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Abstract

Sharp lower and upper uniform estimates are obtained for fundamental frequencies of p-Laplace

type operators generated by quadratic forms. Optimal constants are exhibited, rigidity of the upper

estimate is proved, anisotropic attainability of the lower estimate is derived as well as characterization

of anisotropic extremizers for circular and rectangular membranes. Sharp quantitative anisotropic

inequalities associated with lower constants are also established, providing as a by-product information

on anisotropic stability. When the uniform ellipticity condition is relaxed, we show that the optimal

lower constant remains positive, while anisotropic extremizers no longer exist. Our sharp lower estimate

can be viewed as an isoanisotropic counterpart of the Faber-Krahn isoperimetric inequality in the plane.

1 Introduction

A field of research that has aroused great interest in the mathematical community for several decades

is the study of problems linking shape of domains and elliptic operators to the corresponding spectra.

Most of their solutions demand techniques in areas as calculus of variations, elliptic PDEs, geometry

and spectral analysis. A well-known prototype of the first group of problems is the celebrated Faber-

Krahn geometric inequality which states that the first Dirichlet eigenvalue λ1(Ω) of the Laplace operator

in a bounded domain Ω ⊂ Rn, also called the fundamental frequency of Ω, satisfies the isoperimetric

property

λ1(Ω) ≥ λ1(B) (1)

for every domain Ω with |Ω| = |B|, where B denotes the unit n-Euclidean ball and |·| stands for the Les-
begue measure of a measurable subset of Rn. Moreover, equality holds in (1) if, and only if, Ω is equal to

B, up to a translation and a set of zero capacity. Inequality (1), as its name suggests, was independently
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proved by Faber [31] and Krahn [40] for any dimension n ≥ 2 using Schwarz symmetrization technique.

A number of variants of it has been established along of the history. For instance, related inequalities

involving the first nonzero eigenvalue of the Laplace operator under different boundary conditions are:

Bossel-Daners inequality [9, 14, 23, 24] (Robin condition) (see also [25, 26]), Szegö-Weinberger inequality

[49, 54] (Neumann condition) (see also [16]) and Brock-Weinstock inequality [12, 55] (Steklov condition)

(being the first one of lower kind, while other two ones are upper). Different quantitative forms and

stability of geometric inequalities have also been widely discussed for the spectrum of elliptic operators;

among an extensive bibliography, we refer for example to [8, 11, 15, 33] for some quantitative inequali-

ties and [32, 35, 43] concerning stability. Besides, extensions of (1) to more general operators have been

of interest, see [1, 7, 10, 20] for some of these developments. For an overview on a variety of problems,

improvements and open questions on several related topics, we quote the excellent monographes: the

survey [47], the collection of contributions [38] and the books [5, 6, 19, 37].

A particularly important counterpart of (1), closely connected to the present work, was established

by Belloni, Ferone and Kawohl [4] in the anisotropic context. In a precise manner, let H : Rn → R be

a convex function of C1 class in Rn \ {0} satisfying the homogeneity and strict positivity assumptions:

H(tξ) = |t|H(ξ), t ∈ R, ∀ξ ∈ Rn (H)

and

κ1|ξ| ≤ H(ξ) ≤ κ2|ξ|, ∀ξ ∈ Rn, (P)

where κ1 = κ1(H) and κ2 = κ2(H) are positive constants depending of H .

Given any fixed number p > 1, consider the anisotropic operator in divergence form associated to p

and H :

∆H
p u := −div(Hp−1(∇u)∇H(∇u)).

It arises naturally from derivation of the energy functional on W 1,p
0 (Ω) defined by

Ep,H(u) =
∫

Ω

Hp(∇u) dx,

since (p,H)-harmonic functions (i.e. weak solutions of ∆H
p u = 0) are critical points of Ep,H.

The first Dirichlet eigenvalue λH1,p(Ω) of the operator ∆
H
p , also called the H-anisotropic fundamental

p-frequency of Ω, is variationally characterized as

λH1,p(Ω) = inf
{

Ep,H(u) : u ∈ W 1,p
0 (Ω), ‖u‖Lp(Ω) = 1

}

.

