
Model-based Deep Learning for Rate Split Multiple
Access in Vehicular Communications

Hanwen Zhang∗, Mingzhe Chen†, Alireza Vahid‡, Haijian Sun∗
∗School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA

†Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
‡Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY, USA

Emails: hanwen.zhang@uga.edu, mingzhe.chen@miami.edu, arveme@rit.edu, hsun@uga.edu

Abstract—Rate split multiple access (RSMA) has been proven
as an effective communication scheme for 5G and beyond,
especially in vehicular scenarios. However, RSMA requires com-
plicated iterative algorithms for proper resource allocation, which
cannot fulfill the stringent latency requirement in resource con-
strained vehicles. Although data driven approaches can alleviate
this issue, they suffer from poor generalizability and scarce
training data. In this paper, we propose a fractional programming
(FP) based deep unfolding (DU) approach to address resource
allocation problem for a weighted sum rate optimization in
RSMA. By carefully designing the penalty function, we couple
the variable update with projected gradient descent algorithm
(PGD). Following the structure of PGD, we embed few learnable
parameters in each layer of the DU network. Through extensive
simulation, we have shown that the proposed model-based neural
networks has similar performance as optimal results given by
traditional algorithm but with much lower computational com-
plexity, less training data, and higher resilience to test set data
and out-of-distribution (OOD) data.

Index Terms—RSMA, model-based deep learning, deep un-
folding, projection gradient descent, low complexity, fractional
programming

I. INTRODUCTION

Rate split multiple access (RSMA) is a cutting-edge multiple
access technique in future wireless communication systems
[1]–[6]. RSMA divides the data stream into a common part,
which conveys information shared by multiple users, and a
private part to fulfill individual user requirements. This scheme
efficiently utilizes spectrum resources by broadcasting the
common information, thereby freeing up bandwidth for private
data, which can improve individual quality-of-service (QoS).
[3] derived a closed-form solution for the optimal private beam-
former and showed that RSMA has advantages in resource
allocation tasks with a massive number of users, minimum rate
demand of users, and low transmit power scenarios. Besides,
it also provided a basic scheme for resource allocation in
single-input single-output RSMA systems. Moreover, RSMA
is a promising solution in vehicular communications, where
the common message is critical safety information and private
messages reflect each vehicle’s control data. [1], [2], [7]
have demonstrated RSMA robustness, especially in scenarios
with high latency sensitivity, which is essential in vehicu-
lar communications. To reduce system latency in vehicular
communications, the lower computational workload is also
required. Following this, there are some results focused on

low complexity algorithms [5], [6]. Specifically, in [5], the
authors proposed a low complexity algorithm by reducing the
redundant constraints and pre-processing deployment region
modeling. [6] designed zero forcing (ZF) and maximum ratio
transmission (MRT) based methods to find closed-from expres-
sion solution for the RSMA max-min fairness problem and
reduce computational complexity. However, given the higher
mobility and stringent latency demands in vehicle communi-
cation, the low complexity algorithms given above are still hard
to meet the requirements.

Deep learning has emerged as a pivotal approach to enhance
the performance of communication systems [8], [9]. Leverag-
ing large datasets, deep learning facilitates the development
of neural network models that are capable of learning from
data without explicit expressions [10]. However, the mappings
learned during the training process often yield unpredictable
outcomes when exposed to out-of-distribution (OOD) scenar-
ios, which is caused by the lack of explicit physical principles
constraints [11]. To solve this problem, large amount of data
is required to train a model that is able to make neural
networks robust in OOD scenarios. As a result, model-based
deep learning is considered a promising alternative to problems
where the paradigm incorporates domain knowledge to design
an interpretable neural network architecture. It enables the
training of neural networks with less data while achieving
robust performance in OOD [11]. Model-based deep learning
integrates interpretable models into deep learning architectures,
enhancing their applicability to complex problems [11]. In
the context of wireless resource allocation, several studies
have proposed learning-based optimization strategies. For in-
stance, [12] presents a graph convolution network weighted
minimum mean square error (GCN-WMMSE) deep unfolding
(DU) algorithm that combines GCNs with WMMSE method
to achieve robust neural networks based resource allocation.
Meanwhile, [13] adopts Uzawa’s method [14] to integrate
constraint-related variables with the objective function for DU
network design. The particularly relevant work is [15], which
extends the approach to general scenarios, using a fractional
programming (FP) based DU framework to tackle the weighted
sum rate (WSR) problem in RIS scenario. In our research, we
focus on resource allocation scenarios with a more general FP
framework and also tackle the problem with variables that do
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not appear in the objective function. Moreover, the specially
designed learnable parameters can specifically enhance robust-
ness in OOD test with much lower complexity.

