
ar
X

iv
:2

40
5.

01
50

5v
1 

 [
he

p-
th

] 
 2

 M
ay

 2
02

4

Effective Lifshitz black holes, hydrodynamics, and transport coefficients in

fluid/gravity correspondence

D. C. Moreira1

1Centro de Ciências, Tecnologia e Saúde,
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Effective Lifshitz black holes with arbitrary dynamical exponent are addressed in the

fluid/gravity membrane paradigm. The transport and the response coefficients in the dual

Lifshitz field theory are calculated and analyzed, including the charge diffusion constant

and the shear mode damping constant, along with the shear-viscosity-to-entropy density

ratio. The Kubo formula is employed to obtain the electrical DC conductivity for the gauge

sector corresponding to impurity through the holographic linear response of gauge vector

fluctuations in the Lifshitz black brane geometry.

I. INTRODUCTION

AdS/CFT provides robust tools to investigate field theories in the strongly coupled regime.

Their hydrodynamical infrared (IR) limit corresponds to long-length scales. In the AdS codimension-

one bulk, weakly-coupled gravity is dual to strongly-coupled conformal field theory (CFT) on the

AdS boundary. [1]. At finite temperature, the AdS bulk geometry becomes an AdS-Schwarzschild

black brane with an event horizon. The AdS–Schwarzschild black brane geometry corresponds

to the low-energy limit1 of the metric equipping a stack of Nc non-extremal Dirichlet branes,

whose dual structure is an N = 4 super-Yang–Mills theory with gauge symmetry SU(Nc), at finite

temperature that equals the one for the Hawking radiation of the gravitational background, taking

into account the large-Nc limit, for large ’t Hooft coupling gYM → ∞ [2, 3]. The holographic

duality conjectures that the CFT at the long-scale regime on the AdS boundary must be dictated

by the near-horizon limit in the AdS bulk. Black holes and black branes can encode fluid flows

on their event horizon in the membrane paradigm, whose low-energy regime is a strongly-coupled

field theory. Einstein’s equations in the AdS bulk therefore correspond to the relativistic vis-
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cous hydrodynamics regulated by Navier–Stokes equations on the AdS boundary, constituting

the fluid/gravity correspondence [4–9]. Conformal symmetry on the gravity side corresponds to

accelerated boost symmetry in the Navier–Stokes equations. The latter are stable, strongly hyper-

bolic, and causal, manifesting in the thorough out-of-equilibrium scenario proposed in the BDNK

(Bemfica-Disconzi-Noronha-Kovtun) approach [10–13]. The hydrodynamical fluid lives at the AdS

boundary on the cutoff manifold corresponding to the ultraviolet cutoff in the dual field theory [14].

It sets in the membrane paradigm within the fluid/gravity correspondence framework, wherein

black holes are analog to dissipative branes with finite temperature and entropy, endowed with

electrical resistivity and finite surface viscosity [15–17]. The membrane paradigm incorporates

a correspondence between the black hole geometry itself in the bulk and the codimension-one

spacetime responding like viscous fluids, emerging at the stretched horizon, which consists of a

timelike manifold slightly outside the black hole event horizon, being able to thermalize, absorb,

and radiate information. In this way, microstates of the black hole can be seen as dynamical degrees

of freedom related to a physical membrane infinitesimally near the black hole event horizon. It

mimics a surrogate for global event horizons in any phenomenological description of the evolution

of black holes [18].

Fluid/gravity duality is an efficient setup to compute transport and response coefficients in

the dual field theory having hydrodynamical description. It can be implemented when isometries

are employed to perturb the horizon of black brane solutions of Einstein’s field equations in AdS.

Among the calculation of transport and response coefficients, one of the most celebrated results

of fluid/gravity duality comprises computing the shear viscosity-to-entropy density ratio (η/s).

The shear viscosity of the dual field theory can be read off the absorption cross-section of the

graviton by the black brane [19]. Weakly-coupled gravity has been employed as a dual scenario

to explore strongly-coupled field theories, bringing robust advances for formulating correlators and

the finite-temperature behavior at strong-coupled regimes [20, 21]. The hydrodynamical limit of

the gauge/gravity duality is fruitful for investigating the quark-gluon plasma, corroborating to

experimental data at the LHC and RHIC [22–27]. Also, 1-loop quantum corrections to η/s have

been consistently addressed, complying with phenomenology [28, 29].

