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Abstract— Adaptive Cruise Control (ACC) can change the 

speed of the ego vehicle to maintain a safe distance from the 

following vehicle automatically. The primary purpose of this 

research is to use cutting-edge computing approaches to locate 

and track vehicles in real time under various conditions to 

achieve a safe ACC. The paper examines the extension of ACC 

employing depth cameras and radar sensors within 

Autonomous Vehicles (AVs) to respond in real-time by 

changing weather conditions using the Car Learning to Act 

(CARLA) simulation platform at noon. The ego vehicle 

controller's decision to accelerate or decelerate depends on the 

speed of the leading (ahead) vehicle and the safe distance from 

that vehicle. Simulation results show that a Proportional–

Integral–Derivative (PID) control of autonomous vehicles using 

a depth camera and radar sensors reduces the speed of the 

leading vehicle and the ego vehicle when it rains. In addition, 

longer travel time was observed for both vehicles in rainy 

conditions than in dry conditions. Also, PID control prevents 

the leading vehicle from rear collisions. 

Keywords— Adaptive Cruise Control, Autonomous Vehicles, 

Car Learning to Act, Proportional–Integral–Derivative control. 

I. INTRODUCTION  

One of the Advanced Driver Assistance Systems (ADAS) 
that assumes longitudinal control of the vehicle is Adaptive 
Cruise Control (ACC). ACC is an intelligent cruise control 
technology that adjusts the vehicle's acceleration to maintain 
a safe space between the ego and leading vehicles. One of 
our day's most difficult engineering challenges is the 
development of autonomous vehicles. These self-driving 
vehicles have been projected to operate in an extremely 
unpredictable environment with greater dependability than 
humans or full autonomy. To achieve this objective, self-
driving vehicles must be embedded with sophisticated 
algorithms and multiple sensors that allow the vehicle to 
recognize its surroundings in real-time regarding weather 
conditions. However, the vehicle must also be capable of 
detecting these obstacles across the scene and computing 
their speed.  

The development and application of AVs in the 
transportation sector have started to be influenced by the 
advancements in artificial intelligence (AI) throughout time 
[1]. Self-driving vehicles, accompanied by enormous data 
produced from numerous sensors and advanced computer 
capabilities, have become a key element for comprehending 
the surrounding environment and making suitable decisions 
during movement. Consequently, the implementation of safe 
and robust Autonomous Driving (AD) holds the promise of 

significantly reducing road traffic accidents, congestion, and 
wasteful fuel consumption by transferring driving control 
from humans to autonomous cars. The classification system 
for autonomous driving, established by the Society of 
Automotive Engineers (SAE) and the National Highway 
Traffic Safety Administration (NHTSA), outlines six levels 
of autonomy. It begins with level 0, where the human driver 
is responsible for continuously monitoring all aspects of the 
dynamic driving task, and reaches level 5 autonomy, where 
the vehicle can handle all driving tasks in any situation 
without human intervention [2]. Given the complex and 
dynamic nature of urban environments, AVs must interact 
with various entities, such as other vehicles, pedestrians, and 
stationary objects [3]. To ensure safe and reliable operation, 
an AV must undergo rigorous safety and operational testing 
before deployment in real-world scenarios. Moreover, as the 
gap between software simulations (Such as CARLA) and 
real-world environments continues to narrow, trained models 
can be deployed on road infrastructure, providing a viable 
path toward realizing autonomous driving technology [4].  

CARLA is utilized in this research to study the efficiency 
of a PID for an autonomous vehicle that consists of a vision-
based perception module, a local planner, a global planner, 
and a traffic manager.  CARLA is used to generate 
navigation simulations that are regulated by varying 
complexity. There should be control over the route's 
complexity, traffic flow, and the surrounding circumstances 
of the environment. The research results highlighted the 
ACC’s performance characteristics in wet and dry conditions 
at noon on the unsignalized intersection at Town 10. 