To address the challenges in designing model-based deep
learning networks for wireless resource allocation in multiple-
input single-output (MISO) RSMA scenarios, we introduce
a FP based DU framework. This framework is applicable
to various resource allocation problems. We summarize the
contributions of this paper as follows:

• We address a classic multi-user MISO RSMA resource
allocation utilizing FP, which offers a versatile framework
suitable for a variety of optimization problems, partic-
ularly fractional programming. This FP-based approach
enhances flexibility for application in complex RSMA
scenarios, including those focused on energy efficiency
and fairness-oriented optimization.

• We extend FP framework by applying the projected
gradient descent (PGD) algorithm and unfolding struc-
ture. To address the updating problem of variables that
only exist in the constraint, we introduce a specially
designed penalty factor to update the common stream
beamformer in PGD. Subsequently, to boost the algorithm
performance, we design a DU-based interpreted learning
framework with only few learnable parameters in each
layer.

• Finally, the experiments provide a comprehensive analysis
on the convergence and the optimal hyper-parameters
comparison to show proposed algorithm has similar per-
formance as traditional optimization. Then, we provide the
OOD test result to validate that the structure we designed
is robust in different environments. The last experiment
shows the proposed model has much lower computational
complexity than traditional algorithms. The provided ex-
periments sufficiently show model-based solution has the
potential for wireless resource allocation optimization.

Notation: We use bold capital symbol as matrix, bold lowercase
symbol as vectors, the lowercase symbol as scalar, ||.|| as
l2 norm, Re{.} as real part of function, [.]H as Hermite
transpose, [.]T as transpose, U{.} as uniform distribution, N{.}
as Gaussian distribution, z̄ as conjugate of z.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
We consider a downlink vehicular communication system,

which consists of a single base station (BS) or roadside unit
(RSU) with M antennas and a total of U single-antenna
vehicular users (VUs). In an RSMA system, data is split into
common and private streams. The common stream embeds
messages for all VUs (eg., critical safety information) while the
private stream provides individual data for each VU. Denote
v0,vk ∈ CM×1 the beamforming vectors for common and
private data streams, respectively. The BS transmit signal for
common stream and VU k private stream are given by:

x0 = v0s[n], (1)
xk = vksk[n], k ∈ {1, 2, .., U}, (2)

where s[n] and sk[n] are the common and dedicated data
streams, respectively. E(s[n])2 = E(sk[n])

2 = 1, i.e., both
data streams are normalized. The received signal of VU k is:

yk = hH
k xk + hH

k x0 +

U∑
j ̸=k

hH
k xj + nk, (3)

where hk ∈ CM×1 is the channel between BS and VU k, which
follows circularly symmetric complex Gaussian distribution
with power hk, hk ∼ CN (0, h2

kI). nk ∼ N (0, σ2
k) is AWGN

noise. The achievable common stream data rate of VU k is
given below in (4), while the private stream is given as (5):

ck = log2(1 +
hH
k v0v

H
0 hk

σ2
k +

∑U
j=1 h

H
k vjvH

j hk

), (4)

Rp
k = log2(1 +

hH
k vkv

H
k hk

σ2
k +

∑U
j ̸=k h

H
k vjvH

j hk

). (5)

To ensure that every VU is able to decode the common data
stream, the lowest common data stream channel capacity must
be larger than the sum of VU’s common stream decoding rate.
Therefore, it has the rate limitation given by [1], [2]

U∑
k=1

Rc
k ≤ min(ck), (6)

where min(ck) is the lowest common stream rate among all
VUs, Rc

k is the common data rate allocated to k-th VU. Without
loss of generality, we assume VU 1 has the lowest channel gain,
the sum of common stream rate upper bound is given by [3]:

min(ck) = log2(1 +
hH
1 v0v

H
0 h1

σ2
k +

∑U
k=1 h

H
1 vkvH

k h1

). (7)

B. Problem Formulation

To evaluate the RSMA system performance, we apply WSR
as the performance metric. Accordingly, the downlink RSMA
WSR problem is formulated as:

P1 : max
vk,Rc

k

WSR =

U∑
k=1

fk(R
c
k +Rp

k), (8)

s.t.
U∑

k=0

vH
k vk + Pc ≤ Pmax, (8a)

U∑
k=1

Rc
k ≤ min(ck), (8b)

Tr(vkv
H
k ) ≥ P0, (8c)

Rc
k ≥ 0, (8d)

where (8) is the original problem in which the objective is to
maximum the system WSR. fk is the weight for VU k; (8a) sets
the total power consumption to be lower than BS power Pmax,
and Pc is fixed circuit power consumption; in (8b), it guarantees
common stream can be decoded by every VU; constraint (8c)
guarantees the VUs’ private data transmission quality by setting
beamformers power lower bound; (8d) ensures the existence of
common stream.