Efforts of modeling physical systems in condensed matter have been put forward from the dual

gravity side [30, 31]. Relativistic strongly-coupled CFTs incorporate a dual framework that can

be probed by studying gravity in asymptotically AdS spacetimes. The duality has recently been

extended to encompass non-relativistic theories with an anisotropic scaling symmetry, nonethe-

less. Lifshitz spacetimes naturally emerge in quantum phase transitions occurring in condensed
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matter from the quantum-field theoretical point of view in the AdS/CMT setup. At the quantum

critical point separating two distinct phases at the zero-temperature state, quantum fluctuations

engendering the phase transition diverge, making the physical system invariant under the rescaling

t 7→ λz t and xi 7→ λxi, where z is known as the dynamical exponent, for a constant λ [32–34]. The

quantum critical point splits the phase diagram into ordered and disordered phases and encodes

relevant features regarding transport and response coefficients [35, 36]. In general these quantities

are intricate to compute due to the strongly-coupled regime. AdS/CFT can consistently address

strongly-coupled systems from the gravity dual side. However, in the AdS/CFT standard formu-

lation, top-down models are mostly restricted to the z = 1 case, although values z 6= 1 correspond

to robust pieces of the duality which have been observed from the experimental point of view in

condensed matter [34, 37].

Charged black brane solutions in asymptotically Lifshitz spacetimes lacked in the literature,

comprising the dual gravity account of field theories at Lifshitz fixed points at finite charge density

and temperature. A promising candidate was obtained in Ref. [38], whose thermodynamic and

hydrodynamic properties were thoroughly scrutinized. The solution was derived in the context

of the recent extensions of Derrick’s theorem for curved spacetimes [39–41]. One of the ways

to implement it consists of using explicitly coordinate-dependent scalar potentials, which breaks

diffeomorphism invariance and yields effective stable scalar fields on static backgrounds that do

not undergo backreaction [42]. In this context, analytical scalar field solutions in the probe regime

were obtained for Lifshitz and asymptotically Lifshitz spacetimes [43–45], as well as for static and

spherically symmetric backgrounds [46–48]. General Relativity appears as an emergent theory

that manifests as the low-energy limit of some fundamental theory, which does not necessarily

obey invariance under diffeomorphism [49]. The explicit dependence of the action upon spacetime

coordinates encodes degrees of freedom that are not dynamical, breaking general covariance and

inducing a non-conserved energy-momentum tensor. This fact is problematic in systems where

it is necessary to consider metric backreaction since the Einstein tensor is conserved, implying a

solenoidal energy-momentum tensor on shell, permitting to solve Einstein’s field equations [50].

However, in extensions of the studies carried out on the probe fields mentioned above for setups

involving metric backreaction, charged black hole solutions were found with background geometry

yielding asymptotically Lifshitz spacetimes [38] and will be here explored in the fluid/gravity

correspondence, emulating black brane solutions [51, 52].

On the other hand, Lifshitz black brane solutions emerge as near-horizon geometries of some

holographic superconductors and AdS4 charged black branes [53–55]. The Lifshitz black brane
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solution has also been proposed in top-down holographic models to scrutinize strange metals [56].

Transport and response coefficients, as the DC conductivity and diffusion constant, can be obtained

for Lifshitz black branes [57], emulating results from relativistic effective field theories [58, 59]. For

the non-relativistic Lifshitz black brane, the diffusion constant and the shear viscosity-to-entropy

density can be derived alternatively from the membrane paradigm [60, 61]. In this work, the

membrane paradigm will be employed to compute the charge diffusion constant, the shear mode

damping constant, and, subsequently, the shear-viscosity-to-entropy density ratio, as well as the

electrical DC conductivity in the Lifshitz-type background geometry implemented by effective Lif-

shitz black hole solutions. The correlation functions can be determined by the standard procedure

proposed in Refs. [62–64], for arbitrary z and arbitrary spacetime dimension D. Also, we will

study the Kubo formula driving the DC conductivity carried by impurity in Lifshitz matter. In

condensed matter physics, impurity plays an important role in approaching semiconductors. It is

then essential to describe the electrical DC conductivity also for the case of impurity. This work

is organized as follows: in Sec. II, effective Lifshitz black hole solutions are briefly reported and

discussed. Sec. III is devoted to presenting the fluid/gravity correspondence framework, for trans-

port and response coefficients to be computed. The linear response against small perturbations

of the fluid membrane event horizon is implemented for the boundary Lifshitz dual field theory.