II. LITERATURE REVIEW 

In Asia, India, Europe, and the United States, there has 
been a significant concentration on AD research and 
development to provide creative solutions in the fields of 
distributed dynamic controls, computer vision, and Machine 
Learning (ML) as reviewed by  Daily et al.  [5]. However, 
these researchers suffered from limited ability to deal with 
complex problems, so the safety, reliability, and resilience of 
complex systems should be further investigated. Nidamanuri 
et al. [6] examined research gaps, reviewed ADAS 
functionalities, and discussed vision intelligence and 
computational intelligence for ADAS with learning 
algorithms such as supervised, unsupervised, reinforcement 
learning, and deep learning for real-time recommendation 
systems in less-disciplined road traffic. Interesting research 
was done by Ramakrishna et al. [7], who also suggested an 
ANTI-CARLA framework for automated adversarial testing, 
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evaluation, and investigation of AV performance in the 
CARLA simulator. It provides a framework that makes it 
possible to test and plug in any AD pipeline. It consists of a 
straightforward interface for specifying test conditions and a 
domain-specific Scenario Description Language (SDL) for 
explaining the test conditions. The limitation of the proposed 
system is that it can only sample static scenes. However, the 
sequence in which the scenes before each unsuccessful case 
occurred is not now known. Gómez-Huélamo et al. [8] 
 validated a fully self-driving vehicle architecture in the 
CARLA simulator using the NHTSA protocol, with an 
emphasis on decision-making unit analysis based on 
Hierarchical Interpreted Binary Petri Nets (HIBPN) and 
hyper-realistic simulators for real-world testing without 
considering the weather conditions. The architecture is tested 
using hard driving situations, yielding qualitative and 
quantitative findings for a preliminary stage before being 
implemented in an autonomous electric vehicle. However, 
the CARLA simulator is a realistic presentation device for 
vehicle circumstances, but there is a lack of correct 
communication models. Mateo et al. [9] investigated an 
expansion of the ms-van3t modeling framework, based on 
the NS-3 simulator, that combined the CARLA sensor and 
vehicle physics with improved communication concepts.  

Gutiérrez-Moreno et al. [10] introduced a Deep 
Reinforcement Learning (DRL) strategy for dealing with 
crossings in self-driving frameworks, which combined 
Curriculum Learning (CL) with hostile vehicle information. 
The hybrid architecture was designed to solve the complexity 
of junctions, with an emphasis on high-level decision-
making. The study examined the following situations: traffic 
lights, traffic signs, and uncontrolled junctions. The Proximal 
Policy Optimisation (PPO) algorithm predicts ego vehicle-
desired behavior based on hostile vehicle behavior. There 
was a limitation in their research in that they obtained the 
state vector from real sensor information rather than directly 
from the actual situation. Dosovitskiy et al. [11] used 
CARLA to evaluate the efficiency of three AD approaches: a 
normal modular pipeline, an end-to-end model trained using 
imitation learning, and an end-to-end model trained with 
reinforcement learning in six weather situations. Due to 
computational expenses, their approach limited training to 10 
million simulation steps while emphasizing failure modes. 
Also, Liu et al. [12] proposed an optimization-based 
integrated behavior planning and motion control strategy for 
urban AD that uses CARLA's model with Potential 
Functions (PFs) to characterize traffic regulations. Their 
model has failed collision tests in junction scenarios, traffic 
law violations, and roundabouts. Guo et al. [13] proposed the 
first end-to-end attack on ACC systems and tested the safety 
measures on the most advanced ACC system using Deep 
Neural Networks (DNNs). However, their study findings 
demonstrated that their approach could make a vehicle 
traveling with ACC accelerate unsafely, causing a rear-end 
collision. However, changing the vehicle's speed and 
communicating it through the Control Area Network (CAN) 
has a negative impact on ACC's Proportional-Integral-
Derivative (PID) variable capabilities for crash prevention 
[14].  The study suggested using ML-based on real-time 
Intrusion Detection System (IDS) to support resilience 
mechanisms in mitigating cyber-attacks on vehicles and 
utilizing ML-based IDS to help resilience mechanisms 
mitigate cyber-attacks on cars. 

III. METHODOLOGY AND SETTINGS  

CARLA was created as a client-server system. The server 
runs and displays the CARLA world. The client interface 
enables users to engage with the simulator by adjusting the 
agent's vehicle to some of the simulation features. The client 
consists of all the client modules used to control the actors 
and set up the environment conditions, which are created via 
the CARLA API in Python. Traffic manager is an integrated 
framework that uses CARLA's guidance to take control of 
the actors and reproduce actual urban settings. This study 
focused on Avs, including the development and evaluation of 
a system capable of handling a wide range of circumstances. 
The AV system equipped with ACC uses distance sensors 
such as a depth camera and a Radar sensor embedded in the 
ego vehicle and leading vehicle 1 to compute the spacing 
between vehicles. Also, a navigation system such as Global 
Positioning System (GPS) is used to locate the vehicles’ 
locations, as illustrated in Fig.1. Using the PID control 
system, which is frequently employed for stability, it then 
executes the necessary actions, such as accelerating or 
decelerating, to keep a safe distance from the leading 
vehicles.  