III. PROPOSED SOLUTION

In this section, we solve the original problem P1 by the
iterative FP algorithm [16]. Then, we design a problem with a
penalty factor to match PGD updating requirement. By adding
learnable parameters and applying PGD algorithm, we propose
a FP based DU method to address the problem with low
complexity and high robustness.

A. Fractional Programming

We apply the standard semi-definite relaxation (SDR) and
let Vk = vkv

H
k . Besides, we define auxiliary variables:

z∗k = (σ2
k +

U∑
j ̸=k

hH
k Vjhk)

−1hH
k vk. (9)

z∗0 = (σ2
k +

U∑
k=1

hH
1 Vkh1)

−1hH
1 vi

0, (10)

Given initial feasible values for vk, z∗k and z∗0 would be con-
stant. And we set Φ0 = 1+ 2Re{

√
z̄0hH

1 V0h1z0} − z̄0(σ
2
k +∑U

k=1 h
H
1 Vkh1)z0 and Φk = 1 + 2Re{

√
z̄0hH

1 V0h1z0} −
z̄k(σ

2
k +

∑U
j ̸=k h

H
k Vjhk)zk. Then, from FP principle [16], P1

can be equivalently transformed as

P2 : max
Vk,Rc

k

U∑
k=1

fk
(
Rc

k + log2(Φk)
)
, (11)

s.t.
U∑

k=1

Rc
k ≤ log2(Φ0), (11a)

(8a), (8c), (8d),

It can be readily shown that given z∗k , P2 is convex with
respect to vk and Rc

k. Therefore, it can be solved by well-
known toolbox, such as CVX [17]. Then z∗k is updated by P2’s
solution vk. This iterative algorithm is shown in Algorithm 1.

Algorithm 1 FP Beamforming for WSR optimization

Require: hk, fk, P0, Pc, Pmax, initial value of z0, zk, v0, vk

and Rc
k. Set counter j = 1 and convergence precision ϕp.

while |WSRj+1 − WSRj | > ϕp do
Step 1 Update Vk and WSRj from P2 with z∗k , z∗k ,
Step 2 Apply eigen decomposition on Vk to obtain vk,
Step 3 Update each z∗k , z∗0 by (9) and (10), j = j + 1.

end while

B. Projection Gradient Descent with A Penalty Function

In this subsection, the PGD algorithm is introduced, which
splits P2 into two parts: the gradient descent on the objective
function (unconstrained problem) and a projection to ensure all
constraints are met. Since in PGD algorithm, the derivative is
directly based on vk and v0 instead of SDR variable Vk and
V0. However, simply dropping all constraints in P2 will lead to
no gradient updates for v0. Therefore, we first reformulate P2

by adding a penalty function of constraint (8b) to the objective

function, which couples gradient with v0. The unconstrained
problem then becomes:

P3 : max
ṽk,R̃c

k

L =

U∑
k=1

fk

(
R̃c

k + log2
(
Φk)

)
− λ(

U∑
k=1

R̃c
k − log2(Φ0)). (12)

Here, λ > 0 is the penalty factor. When PGD updates vk,∀k
in RSMA system, v0 can be updated in each iteration with
the penalty function given in P3. Therefore, based on the
unconstrained convex optimization in P3, the beamformers
and common data rate ṽi+1

k , ṽi+1
0 , R̃c,i+1

k can be updated by
vi
k,v

i
0, R

c,i
k following their gradient descent direction. The

iterative steps are given in (13), respectively.