Correlation functions yield the charge diffusion constant, the shear mode damping constant, and

the shear-viscosity-to-entropy density ratio. In Sec. IV, the electrical DC conductivity in the

Lifshitz-type background geometry, related to impurity, is implemented by fluctuations coupled

to the dilaton in effective Lifshitz black hole backgrounds. Hence, the Kubo formula is utilized,

establishing the temperature-dependence of the electrical DC conductivity for a particular value of

the dynamical exponent, corroborating with existing data in the literature. The correlation func-

tions are derived in the context of gauge vector fluctuations, whereas impurity can be implemented

as an additional gauge sector. Sec. V contains the concluding remarks, further discussion, and

perspectives.

II. EFFECTIVE LIFSHITZ BLACK HOLE

In this work, we are interested in studying systems modeled by the effective action [38]

S =

∫

dDx
√−g

(

1

2
R− ΛD − 1

2
∇aφ∇aφ− V (x,φ)− 1

2
FabF

ab − 1

2
ε(x)FabFab

)

, (2.1)
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for g = det(gab) denoting the metric determinant, with background coordinates xa, where a =

0, 1, · · · ,D − 1, ΛD = − (D − 2) (D + 3z − 4) /2ℓ2 < 0 stands for the cosmological constant, R

denotes the Ricci scalar, Fab = ∇[aAb] is the standard Maxwell electromagnetic field strength,

and Fab = ∇[aBb] is an additional electromagnetic field strength governing the dynamics of an

auxiliary gauge vector field potential Ba, which interacts with a nondynamical dielectric field ε(x).

In addition, the scalar field φ(x) self-interaction is governed by the coordinate-dependent scalar

potential V (x,φ).

The ansatz for the background geometry is given by

ds2 = g00(r)dt
2 + grr(r)dr

2 +
r2

ℓ2

D−1
∑

a,b=2

σ̂ab dx
adxb, (2.2)

for

g00(r) = −
(r

ℓ

)2z
f(r) and grr(r) =

ℓ2

r2f(r)
, (2.3)

where ℓ is a length scale, and x0 = t, x1 = r. One assumes a horizon metric σ̂ab(x
c), for 2 ≤ c ≤

D− 1, endowing a transverse (D− 2)-dimensional Einstein manifold Σ̂κ encoding either spherical,

planar or hyperbolic topologies, for κ = 1, κ = 0, or κ = −1, respectively. In this way, the

conserved charges, respectively associated with the Maxwell electromagnetic potential and the

auxiliary gauge vector field potential Ba, read

Q = − 1

4π

∮

∂Σκ

dD−2x

√

|h(2)|nasbFab =
ω

(κ)
D−2

4πℓ
q, (2.4a)

Q̊ = − 1

4π

∮

∂Σκ

dD−2x
√

|h(2)|nasbε(x)Fab =
ω

(κ)
D−2

4πℓ
q̊, (2.4b)

where na and sa are timelike and spacelike unit normal vectors to the manifold ∂Σκ defined at

constant slices (t, r), equipped with the induced metric h
(2)
ab = r2

ℓ2
σ̂ab, and ω

(κ)
D−2 =

∮

Σ̂κ
dD−2x

√

|σ̂κ|
denotes the volume form of Σ̂κ.