From the conditions (H) and (P), it follows that λH1,p(Ω) is positive and ∆H
p is uniformly elliptic. The

latter fact along with (H) and C2 regularity of H outside the origin imply that λH1,p(Ω) is the unique

principal eigenvalue of ∆H
p , which is also simple. In addition, all eigenfunctions of ∆H

p inW 1,p
0 (Ω) belong

to C1,β(Ω) and extends C1,β at points on C1,α parts of the boundary of Ω where α > β. For the part

of regularity we refer to [51, 52] and references therein.

Consider the unit ball BH = {ξ ∈ Rn : H(ξ) ≤ 1} and its polar body defined by

B◦
H = {ξ ∈ Rn : 〈ξ, η〉 ≤ 1, η ∈ BH}.
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The anisotropic Faber-Krahn inequality established in [4] states that, for any bounded domain Ω with

|Ω| = |B◦
H |,

λH1,p(Ω) ≥ λH1,p(B
◦
H) (2)

and, in addition, equality holds in (2) if, and only if, Ω is equal to B◦
H , module a translation and a set

of zero capacity.

On the other hand, it deserves to be remarked that the Faber-Krahn inequality (2) provides a sharp

lower uniform estimate of λH1,p(Ω) in terms of the measure |Ω|, namely

λH1,p(Ω) ≥ |B◦
H |

p
nλH1,p(B

◦
H) |Ω|−

p
n .

Within this spirit, considerable advances have been achieved in optimization problems that consist in

finding, given a bounded domain Ω0, uniform estimates of eigenvalues with respect to the coefficients

of elliptic operators and/or other involved parameters, with optimal lower and upper constants be-

ing explicitly computed in some cases. More precisely, this question has been addressed to Dirichlet

eigenvalues λk(V ) of the Schrödinger operator

LSu = −~∆u + V (x)u in Ω0,

where ~ denotes the Planck’s constant and V is a potential function subject to the restrictions

‖V ‖Lp(Ω0) ≤ κ and κ1 ≤ V ≤ κ2 in Ω0

for a priori fixed constants κ, κ1 and κ2, we refer to [21, 28, 30, 39, 41, 45, 50, 56] for the one-dimensional

case and [2, 13, 17, 18, 27, 36, 44] and Chapter 9 of [38] for higher dimensions.

Sharp estimates have been also obtained for Dirichlet eigenvalues λk(σ) of the elliptic operator

LCu = −div(σ(x)∇u) in Ω

for conductivity functions σ normalized simultaneously by the uniform and Lp constraints above with

constants κ1, κ2 > 0, see [3, 22, 29, 53] for some developments.

Inequality as (1) and (2) are of isoperimetric nature once one treats sharp lower estimate of the

first Dirichlet eigenvalue of elliptic operators on bounded domains with prescribed Lebesgue measure.

A natural query to ask is whether there are isoanisotropic counterparts of (1) and (2). A positive

answer to this question relies on finding some prescribed “measure” condition of functions H . Once

an appropriate normalization has been defined, we are faced with two fundamental issues on a fixed

bounded domain Ω. More precisely, we have:

(A) Are there any positive explicit optimal constants λmin
1,p (Ω) and λ

max
1,p (Ω) such that

λmin
1,p (Ω) ≤ λH1,p(Ω) ≤ λmax

1,p (Ω)

for every “normalized” convex function H satisfying (H) and (P)?

(B) Are there functions H yielding any equality in (A)? Is there any characterization of them?
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The positivity of λmin
1,p (Ω) and finiteness of λmax

1,p (Ω) must necessarily depend on the set of anisotropic

functions to be introduced. Inequalities in (A) display sharp uniform estimates on H for the first eigen-

value of the operator ∆H
p . Moreover, the first of them is the isoanisotropic parallel of the n-dimensional

Faber-Krahn isoperimetric inequality. Functions H solving (B) are called anisotropic extremizers.

As with most eigenvalue optimization problems focused on domains varying with fixed measure,

optimization problems that involve the dependence on second order elliptic operators in a fixed domain

are usually difficult.