R̃c,i+1
k = Rc,i

k + α1,k∇Rc,i
k ,

ṽi+1
0 = vi

0 + α2∇vi
0,

ṽi+1
k = vi

k + α3,k∇vi
k, (13)

where i is i-th iteration step, α1,k, α2 and α3,k are fixed step
size. And ∇Rc,i

k ,∇vi
0,∇vi

k are gradients (derivatives) of L
with respect to Rc

k, v0, and vk are given as

∇Rc,i
k =

∂L
∂Rc,i

k

= fk − λ,∀k ̸= 0, (14)

∇vi
0 =

∂L
∂vi

0

=
2λz̄i0h1

Φi
0 ln 2

, (15)

∇vi
k =

∂L
∂vi

k

= (
ζi
k

Φi
k

+

U∑
j ̸=k

βi
j,k

Φi
j

+ oi
k),∀k ̸= 0, (16)

where ζi
k, βi

j,k and oi
k are given as

ζi
k =

∂(2Re{zijhH
j vi

j})
∂vi

k ln 2
= 2fkz̄

i
khk/ ln 2, (17)

βi
j,k = −

∂z̄ij(σ
2
k +

∑U
l ̸=j h

H
j vi

lv
i,H
l hj)z

i
j

∂vi
k ln 2

= −2zij z̄
i
jfjhjh

H
j vi

k/ ln 2,∀k ̸= 0, (18)

oi
k =

∂λ
(∑U

k=1 −Ri,c
k + log2(Φ

i
0)
)

∂vi
k

=
−2λzi0z̄

i
0h1h

H
1 vi

k

Φi
0 ln 2

.

(19)

To guarantee the updated variables in the feasible region
of the original problem, we employ a projection method to
meet all constraints in P2. Hence, the projection algorithm for
ṽi
k,∀k ∈ {0, 1, ..., U} is given as:

vi+1
k =

ṽi+1
k

||ṽi+1
k ||

√
a∗k, k = {0, 1, ..., U},

a∗k =
ãk∑U
k=0 ãk

(Pmax − (U + 1)P0) + P0,

ãk = max(||ṽi+1
k ||22,P0)− P0. (20)

The projection approach above bounds the beamformer
power within feasible region without changing beamforming



direction. Moreover, the corresponding projection for R̃c,i+1
k

is given as

Rc,i+1
k =

max(R̃c,i
k , 0)∑U

k=1 R̃
c,i
k

min(ci+1
k )

=
max(R̃c,i

k , 0)∑U
k=1 R̃

c,i
k

log2(1 +
hH
k vi+1

k vi+1,H
k hk

σ2
k +

∑U
j ̸=k h

H
k vi+1

j vi+1,H
j hk

).

(21)

When the number of iteration approaches to infinity, Rc∗
k ,

k ∈ {k|fk = max(f1, f2, ..., fU )}, has asymptotic property to
achieve upper bound, min(Rk), while other Rc

k = 0. Therefore,
projection step for Rc

k is simplified as:

Ri+1,c
k =

{
min(ci+1

k ), if fk = max(f1, f2, ..., fU ),

0, otherwise.
(22)

C. PGD Based Deep Unfolding

However, the gradient updating step given in above PGD
has poor convergence performance, particularly when the step
size is small. Moreover, the penalty function given in P3

even punishes objective function when the constraints are in
feasible region. Therefore, in this subsection, we design a
DU structure [11], by adding learnable parameters θ into the
PGD gradient updating part. These learnable parameters are
trained to dynamically adjust weights for beamformers at each
iteration, thereby can converge within few steps, which is much
faster than PGD.

Essentially, the DU structure is designed to follow each
iteration in PGD. The difference is that, DU introduces some
learnable parameters which assign the weights for the terms in
polynomials of Π1 and Π2 to update vi

0 and vi
k. Specifically,

in the n-th layer, v0 and vk in (13) are reformulated as:

ṽn+1
0 = vn

0 +Π1(v
n
0 ), (23)

ṽn+1
k = vn

k +Π2(v
n
k ). (24)

Here, Π1(v
n
0 ) and Π2(v

n
k ) are the n-th layer for v0 and vk,

which are given as,

Π1(v
n
0 ) = ln 2(ϕwn

0 )
∇vn

0

λ
, (25)

Π2(v
n
k ) = (ϕwn

k )
[
ζn
k

Φn
k
,
βn

1,k

Φn
1
,
βn

2,k

Φn
2
, ...

βn
j,k

Φn
j
, ..,

βn
U,k

Φn
U
,
on
k

λ

]
[
ηnk , η

n,1
j , ηn,2j , ..., ηn,jj , ..., ηn,Uj , ηn,pk

]T
ln 2,∀k ̸= 0,∀j ̸= k,

(26)
ϕ = [f1, f2, ..., fU ,P0,Pmax], (27)

where ϕ is the environment pattern vector, which is spliced by
weights fk and power consumption Pmax,P0. And the learnable
parameters for each layer are

θn = {wn,T
0 ,wn,T

k , ηnk , η
n,k
j , ηn,pk }, (28)

where wi
0,w

n
k ∈ R(U+2)×1, ηn,pk , ηn,kj , ηnk ∈ R.