The explicit coordinate dependence presented in the scalar potential and in the effective di-

electric breaks diffeomorphism invariance and leads to a non-conserved energy-momentum tensor

unless the following compatibility condition is satisfied on shell:

∂aV (x,φ) = −1

2
FbcFbc∂aε(x). (2.5)

Eq. (2.5) provides a constraint that eliminates the conserved charge associated with Ba from the

metric solution. Therefore, the standard Maxwell field is the only one responsible for provid-

ing electric charge to the background. The solutions for the metric coefficients, the dilaton, the
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electromagnetic potential, and the dielectric are respectively given by

f(r) = 1− 2m

(

ℓ

r

)D+3z−4

+
(D − 3)κ

(D + 3z − 6)r2
+

2q2

(D − 2) (D − 3z)

(

ℓ

r

)2(D−2)

, (2.6a)

φ(r) = ϕ±
√

(z − 1)(D − 2) log
(r

ℓ

)

, (2.6b)

A(r) = Φ− q

D − z − 2

(

ℓ

r

)D−z−2

, (2.6c)

1

ε(r)
=

(D + z − 2)

2q̊2
(z − 1)

(r

ℓ

)2(D−2)
f(r), (2.6d)

where (ϕ,Φ) are integration constants2. The solution (2.6) is well behaved forD 6= 3z, D 6= 3(2−z),

and D 6= z+2. Note that to achieve Lifshitz spacetime in the asymptotic regime r → ∞, one must

set D + 3z − 4 > 0. The scalar potential is given by

V (r,φ) =
1

2f(r)

(

ℓ

r

)2(D+z−2)(dW

dφ

)2

+ U(r), with U(r) = −z (z − 1)

2ℓ2
f(r), (2.7)

and W = W (φ) must satisfy the first-order differential equation

dφ

dr
= ± 1

f(r)

(

ℓ

r

)D+z−1 dW

dφ
. (2.8)

By assuming that the conditions for the existence of an event horizon (rh) are satisfied, one can

write the mass parameter as

m(rh) =
1

2

(rh
ℓ

)D+3z−4
[

1 +
(D − 3)κ

(D + 3z − 6)r2h
+

2q2

(D − 2) (D − 3z)

(

ℓ

rh

)2(D−2)
]

. (2.9)

In this system, one can find scenarios presenting either a unique event horizon for z > D/3 or two

horizons (an event horizon and a Cauchy horizon) for 1 ≤ z ≤ D/3 [38].

III. CHARGED PLANAR LIFSHITZ BLACK BRANE AND THE MEMBRANE

PARADIGM

Several hydrodynamical features of the effective Lifshitz black hole solutions can be probed in the

membrane paradigm setup, wherein the stretched horizon can be transliterated into a dissipative

viscous fluid with electrical conductivity and shear viscosity. The analog hydrodynamic description

holds for the effective Lifshitz black hole solution, whose horizon lacks diffeomorphism invariance.

This analogy will also be used in the next section for establishing the mapping between the bulk

2 The Φ parameter in the electromagnetic potential (2.6c) plays the role of the chemical potential in the near-

boundary domain of the field-operator dictionary, which is going to be explored in the next sections.
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fields in the action (2.1) and the dual field theory currents in the long-wavelength regime. The

approach to black hole gravitational perturbations indicates that fluctuations of the stretched

horizon have to encode the complete collection of hydrodynamical modes. Methods in fluid/gravity

correspondence must replicate wave modes describing the sound propagation, in addition to non-

propagating modes including shear and diffusion. Hydrodynamics, as an effective theory, designates

the dynamics ruling any thermal system whose time and length scales are large, contrasted to

microscopic scales. The degrees of freedom entering this theory, in the simplest cases, are the

densities of conserved charges. Hydrodynamics proposes observing a shear diffusion mode whose

diffusion constant is proportional to the shear viscosity. We will compute, for charged Lifshitz

black branes, for an arbitrary dynamical exponent z, the charge diffusion constant, the shear mode

damping constant and, subsequently, the shear-viscosity-to-entropy density ratio [35, 65].