Fig. 1. Adaptive Cruise Control (ACC) model. 

This model will investigate the efficiency of ACC under 
several environmental elements, such as the weather and 
time of day at Town 10 in CARLA maps. Fig.2 illustrates 
two case studies of severe environmental situations. The 
AVs start moving from the origin point to the destination 
point in Town 10.  

Fig. 2.  A street in town 10 shows two weather conditions at a curved 

unsignalized intersection: (a) Heavy rain at noon. (b) No rain at noon. 

There are also actors in CARLA who are entities that 
conduct actions within the simulation and can influence other 
actors. They contain automobiles, pedestrians, sensors, and 
traffic lights. The client can change the server settings and 
behavior using the following commands:  

 Number of vehicles: The city will have 100 non-
player vehicles deployed.  

 

 

 

(a) Heavy rain at noon 

(b) No rain at noon



 Weather ID: A list of the weather/lighting 
settings. The following has been studied: Noon: 
heavy rain, and no rain.  

 Vehicle Speed: the target cruise speed is 80 km/h. 

 Cameras and Radar sensors: A set of cameras 
with defined parameters including position, 
direction, and range of view. An optical depth 
camera is used that provides ground-truth depth 
segmentation. The radar sensor provides the 
distance, angular location, and relative speed of 
the obstacle. 

The tested vehicle will be a Tesla Model 3, which is 
environmentally friendly, fast, and practical. However, there 
are some issues and substantial restrictions in the ADAS 
system that have to be solved. Tesla includes various sensors 
that could serve as inputs for the training model. These tough 
conditions need the employment of depth cameras and Radar 
sensors to enable safe navigation and avoid rear crashes. 
Also, a collision detector was used to prevent collisions 
between the ego vehicle and the leading vehicle, and 
stationary obstacle assistance was used to detect possible 
obstacles in front of the vehicle. A waypoint system was 
used to aid a vehicle reach a desired point by separating the 
route into multiple locations. The client provides 
two commands that operate the agent vehicle: (a) Throttle: 
pressing the accelerator pedal, represented by an integer 
range from zero to one. (b) Brake: pushing the brake pedal, 
represented by a real integer ranging from zero to one. The 
radar sensor provides the distance, angular location, and 
relative speed of the obstacle. In radar, a transmitter emits 
electromagnetic waves that are reflected onto the surfaces of 
the closest objects. The distance between the item and the 
sensor is estimated using the waves reflected by Equation 1. 

 D = 𝑐 ×
𝑇

2
 

The equation is as follows: D represents the distance to 
the obstacle, c represents the speed of electromagnetic 
waves, and T represents the time between wave emission and 
reflection. The RADAR sensor outputs two-dimensional 
data. A scene-based approach to analysis aids in 
understanding complex urban processes and addressing 
specific urban challenges. We can examine difficulties by 
dividing the environment into scenes. The following scenes 
are under consideration: Scene (1): Unsignalized Intersection 
in the heavy rain at noon at a curving intersection. Scene (2): 
Unsignalized Intersection on a clear day at a curving 
intersection. we focus on the particular problems of each 
scenario while also analyzing AD capabilities in adaptive 
cruise control over 200 meters. 

IV.  SUGGESTED  METHOD OF ADAPTIVE CRUISE 

CONTROLLER 

 The PID technique is used to divide the driving task into 
the following subsystems: perception, planning, and 
continuous control. The perception layer estimates lanes, 
road limits, moving objects, and other risks. Furthermore, a 
classification algorithm is employed to determine the 
proximity of intersections. The local planner employs a rule-
based state machine that executes simple, predefined policies 
tailored to urban areas. A PID controller manages the throttle 

and brake, providing continuous control. The definition 
provided by the SAE states that ACC is a Level-2 driving 
automation technology that adjusts the vehicle's speed based 
on the leading vehicle to keep a safe distance. When the 
distance between the vehicle and the object is less than the 
Stopping Safe Distance (SSD) or a collision occurs in real 
time, the ACC system engages emergency brakes. The safe 
distance is calculated using the spacing between the ego 
vehicle and the leading vehicle, and the ego vehicle's speed. 
The main objective of the ACC is to maintain a safe distance 
from the leading vehicle to keep the gap between the present 
distance 𝐷𝑃 and the safe distance D calculated using 
Equation 2, greater than zero. 