The designing of learnable parameters follows some schemes
proposed in [18], [19], which add parameters on each term

in gradient polynomial to change the weights of updating in
different directions. Besides, in this particular problem, the
penalty function given above has penalty factor λ. If we
consider the penalty factor as the Lagrangian multiplier, the
training process can be considered as the regression problem
for learnable parameter ηpk to regress the Lagrangian multiplier
value in each iteration step. The learnable parameter, Wk,
is applied to construct a linear transformation with ϕ. This
linear transformation provides a robust factor to make PGD
be adaptive to fk, P0 and Pmax. Therefore, the beamformers
gradient descent is able to be accelerated specifically with ϕ.
DU algorithm is given as Algorithm 2. A graphic illustration
of DU layers is shown in Fig. 1.

Algorithm 2 Deep Unfolding for FP-based WSR Optimization

Require: Initialize fixed parameters, learnable parameters, and
set the layer number N , batch size, epoch, learning rate for
optimizer in backward propagation,
counter = 0,
while epoch − counter > 0 do
counter = counter + 1,
For each batch data:
Forward Propagation Part:

Initial beamformers randomly, then for each layer:
Step 1 Update zk, by (9); Update z0, by (10),
Step 2 Update ṽ0, by (25); Update ṽk, by (26),
Step 3 Update vk and v0 by projection (20),
Step 4 Update Rc

k by (22),
Step 5 Output results {v0,vk, R

c
k},

Forward Propagation ends
Backward Propagation Part:

Step 6 Calculate the loss given by (29),
Step 7 Backward Propagation, update θ and optimizer.

Backward Propagation ends
end while

Lastly, for this learning problem, the loss function is:

Loss =
1

QN

Q∑
q=1

N∑
n=1

log2(n+ 1)( ˆWSRq,n − WSR∗
q,n), (29)

ˆWSRq,n =
U∑

k=1

fq
k (R

c,n
k,q + log2(1 +

hH
k,qv

n
k,qv

n,H
k,q hk,q

σ2
k,q +

∑U
j ̸=k h

H
k,qv

n
j,qv

n,H
j,q hk,q

)),

(30)

where q is the q-th sample in Q samples batch. WSR∗

is the ground truth WSR provided in dataset, generated by
Algorithm 1. The log loss function is similar to the shape
of the iterative step. As a result, loss function couples the
relationships between last layer outputs and each layer outputs
like iterative process in traditional algorithm. Besides, the loss
function sets a connection between each layer and loss function
output to prevent gradient vanishing.
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Fig. 1: Proposed Deep Unfolding Networks Structure Overview

IV. SIMULATION RESULTS

In this section, we evaluate the performance of proposed DU
networks via numerical simulations. Firstly, we introduce the
way to generate data set and training hyper-parameters. For
experiments, the convergence evaluation and hyper-parameters
evaluations are given to show which set of hyper-parameters
gets the best results. Then, we test the robustness on OOD data
set with different distributions of VUs’ weights, high AWGN,
and power lower bound. Finally, the complexity comparison
is given to show the proposed algorithm has much faster
computation speed than traditional algorithm.

In this work, we consider a scenario with U = 3 VUs in
downlink RSMA MISO system. The BS has M = 12 anten-
nas, and the maximum transmission power Pmax = 33 dBm.
The circuit power consumption Pc = 30 dBm. Channel state
information is represented as CSCG as mentioned above, where
hk ∼ CN (0, 10I), nk ∼ N (0, 1). The convergence precision
for FP IPM approach is ϕp = 10−2. The weights fk, minimum
power requirement of vk and AWGN power are stochastically
generated following uniform distribution, i.e, fk ∼ U(0, 1)
while

∑U
k=1 fk = 1, P0 ∼ U(0, 0.125). The dataset has 5969

samples generated by FP algorithm given in Algorithm 1 with
CVX tool box. Unless otherwise stated, we choose N = 12,
lr = 0.003 as optimizer learning rate, bz = 1000 as batch size,
and ep = 80 as epoch for the hyper-parameters setting.

A. Important Parameters Comparison and Effectiveness Test

In this subsection, we discuss the optimal hyper-parameter
setting and evaluate network training effectiveness. Specifi-
cally, learning rate, batch size, and layer number are compared
to find the best hyper-parameters and prove the effectiveness
of the proposed method.