The purpose of this paper is to start the discussion of (A) and (B) in the plane within the class of

functions H generated by positive quadratic forms (so that ∆H
p is uniformly elliptic), namely functions

H under the form

H(x, y) = (αx2 + 2βxy + γy2)1/2

satisfying (P) with positive constants κ1 and κ2 independent of H . Our family of elliptic operators

includes the Laplace and p-Laplace operators, since

∆ = ∆H0
2 and ∆p = ∆H0

p

for the Euclidean norm H0(x, y) = |(x, y)| = (x2 + y2)1/2.

The question (A) will be completely solved for the referred class. Already the answer to the question

(B) is divided into three parts: we first prove the rigidity of the second inequality in (A), being attained

exactly by H0; we prove the existence of at least one anisotropic extremizer for the first inequality; we

characterize all anisotropic extremizers for the first inequality on disks and on a family of rectangles,

where it becomes clear that the quantity (multiplicity) of such optimal functions depends on the shape

of the domain Ω. We also present sharp quantitative anisotropic estimates related to the lower constant

λmin
1,p (Ω). Finally, we discuss (A) and (B) when the uniform ellipticity condition is relaxed, in particular

we show that the optimal lower constant remains positive, while anisotropic extremizers no longer exist.

This work seems to be the first to develop a comprehensive optimization theory for a family of

quasilinear elliptic operators in dimension n = 2. The leading arguments are based on maximum

principles, monotonic property of λH1,p(Ω) with respect to H and mainly on a key explicit relation stated

in Theorem 5.1 which is the bridge that connects the quadratic anisotropic environment to the study

of anisotropic stability of optimal lower constants via aforementioned quantitative estimates.

The remainder of paper is organized into four sections. In Section 2 we introduce basic notations and

the entire setup of quadratic anisotropic optimization. In Section 3 we present all statements related to

(A) and (B). Section 4 is devoted to proofs of the results dealing with anisotropic maximization, while

Section 5 is dedicated to all proofs related to anisotropic minimization.

2 The anisotropic optimization setting

We will use from now on the letter Q (and derivatives thereof) in place of H in the notations regarding

anisotropic eigenvalues and other ingredients, once the class of functions H to be considered is in

correspondence with positive quadratic forms by means of the relation H = Q1/2.

The set of all positive quadratic forms on R2 is given by

Q := {Q(x, y) = αx2 + 2βxy + γy2 : α, γ > 0, β ≥ 0 and β2 < αγ}.
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For each Q ∈ Q, set

Qmin = min
|(x,y)|=1

Q(x, y) and Qmax = max
|(x,y)|=1

Q(x, y),

where | · | denotes the Euclidean norm.

For a ∈ (0, 1], we consider the subset of Q of normalized functions as

Qa := {Q ∈ Q : Qmin ≥ a and Qmax = 1}.
For any Q ∈ Qa, clearly we have

a|(x, y)|2 ≤ Q(x, y) ≤ |(x, y)|2, ∀(x, y) ∈ R2. (3)

For a = 0, we denote by Q0 the subset of Q with relaxed strict coercivity, that is

Q0 := {Q ∈ Q : Qmax = 1}.
Let Ω ⊂ R2 be a bounded domain and let p > 1 be a fixed parameter. TheQ-anisotropic fundamental

p-frequency is defined for Q ∈ Q as

λQ1,p(Ω) := inf

{
∫∫

Ω

Q
p
2 (∇u) dA : u ∈ W 1,p

0 (Ω), ‖u‖p = 1

}

,

where dA denotes the usual area element.

As mentioned in the introduction, it is a classical result that the infimum is always attained by a

positive function ϕp ∈ C1,β(Ω), which is a principal eigenfunction associated to the principal Dirichlet

eigenvalue λQ1,p(Ω) of the Q-anisotropic operator

∆Q
p u := −div

(

Q
p−1
2 (∇u)∇Q 1

2 (∇u)
)

.

In addition, ϕp is C1,β on C1,α parts of the boundary of Ω with α > β.