One can now take into account the charged Lifshitz black brane metric (2.2), with coefficients

(2.3, 2.6a), for the planar case corresponding to σ̂ij = δij in the metric (2.2). Equations of motion

governing gauge vector fields, with suitable boundary conditions, yields the dispersion relation for

the diffusive mode, ω = ω(k) = −iDk2, taking the limit k → 0, encoding the charge diffusion

constant for black brane backgrounds. In the membrane paradigm, a conserved current ja can be

defined in terms of the field strength Fab appearing in the action (2.1) [15, 60, 65]. The stretched

horizon is a spacelike surface situated at r = r0 such that rh < r0 and r0 − rh ≪ rh. The outward

normal to that surface is a unit spacelike vector na = (0, g
1/2
rr , 0, · · · , 0). The current associated

with the stretched horizon in the membrane paradigm reads ja = limr→r0 nbF
ab, whereas the

parallelizability of the current to the horizon, naj
a = 0 and, additionally, current conservation

∂aj
a = 0, reside on the fact that the field strength F ab is antisymmetric. Ref. [60] showed Fick’s

law ja = −D∂aj
0, as the current conservation equation ∂aj

a = 0 implies that the charge density

j0 satisfies the diffusion equation
(

∂t −D gab∂a∂b
)

j0 = 0.

Taking into account the metric (2.2) with coefficients (2.3, 2.6a) the charge diffusion constant

reads

D = − ℓ2
√

−g(rh)
√

−g00(rh)grr(rh)

∫

∞

rh

dr
g00(r)grr(r)
√

−g(r)

=
r2D+2
h

(D − z − 2)ℓD+z−2
, (3.1)

where the inequality z < D − 2 is assumed to ensure the convergence of the integral.

On the other hand, the dispersion relation for the shear mode reads ω = ω(k) = −iDk2, arising

from the lowest pole remaining in the long-wavelength, low-frequency hydrodynamic limit, due to
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the black hole graviton absorption upon gravitational perturbations. One interprets the diffusion

as a consequence of viscosities of the dual gauge theory plasmas also in the limit k → 0, where

the shear mode damping constant is given by D = η/(ǫ + P ). The shear viscosity comes upon

the response of the fluid, dual to the effective Lifshitz black hole solution, undergoing thermal

internal forces. By coupling gravity to the hydrodynamical fluid and measuring the response of

the energy-momentum tensor under gravitational perturbations, the Kubo formula established the

shear viscosity as a transport coefficient associated with the retarded Green function [66, 67]. For

gravitational perturbations of the effective Lifshitz black hole solution, the shear mode damping

constant is given by [60, 65]

D = −
√

−g(rh)
√

−g00(rh)grr(rh)

∫

∞

rh

dr
ℓ2g00(r)grr(r)

r2
√

−g(r)
= − rh

2D − z − 2

(rh
ℓ

)−D+z−1
. (3.2)

Ref. [38] showed that the temperature of the effective Lifshitz black hole solution (2.2), with

coefficients (2.3, 2.6a), is given by

Th =
rzh

4πℓz+1

(

D + 3z − 4 +
(D − 3)κ

r2h
− 2q2

D − 2

ℓ2(D−2)

r
2(D−2)
h

)

. (3.3)

One can therefore derive the expression for η/s by observing the thermodynamic expression ǫ+P =

Ths, where s stands for the entropy per unit volume of the fluid membrane, yielding

η

s
= Th

√

−g(rh)
√

−g00(rh)grr(rh)

∫

∞

rh

dr
−g00(r)grr(r)

gxx(r)
√

−g(r)

=
1

4π(2D − z − 2)

(rh
ℓ

)−D+2z
(

D + 3z − 4 +
(D − 3)κ

r2h
− 2q2ℓ2(D−2)

(D − 2)r
2(D−2)
h

)

, (3.4)

where the integral is convergent if z < D− 2. Eq. (3.4) emulates the Kovtun-Son-Starinets (KSS)

result for charged planar Lifshitz black branes [19, 62].

