regularizing the initial distribution with prior knowledge of
the train data only implements once in line 1 and thus
takes O(1). On the other hand, diffusing Gaussian noise to
the model parameters θ(t) takes constant time O(3) in each
iteration (line 5-7). So, the total time complexity for T train
loops would be O(T +3) ≈ O(T ). For the space complexity,
initialization with prior knowledge does not take extra space,
whereas diffusing Gaussian noise does require extra intermedi-
ate spaces for θ(t) and ϵ in each iteration but these spaces are
constant and will be released after each iteration. Thus, the
total space complexity is still O(θ). Overall, our proposed
regularization methods will not theoretically increase the time
and space complexity.

IV. EXPERIMENTS

In this section, We first present the settings and further
verify the effectiveness of our method via ablation studies.

a) Experimental Settings: In the experiment, we evaluate
our proposed method across four public datasets. Iris is a

classic machine-learning benchmark that measures various
attributes of three-species iris flowers. Wine is a well-known
dataset that includes 13 attributes of chemical composition
in wines. Titanic contains historical data about passengers
aboard the Titanic and is typically used to predict the survival.
MNIST is a widely used small benchmark in computer vision.
This benchmark consists of 28×28 gray-scale images of
handwritten digits from 0 to 9.

TABLE II: Statistics of datasets. |D|, |F |, and |C| denote
the original number of instances, features, and classes, re-
spectively. “Splits” denotes the split instances for the train,
validation, and test data.

Dataset |D| |F | |C| Splits

Iris 150 4 3 60:20:20
Wine 178 13 3 80:20:30

Titanic 891 11 2 320:80:179
MNIST 60,000 784 10 320:80:400

We refer to the settings of BeInit [15] and examine the
VQCs in binary classification, i.e., we sub-sample instances
from the first two classes in each dataset to build a new subset.
After sub-sampling, we re-scale the feature size no larger than
the number of qubits. The statistics of original datasets and the
data splits for train, validation, and test sets are provided in
Table II. Notably, the number of total sub-sampled instances
is the sum of the split data. For example, in the Iris dataset,
the number of sub-sampled instances is 100.
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Fig. 5: Investigation of the mechanism that regularizes model parameters by diffusing Gaussian noise along each iteration on
five Gaussian-based methods. “w. GD” and “w.o. GD” denote whether or not we apply Gaussian noise diffusion.

During training, we employ the Adam optimizer [8] to train
VQCs with a learning rate of 1 × 10−2 and a batch size of
20. The Optimization converged within 50 training epochs. To
assess the effectiveness of our proposed mechanisms, we abla-
tively apply the proposed mechanisms to baseline distributions,
such as Gaussian initial distribution, and then observe the gap
between two curves of gradient variance (whether or not our
mechanism is applied to the baselines). We expect that after
applying our mechanisms, the gap will become larger as the
model size increases. Based on the above settings, we aim to
ablatively investigate whether our proposed mechanisms can
facilitate the trainability of VQCs in the following subsections.

b) Regularization with Prior Knowledge of The Train
Data Can Help Alleviate Barren Plateaus: We conduct exper-
iments to investigate whether prior knowledge can contribute
to the initialization of the model parameters along different
qubits or layers. In experiments, we include eight groups of
initial distributions. For each group, we examine two scenarios,
applying prior distributions to the initial distributions (“w. Pr”)
or not (“w.o. Pr”). As presented in Figure 4, we repeat experi-
ments five times and plot curves of the first-layer variance. We
observe that in most cases, the variance in the first layer will
gradually decrease as the number of qubits or layers increases.
Besides, incorporating the prior distribution of the train data
in initialization can mitigate barren plateau issues.