 𝐷 = 𝐷𝑝 − 𝑆𝑆𝐷 

The SSD specifies how far the vehicle drives before 
coming to a full stop to prevent collision with the leading 
vehicle, as calculated using Equation 3. where SSD is the 
stopping distance in meters, t is the perception-reaction time 
in seconds (2.5s for most drivers), v is the car's speed in 
kilometers per hour, G is the road's slope, and f is the 
coefficient of friction between the tires and the road. When 
the SSD is less than the present distance from the leading 
vehicle, the ego vehicle comes to a complete stop. 

 𝑆𝑆𝐷 = 0.278 × 𝑡 × 𝑣 +
𝑣2

254×𝑓+𝑔
 

The ACC system employs two controllers, as shown in 
Fig.3, an upper-level controller and a lower-level controller 
using the CARLA simulator. The lower-level controller 
decides the throttle and brake, while the upper-level 
controller decides the appropriate longitudinal acceleration to 
achieve the ideal spacing and constant speed. PID controllers 
[15], Linear Quadratic Regulator control (LQR) [16], Sliding 
Mode Control [17], Fuzzy Logic Control [18], and MPC [19] 
are dynamic solutions proposed to implement the two-level 
ACC system. In this research, we use the PID model because 
it is simple, flexible, and relatively resilient to slow reaction 
times. Each controller receives the current position, speed, 

and list of waypoints and activates throttle and brake. The 
controller parameters were adjusted in Town 10. 

Fig. 3. Architecture design CARLA simulation with ACC. 

The PID controller modifies the acceleration and 
deceleration to reduce the error estimated using Equation  4, 
which measures the difference between the vehicle's target 
speed (St) and its current speed (Sc) as detected by the speed 
sensor. 

 𝑒(𝑡) = 𝑆𝑡(t) − 𝑆𝑐(t) 

 



Equation 5 employs three constants to compute the 
control signal u(t) based on the speed error.  𝐾𝑃 - the action's 
proportionate gain to the error, 𝐾𝑖 - integral gain to 
minimize steady-state errors by low-frequency compensation 
by an integrator, and 𝐾𝑑 - derivative gain to improve the 
transient response through high-frequency compensation by 
a differential [20]. 

 u(𝑡) = 𝐾𝑃𝑒(t) + 𝐾𝑖 ∫ 𝑒(t)
𝑡

0
𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 

Increasing the 𝐾𝑃 value allows the vehicle to reach its 
target speed faster, but it can exceed it. The 𝐾𝑑  term 
influences the reduction of the overshoot. The 𝐾𝑖 value 
influences the capacity to restrict steady errors and prevent 
fluctuations. Optimizing the gains of 𝐾𝑃, 𝐾𝑑, and 𝐾𝑖 results 
in a desirable overall response. On challenging driving tasks, 
such as curve unsignalized intersections in urbanized town 
10, we employ the PID technique with two weather 
conditions. We employ the same agent and do not fine-tune 
separately for each circumstance. The tasks are set up as 
goal-directed navigation, with an agent starting at a specific 
spot in town to a specific destination. In this case, the agent 
isn't allowed to ignore speed limits or traffic lights. The 
ANOVA was used to determine whether there was a 
statistically significant difference in speed between the three 
vehicles under each weather condition.  

V. RESULTS AND DISCUSSIONS 

Driving in rainy weather is frequently affected, making 
longitudinal control of the vehicle critical. In this paper, a 
longitudinal PID controller is used to implement ACC. Fig.4 
illustrates the simulation environment configuration, 
including heavy rain and the absence of precipitation 
simulation situations. The three-vehicle trajectories are 
shown in a Three-Dimensional (3-D) graphic at noon during 
the time. The X-axis represents time in seconds, and the Y-
axis and Z-axis represent the X and Y coordinates of the 
vehicles, respectively in two scenarios. The 3-D 
visualization provides a full perspective of how the vehicles 
interact with each other over the selected period. Leading 
vehicle 2 began to move while leading vehicle 1 stopped at 
the intersection to reveal the road. Also, leading vehicle 1 
began to move while the ego vehicle stopped at the 
intersection to reveal the road, increasing the spacing to the 
leading vehicle 1. In the initial few seconds of the 
simulation, leading vehicle 2 takes a sharp right turn curve, 
while leading vehicle 1 follows that curve with difficulty. 
Also, the ego vehicle follows the leading vehicle 1 with 
greater difficulty in the heavy rain scenario. The plot shows 
that the travel time was as follows: Ego vehicle no rain: 23 
seconds, leading vehicle 1 no rain: 22.5 seconds, leading 
vehicle 2 no rain: 11 seconds, ego vehicle heavy rain: 39 
seconds, leading vehicle 1 heavy rain: 30 seconds, and 
leading vehicle 2 heavy rain: 24 seconds.  