IV. ASYMPTOTIC EXPANSION AND ELECTRICAL DC CONDUCTIVITY FOR THE

IMPURITY SECTOR

Einstein-Maxwell-dilaton theory, with a Liouville-type potential is associated with a relativistic

theory with non-conformal symmetry [68]. In this case, the electrical DC conductivity is tem-

perature dependent if vector fluctuations couple to the dilaton. The Lifshitz geometry can be

recovered if a Liouville potential is absent [32, 57] and consists of the weakly-coupled dual to a

strongly-coupled Lifshitz field theory. The bulk vector field endowing the Lifshitz geometry is dual

to matter in the Lifshitz field theory and the limit z → 2 recovers the non-relativistic nature of
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the dual theory. The electrical DC conductivity was investigated, also in the context of supercon-

ductivity, in nonrelativistic Lifshitz media in the absence of dilaton couplings [69, 70]. However,

the DC conductivity in the Lifshitz medium was also computed in the context of non-vanishing

dilaton couplings. We here aim to implement vector fluctuations in the effective Lifshitz black hole

geometry, to report impurity in the Lifshitz medium. The fluctuation of the background gauge

field can be associated with the Lifshitz matter, whose DC conductivity is different from the one

related to impurity. Macroscopic features of non-relativistic Lifshitz media can probed by methods

involving the linear response theory provided by fluctuations.

The electric properties of a non-relativistic Lifshitz theory with two different charge carriers can

be studied when one perturbatively implements impurities into the action (2.1). In the charged

planar Lifshitz black brane scenario, in the decoupling limit g2
YM

≫ 1 of weakly-coupled gravity,

for the particular case z = 1, the scalar and gauge sectors become decoupled from gravity and do

not contribute to the AdSD curvature. It is reasonable to work with an equivalent decoupling limit

for any value of z for the charged planar Lifshitz black brane. Therefore, to analyze impurities,

all analytical and numerical methods can be used in the fixed background of the charged planar

Lifshitz black brane described by the metric (2.2), with coefficients (2.3, 2.6a). The action (2.1)

can be perturbatively added by the action describing impurity as [35, 71]

Simp = −
∫

dDx
√−g

1

4
eγφHabH

ab, (4.1)

where Hab = ∂[aBb], where Ba is an Abelian gauge field potential, with dilaton coupling different

from Aa and Ba. The coupling between the vector fluctuations and the dilaton is regulated by the

parameter γ. On the gravity side of the holographic duality, described by the effective Lifshitz

solution, the two aforesaid gauge vector field potentials Aa and Ba correspond to different matter

fields portraying Lifshitz matter, whereas Ba describes impurity, which is assumed to not interact

with the background gauge field in quadratic order. Therefore it does not mix with metric fluc-

tuations [35, 72]. It is worth mentioning that the two-gauge current model coupled with gravity

and a dilaton in AdS/CMT has been used also in describing graphene near the charge-neutrality

point, composing the Dirac fluid of a strongly-interacting plasma in hydrodynamics. An additional

gauge field was proposed to study the thermal conductivity and the electrical DC conductivity in

graphene [73]. Ref. [74] also employed a two-current holographic model permitting one of them to

carry the dark matter sector in graphene. Besides, the holographic gauge/gravity duality leading

generalized to Navier–Stokes equations and horizons with soft-hair excitations was employed to

study impurity in graphene [75].



10

Denoting by ba the fluctuations associated with Ba, implementing effects of impurity in the

dual Lifshitz field theory, one can consider the part of the action responsible for fluctuations, as

Sb = −
∫

dDx
1

4

√−g eγφhabh
ab, (4.2)

where hab = ∂[abb]. The electrical DC conductivity carried by impurity can be then obtained with

the aid of the Kubo formula. From the action (4.2), the transverse mode, bc, where c denotes

transverse coordinates, satisfies the linearized equation of motion [35, 71]

∂µ
[√−geγφ gac gid ∂[cbd]

]

= 0. (4.3)

The Fourier transform bc(ω, r) =
∫

dω
2π e

iωt bc(t, r) at the horizon has two solutions, to wit

bc(ω, r) = a1f
±ν(r), (4.4)

taking into account the metric coefficient (2.6a), with ν = iω4 r
−D−z+4
h , where a1 is a suitable

constant. The sign in the exponent of Eq. (4.4) corresponds to the ingoing/outgoing boundary

conditions at the horizon. Picking an ingoing wave, the solution of (4.3) in the hydrodynamic limit