c) Regularization with Gaussian Noise Diffusion Can
Help Avoid Being Trapped in Saddle Points: We conduct
another ablation study to examine the effectiveness of our
proposed regularization strategy. Specifically, we apply our
proposed regularization strategy to both classic and state-
of-the-art Gaussian-based methods and examine whether dif-
fusing Gaussian noise on the model parameters along each

training epoch as a regularization can help avoid being trapped
in saddle points. We expect that this mechanism can increase
volatility while alleviating the degradation of gradient variance
during training. As presented in Figure 5, we repeat experi-
ments five times and plot curves of the first-layer variance for
each method. The results indicate that after applying Gaussian
noise diffusion to the model parameters, in most Gaussian-
based methods, the volatility of gradient variance increases
so the optimization has a higher probability of avoiding
being trapped in saddle points, whereas the gradient variance
decreases much slower (i.e., the gap between two scenarios,
“w.o. GD” and “w. GD”, becomes wider) as the number of
qubits or layers increases, verifying the effectiveness of our
proposed mechanism.

TABLE III: The optimal hyperparameter, max diffusion rate
(drmax) in each scenario. We report the results on Normal
distribution as an example.

Dataset Scenario drmax

Iris Qubits 0.30
Layers 0.02

Wine Qubits 0.16
Layers 0.01

Titanic Qubits 0.20
Layers 0.50

MNIST Qubits 0.04
Layers 0.02

d) Analysis of Hyperparameter: Besides verifying the ef-
fectiveness of our proposed methods, we fix the min diffusion
rate (drmin) as 1×10−4 and analyze the sensitivity of the key
hyperparameter, max diffusion rate (drmax), along different
qubits or layers on the validation set. In this experiment,
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Fig. 6: Analysis of the hyperparameter, drmax, along different numbers of qubits or layers on four public datasets.

we simultaneously consider both mechanisms, i.e., applying
prior knowledge of the train data in initialization and further
diffusing Gaussian noise on model parameters along each
training epoch. We repeat experiments five times on Normal
distribution as an example and present curves of the first-layer
variance for different drmax in Figure 6. We further compute
the mean value of each curve (under different drmax) and
select the drmax in each scenario (either “qubits” or “layers” in
each dataset) based on the maximum mean value. The optimal
drmax for each scenario in this study is reported in Table III.

V. CONCLUSION

In this study, we propose a regularization strategy inte-
grated with two mechanisms to improve the trainability of
variational quantum circuits (VQCs). First, we leverage prior
knowledge of the train data to initialize the model parameters
for mitigating barren plateau issues. Second, we regularize the
model parameters by diffusing Gaussian noise during training
to avoid being trapped in saddle points. In the experiment,
we conduct ablation studies to verify the effectiveness of our
proposed methods across four public datasets.

VI. LIMITATIONS AND FUTURE DIRECTIONS

In this study, we empirically verify the effectiveness of our
proposed method. However, our method may fail to perform
robustly due to the following limitations. First, we assume
that the dataset follows a well-known distribution so we could
regularize the initial distribution with prior knowledge of the
train data. However, in real-life scenarios, data distributions
may be more complex. This complexity may result in the
failure to capture the true data distribution during initialization.
Second, we assume that the distribution of the training data
remains static during training. Based on this assumption, our
method may be unable to adapt to the distribution shift since

we predetermine the initial distribution of model parameters
and the diffusion rate.

In the future, for the first limitation, we can employ non-
parametric Bayesian approaches to capture the complex data
distribution. To address the second limitation, we could handle
the distribution-shift problem via detection-based methods
(for detecting the shift) or adaptation-based methods (for
adaptively updating the hyperparameters).

APPENDIX

a) Hyper-parameters and Settings: In this study, we
examine our proposed strategy on a baseline VQC, whose
model architecture is described in Figure 7.
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Fig. 7: Model architecture of our baseline VQCs.

b) Hardware and Software: The experiment is conducted
on a server with the following settings: itemsep=-1mm

• Operating System: Ubuntu 22.04.3 LTS
• CPU: Intel Xeon w5-3433 @ 4.20 GHz
• GPU: NVIDIA RTX A6000 48GB
• Software: Python 3.11, PyTorch 2.1, Pennylane 0.31.1.
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