As a result, the travel time in ego vehicles to arrive at 
their destination under heavy rain increased by 69.57% when 
compared to no rain at noon. Furthermore, the travel time in 
leading vehicle 1 increased by 33.33% to arrive at the 
destination in heavy rain compared to no rain at noon. 
However, the travel time doubled leading vehicle 2 to arrive 
at the destination in heavy rain compared to no rain at noon. 
This demonstrates that under heavy rain, the vehicles take a 

longer time to complete their trajectories due to depth image 
processing. 

Fig. 4. 3-D vehicle trajectory over time at a curved unsignalized 

intersection: (a) Heavy rain at noon. (b) No rain at noon. 

This research focused on the speed distribution of three 
vehicles: the ego vehicle, leading vehicle 1, and leading 
vehicle 2 in heavy rain and no rain at noon. Speeds were 
determined using distance-recorded sensors for each vehicle. 
The violin-shaped plot in Fig.5 depicts the distribution of 
speeds for the three vehicles under the given weather 
circumstances. 

Fig. 5. Speed distribution at a curved unsignalized intersection: (a) Heavy 

rain at noon. (b) No rain at noon. 

 

(a) Heavy rain at noon

(b) No rain at noon

 

(a) Heavy rain at noon

(b) No rain at noon



Each violin represents the probability density of speeds, 
which illustrates the data set's central tendency and 
variability. The violin plot illustrates diverse patterns in 
speed distribution for the various vehicles: 

 An ego vehicle in heavy rain at noon has a median 
speed of 14.21 km/h and an IQR of 40.31 km/h. 
There are potential outliers with speeds that exceed 
the upper whisker range, reaching 91.83 km/h. In the 
absence of rain at noon, the Ego vehicle has a median 
speed of 26.24 km/h and an IQR of 47.69 km/h. 
There is one possible outlier, with a speed of 201.63 
km/h. 

 Leading vehicle 1 in heavy rain at noon has a median 
speed of 0.0 km/h, indicating a distribution 
centered at slower speeds. The IQR is 40.32 km/h, 
and a large number of probable outliers are recorded, 
with speeds exceeding 201.15 km/h. Leading Vehicle 
1 at noon in the absence of rain has a median speed of 
15.46 km/h, with a wide IQR of 77.65 km/h. A 
probable outlier is identified at 201.62 km/h. 

 Similar to leading vehicle 1, leading vehicle 2 has a 
median speed of 0.0 km/h in two circumstances at 
noon, but its IQR is 40.30 km/h in heavy rain at noon. 
There are numerous potential outliers, with speeds as 
high as 201.59 km/h. leading vehicle 2 in the absence 
of precipitation at noon has an IQR of 80.60 km/h, 
with a potential outlier of 182.56 km/h. 

So, it has been observed that the decline in speed of ego 
vehicles between heavy rain and no rain at noon 
circumstances is approximately 15.46%. The drop 
percentage for leading vehicle 1 between heavy rain and no 
rain at noon is around 48.11%, at the same time for leading 
vehicle 2, the drop is approximately 50%. This suggests that 
deep image processing causes vehicles to travel slower in 
heavy weather. These data imply considerable variation in 
speed distributions, as well as the occurrence of outliers that 
could indicate unusual driving behavior or measurement 
errors. The data show differences in speed distribution 
among the three vehicles during heavy rain and the absence 
of rain at noon. The observed patterns provide useful insights 
into driving behavior under these particular weather 
circumstances. 

The hypothesis was tested in both groups on the effect of 
different weather conditions (no rain vs. heavy rain) on the 
speeds of different vehicles (ego vehicle, leading vehicle 1, 
leading vehicle 2) in the noon. The descriptive statistics 
provide an overview of each vehicle's speed distribution in 
both weather conditions. ANOVA test was used to determine 
whether there was a statistically significant difference in 
speed between the three vehicles under each weather 
condition. The null hypothesis assumes that there is no 
significant difference among the speeds of the three vehicles. 
The p-value of the F-test in the no rain condition is 0.2501, 
demonstrating that there is no significant difference between 
the three vehicles' speeds. However, under heavy rain, the p-
value for the F-test is 0.0494 less than 0.05, suggesting that 

there are significant differences in the three vehicles' speeds. 
This suggests that the heavy rain has a more significant 
effect on vehicle speeds. 