ω ≪ T can be expressed as

bc(r) = f−ν(r) [H0(r) + ωH1(r)] +O(ω2). (4.5)

where H0(r), H1(r) must be regular at the horizon. Eq. (4.5) must be led to Eq. (4.4) at the

horizon. Therefore, H0(r) must attain the value of a constant a1 at the horizon rh, whereas H1(rh)

and higher-order terms must vanish therein. These conditions yield

H0(r) = a1+

∫ r

rh

r−D−3z+3

2q2r4
(

ℓ
r

)2D
+ [D2+6z−D(3z+2)]

[

ℓ4−r3zh

(

ℓ4q2

r4h(4−3z)
+ 1
)

(

ℓ
r

)D+3z
r4
]dr, (4.6)

H1(r) = a2+i
a1

rD+z−4h

log

[

q2

r4−3z
h (4−3z)

(

ℓ

r

)D+3z−4

+
2q2

(

ℓ
r

)2D−4

(D − 2)(D − 3z)

] [

1−
(

r

rh

)D+z−4
]

−a3

∫ r

rh

e3rr−2γ−z+1

r4r3z−4
h [q2 + r4h(4− 3z)]

(

ℓ
r

)D+3z − q2r4h
(

ℓ
r

)2D − ℓ4(4− 3z)
dr, (4.7)

with

a2 =
ia1
8

[

1−
(

r

rh

)D+z−4
]

B
[

β(r); 12 (γ +D − 2z) ,
(

rh
r

)D+z−2
]

B
[

1
2(γ +D − 2z),

(

rh
r

)D+z−2
] , (4.8)

denoting by B[x; α, β] =
∫ x
0 tα−1 (1 − t)β−1 dt the incomplete beta function and by B[α, β] =

Γ(α) Γ(β)
Γ(α+β) the standard beta function, where

β(r) =
r5r3z−4

h

D + 3z − 5

[

q2 + r4h(4− 3z)
]

(

ℓ

r

)D+3z

+
q2r5

5− 2D

(

ℓ

r

)2D

+ ℓ4r(4− 3z), (4.9)
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and

a3 = −ia1

(rh
ℓ

)−(D+z−4)γ
. (4.10)

The constant term a1 can be determined as long as one imposes an ancillary boundary condition.

At the asymptotic boundary, the vector fluctuation driving impurity reads

bc(r) = b1 + b2 r(D+z−4)γ−2, (4.11)

where b1 is a source term, whereas b2 stands for the VEV of the dual operator. In the range

γ < 1, the asymptotic behavior of the vector fluctuation is driven by b1 and the following Dirichlet

boundary condition can be assumed [71]:

b1 = lim
rc→∞

bc(rc), (4.12)

where rc implies an appropriate UV cutoff of the dual theory. When one compares the asymptotic

expansion of the perturbative solution (4.5) with Eq. (4.12), it yields

a1 =
8irD+z−4

h

τ(rh)
b1, (4.13)

where

τ(rh) = 8irD+z−4
h + ω

[

Ein

(

1

2
(γ +D − 2z + 1)

)

− Ein

(

1

2
(γ +D − 2z + 1)

)

+tan−1 2
√
3

3
− π

3
+ 2π log

(π

2
(γ +D − 2z + 1)

)

]

, (4.14)

and Ein(x) = Γ(0, x) + γ+ log x is the entire exponential integral, Γ(0, x) =
∫

∞

x t−1 e−t dt is the

incomplete gamma function and γ = limn→∞

(

− log n+
∑n

k=1
1
k

)

stands for the Euler–Mascheroni

constant.

The boundary action corresponding to the on-shell action of (4.2) is given by

Sboundary = −
∫

r→rc

dD−1x
√−g eγφgrrgccbcb

′

c

≅

∫

dD−1x r
−(D+z−4)γ
h rD−1−(D+z−4)γ

c b1b
′

c. (4.15)

Hence, normalizable contributions to Sboundary in Eq. (4.15) have b′c ∼ r
1−D+(D+z−4)γ
c as the

leading term, in the limit rc → ∞. Since the asymptotic expansion takes leading-order terms from

Eq. (4.5) as

b′c = − ia1ω

r
(D+z−4)γ
h

r1−D+(D+z−4)γ
c +O

(

1

rD+z−1

)

, (4.16)
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the current-current retarded Green function [35, 63, 71] yields3