Fig. 2 shows the impact on the number of DU lay-
ers. The y-axis is the average sum ratio (ASR), defined as
1
Q

∑Q
q=1

ŴSRq,N

WSR∗
q,N

that provides the average performance ratio of

DU ˆWSR and optimal WSR∗. When the ASR approaches to 1,
the DU performance is closer to optimal results. As given by
Fig. 2, the algorithm converges within few steps with relatively
high performance, where ASR is near to 97% when layer

Fig. 2: Train Set Convergence Performance Comparison with
Different Number of Layers

number is 12. Besides, when the number of layers increases,
ASR continues to increase but the improvement becomes
marginal after N = 8. In DU, each layer is constructed
according to PGD iteration, which follows the iterative gradient
descent process in optimization algorithm. As N grows, DU is
also progressed to better results due to model convergence.

In Table I, DU’s performance in test set is provided with
different hyper-parameters, which maintains its generalization
ability. This explains that although the DU is trained by a small
data set, it can also converge rapidly to near-optimal results.
The best ASR can reach over 97% with hyper-parameters: N =
12, lr = 0.003, bz = 200.

B. Out-of-distribution Test

In this subsection, the stricter generalizability test, OOD test,
where we apply N = 12, lr = 0.003, bz = 1000 as hyper-
parameters setting. Since data-driven neural networks perform
much worse in OOD [11], while model-driven is designed with
explicit expression to adapt to various OOD scenarios. We test
the generalizability on 3 OOD scenarios which are (Scenario
1) summation of weights summation less than 1; (Scenario
2) higher mean AWGN power scenario; (Scenario 3) scenario
with different distribution of power lower bound P0. In scenario
1, the summation of fk follows uniform distribution U(0, 1).
For the second scenario, σ2

k ∼ N (0.5, 4), while the third



TABLE I: Important Parameters Comparison in Test Set Generalizability Performance

Parameters Learning Rate Part Test Set Performance Batch Size Part Test Set Performance
lr = 0.015 lr = 0.01 lr = 0.005 lr = 0.003 lr = 0.001 bz = 200 bz = 400 bz = 700 bz = 1000 bz = 2000

ASR (%) 96.77 96.99 96.78 96.71 95.18 97.08 96.88 96.66 96.71 95.36

Parameters Layer Number Part Test Set Performance
N = 4 N = 6 N = 8 N = 10 N = 12

ASR (%) 85.75 92.50 94.70 96.39 96.71

scenario has P0 ∼ U(0, 1/3). Since the learnable parameters
are restricted by the explicit expression computation in DU net-
works, the DU can maintain its performance in training set and
learn the deeper mapping relationship underlying optimization
rules. As shown in Table II, thanks to the model-based design,
in OOD set, DU shows comparable ASR performance with
baseline, which shows its strong resilience to a more general
communication setting.

TABLE II: OOD Performance Results

Parameters Baseline Scenario 1 Scenario 2 Scenario 3
Special Distribution None U{0, 1} N (0.5, 4) U{0, 1/3}

ASR (%) 96.71 91.55 96.21 97.72

C. Complexity Comparison with FP-based Optimization

In this subsection, we provide computation efficiency com-
parison experiment to evaluate traditional optimization and
proposed method complexity. To show the performance of
proposed DU neural networks, we employ the value given by
DU trained parameters from Python to MATLAB and setup
a DU forward propagation structure with N = 12 layers,
and compare the execution time with FP algorithm given by
CVX tool box. We repeat Monte Carlo experiments of FP
and proposed DU for 20 times to obtain average results. The
corresponding execution time (unit in second) is given in Table
III. It is shown that the proposed DU method is 156 times faster
than traditional FP-based optimization, a significant improve-
ments on computation complexity. Therefore, this method well-
suited for vehicular communication scenarios, where latency is
a major performance metric.

TABLE III: Computation Time Comparison

Approach FP-based Optimization Proposed DU
Total Time 8.17392 0.05232

Time for Each Step/ Layer 2.04348 0.00436

V. CONCLUSION

This paper focuses on the downlink WSR vehicular com-
munication problem with RSMA. We aim to obtain the opti-
mal beamforming vectors for each VU. By applying a well-
designed penalty function, we proposed an FP and PGD based
DU neural network framework, which shows comparable per-
formance with traditional optimization approach but with much
lower complexity. This paper provided extensive numerical
results and has shown the advantages of proposed method in
ASR, OOD, and computation time performance.
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