Correspondingly, temporal analysis of vehicle spacing 
patterns was studied over 40 seconds in both no-rain and 

heavy-rain circumstances as shown in Fig.6. The x-axis 
represents time in seconds, while the y-axis represents the 
distance between the ego vehicle and leading vehicle 1, 
between the leading vehicle 1 and leading vehicle 2, and 
between the ego vehicle and leading vehicle 2 (as depicted in 
the legend).  

Fig. 6.  Spacing over time at a curved unsignalized intersection: (a) 

Heavy rain at noon. (b) No rain at noon. 

 Because of the delay at the curving unsignalized 
intersection, there is a distinct pattern of spacings becoming 
increasingly skewed to the left in both scenarios. However, 
the infliction point varies significantly between the two 
scenarios. Throughout the plot, the ego vehicle maintains a 
consistently shorter following distance to the leading vehicle 
1. However, the leading vehicle 1 maintains a higher 
following distance to the leading vehicle 2 in the early 
seconds of the simulation in both scenarios. Compared to 
what happens in the absence of rain, where the three vehicles  

 follow each other more smoothly, the following distance 
remains continuously shorter. In the case of no rain, the 
greatest effect appears in the first 7 seconds, but in the case 
of heavy rain, it extends to approximately 22 seconds. Then, 
the spacing becomes almost constant in two situations. This 
indicates a direct relationship between weather and spacing 
changes taking into consideration curved unsignalized 
intersections. 

The hypothesis was tested in both groups to determine 
how varying weather conditions (no rain vs. heavy rain) 
affected the spacing of different vehicles (ego vehicle, 
leading vehicle 1, leading vehicle 2) at noon. The ANOVA 
test was used to determine if there was a statistically 
significant difference in spacing between the three vehicles 
in each weather condition. The null hypothesis suggests that 
there is no significant difference in the spacing between the 

 

(a) Heavy rain at noon

(b) No rain at noon



three vehicles. The F-test's p-value in the no-rain scenario is 
0.0022, indicating that there is a significant difference in the 
three vehicles' spacing distance to avoid collision. 
Furthermore, under heavy rain, the p-value for the F-test is 
3.30e-69, which is less than the significance level of 0.05, 
indicating that there are significant differences in the three 
cars' spacing distances. In both weather conditions, there are 
significant distances between the vehicles. In heavy rain, the 
variances are more noticeable, with highly significant 
differences between all pairs of vehicles. The weather has a 
noticeable impact on spacing, and there are significant 
changes noted under severe rain conditions at noon. 

VI. CONCLUSION 

ACC controls the vehicle's acceleration to keep a safe 
distance from the vehicle in front. The major goal of this 
research is to use edge computing technologies to locate and 
monitor vehicles in real-time under two weather scenarios to 
satisfy the ACC. The research examines the extension of 
ACC employing depth cameras and radar sensors within 
autonomous vehicles to respond in real-time changing 
weather conditions by modeling with the CARLA simulator 
with the presence of light. 

Simulation findings demonstrate that AV using PID 
control with depth camera and radar sensors reduces the 
speed of the lead and ego vehicles when it heavy rain. Thus, 
the decrease in speed of ego vehicles at heavy precipitation 
at noon is roughly 15.46% compared to the no precipitation 
scenario. The drop percentage in the heavy rain scenario for 
leading vehicle 1 is around 48.11%, whereas leading vehicle 
2 drops by almost 50% % compared to the no precipitation 
scenario. It demonstrates that in heavy weather, vehicles 
travel slowly due to extensive processes. 

As a result, the travel time in ego vehicles to arrive at 
their destination during severe rain it was increased by 
69.57% when compared to no rain at noon. Furthermore, the 
travel time in leading vehicle 1 increased by 33.33% while 
arriving at the destination in heavy rain versus no rain at 
noon. However, the travel time in leading vehicle 2 doubled 
to arrive at the location in rain at noon conditions. This 
indicates that in heavy rain, vehicles take longer to finish 
their trajectories due to depth computations. So, it takes 
longer to travel than when it is not raining to prevent the 
leading vehicles from rear collision. Overall, this study 
enhances AD research by evaluating and analyzing traffic 
behavior in complex urban environments. 
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