Gcc
R (ω, k) = −i

∫

dDx e−ik·xθ(t) 〈[Jc(x), Jc(0)]〉 = iω

16πGD

1

r
(D+z−4)γ
h

+O(ω2), (4.17)

where (4.13) was used and θ(t) is the Heaviside step function. The electrical DC conductivity, from

the Kubo formula, therefore reads

σdc = − lim
ω→0
k→0

ℑGcc
R (ω, k)

ω
=

1

16πGD

1

r
(D+z−4)γ
h

, (4.18)

carrying the response of the electric current under perturbations in the electric field, which is

generated by the gauge vector potential.

Eq. (3.3) regards the temperature of the effective Lifshitz black brane. For D = 4, it gener-

alizes the well-known expression Th = z+2
4π rzh valid for standard Lifshitz black branes [35], whose

expression can be alternatively obtained by expanding the metric near the horizon, lacking any

conical singularity. For the case z = 2 + ǫ and D = 4, one can invert Eq. (3.3), considering a

planar horizon (κ = 0) in Eq. (3.3), and writing the non-negative solution for the horizon radius

in terms of the temperature, as

lim
ǫ→0

rh =
2
√
3ℓ

3

√

√

2π2T 2
hℓ

2 − 3q2 + 2πThℓ. (4.19)

Therefore we obtain,

σdc ∝ T−γ
h , (4.20)

recovering the electrical DC conductivity dependence with the temperature and the γ parameter

controlling the coupling between the dilaton and the additional gauge vector, regulating impurity.

It shows consistency with results in Ref. [71]. Hence, our results seem to corroborate with the

ones in gauge/gravity, as the correlator in the dual Lifshitz field theory is regulated by bulk field

fluctuations near the asymptotic boundary, for the sector controlling impurity.

V. ENDING COMMENTS AND CONCLUDING REMARKS

The membrane paradigm of fluid/gravity was employed to investigate the hydrodynamics un-

derlying effective Lifshitz black hole solutions. In particular, the charge diffusion constant, the

shear mode damping constant, and the shear-viscosity-to-entropy density ratio were computed and

3 Hereon we reinstate the 1

16πGD

terms, omitted heretofore due to the use of natural units throughout the text. We

denote by GD the D-dimensional gravitational coupling constant.
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discussed for effective Lifshitz black hole solutions, generalizing scenarios in the literature involving

standard Lifshitz black branes. The Kubo formula, relating transport coefficients to appropriate

components of the Green function, was handled to compute the electrical DC conductivity for

the gauge sector corresponding to impurity. This method consistently posed the holographic linear

response of gauge vector fluctuations describing impurity in the effective Lifshitz black brane geom-

etry. The analog of the KSS result was also addressed in the effective Lifshitz black hole scenario.

The charge diffusion constant and the electrical DC conductivity are obtained from the correla-

tors using Kubo formulæ , corroborating with the membrane paradigm for arbitrary dimension

and dynamical exponent. The usual dependence of the electrical DC conductivity with the black

hole temperature was recovered for particular cases of the spacetime dimension and dynamical

exponent.

As perspectives, one can implement second-order hydrodynamics for the effective Lifshitz black

hole solution, taking into account vorticity, to compute the relaxation time, the gravitational

susceptibility, and the shear relaxation [26]. Also, one can explore anisotropic Weyl anomalies in

Lifshitz gauge/gravity scenarios. In standard AdS/CFT, the Weyl anomaly comes from breaking

the conformal invariance of classical fields under Weyl symmetries after the quantization procedure

and naturally underlies black hole solutions. Comparing the holographic Weyl anomaly to the

trace anomaly of the energy-momentum tensor of the dual field theory yields a measure of the

backreaction of black branes onto the bulk geometry of Lifshitz spacetimes, emulating well-known

results regarding the AdS bulk geometry [76, 77]. Hence Weyl and trace anomalies can further

determine the accuracy of describing effective Lifshitz black branes in the membrane paradigm of

AdS/CFT. One can emulate and adapt this construction for the anisotropic Weyl anomaly and for

addressing asymptotic expansions for holographic renormalization [78].
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