Notice also that the operator ∆Q
p is uniformly elliptic for each Q ∈ Qa in a uniform sense since

the corresponding ellipticity constants depend only on the fixed number a. Taking into account this

uniformity, we consider two anisotropic optimization problems for each a ∈ [0, 1]:

λmin
1,p (Qa,Ω) := inf

Q∈Qa
λQ1,p(Ω) and λmax

1,p (Qa,Ω) := sup
Q∈Qa

λQ1,p(Ω).

From the definition of Qa and (3), one easily checks that

ap/2λ1,p(Ω) ≤ λmin
1,p (Qa,Ω) ≤ λmax

1,p (Qa,Ω) ≤ λ1,p(Ω), (4)

where λ1,p(Ω) denotes the principal Dirichlet eigenvalue of the p-Laplace operator. In particular, both

constants are finite and clearly positive if a > 0. Furthermore, when a = 1, the definition of Qa and

inequalities in (4) imply that Q1 = {| · |2} and

λmin
1,p (Q1,Ω) = λmax

1,p (Q1,Ω) = λ1,p(Ω).

The questions (A) and (B) presented in the introduction can now be rephrased for a ∈ [0, 1) as

(A1) Can the optimal anisotropic constants λmin
1,p (Qa,Ω) and λmax

1,p (Qa,Ω) be explicitly determined?
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(B1) Are there anisotropic extremizers for λmin
1,p (Qa,Ω) and λmax

1,p (Qa,Ω)? Is it possible to characterize

them?

Lastly, for each a ∈ (0, 1) we will need the set of non-normalized functions by coercivity:

Qa
nn := {Q ∈ Q : aQmax ≤ Qmin}

= {Q ∈ Q : Q(x, y) ≥ aQmax |(x, y)|2, ∀(x, y) ∈ R2}.

Indeed, remark that Qε(x, y) = ε|(x, y)|2 belongs to Qa
nn but not to Qa for any 0 < ε < a, so that there

are anisotropic operators ∆Q
p associated to Q ∈ Qa

nn with arbitrarily small ellipticity constant.

3 Main results on anisotropic optimization

Our first result answers affirmatively both questions (A1) and (B1) for λmax
1,p (Qa,Ω).

Theorem 3.1 (Rigidity). For any a ∈ [0, 1), we have

λmax
1,p (Qa,Ω) = λ1,p(Ω).

Moreover, Q = | · |2 ∈ Qa is the unique anisotropic maximizer for λmax
1,p (Qa,Ω) provided that ∂Ω is

C1,α by parts.

Regarding the anisotropic minimization problem we need to introduce a family of elements of Qa

and of orthogonal 2× 2 matrices in order to state the next theorems.

For α ∈ [a, 1], we consider the anisotropic function Qα(x, y) = αx2 + 2β(α)xy + γ(α)y2 with coeffi-

cients

β(α) =
√

(1− α)(α− a) and γ(α) = 1 + a− α.

As will be shown later, Qα ∈ Qa and (Qα)min = a for every α ∈ [a, 1] .

Let also O be the set of all rotations in the plane of angle between 0 and π/2. For A ∈ O we set

ΩA = AT (Ω), that is ΩA is the rotation of the domain Ω by the orthogonal matrix AT .

The second result completes the solution of the question (A1) and establishes the existence of at

least one anisotropic extremizer for λmin
1,p (Qa,Ω) in the case a ∈ (0, 1).

Theorem 3.2 (Attainability). For any a ∈ (0, 1), we have

λmin
1,p (Qa,Ω) = min

{

λQa

1,p(ΩA) : for any A ∈ O
}

= ap/2min {λ1,p(Ωa
A) : for any A ∈ O} ,

where Ωa = {(x,√ay) : (x, y) ∈ Ω}.
Moreover, all anisotropic minimizers for λmin

1,p (Qa,Ω) belong to {Qα : α ∈ [a, 1]} provided that ∂Ω

is C1,α by parts.

Theorems 3.1 and 3.2 applied to the normalized function Q−1
maxQ ∈ Qa for Q ∈ Qa

nn readily yield
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Corollary 3.1. For any a ∈ (0, 1), the sharp non-normalized anisotropic estimates hold

λmin
1,p (Qa,Ω)Qp/2

max ≤ λQ1,p(Ω) ≤ λmax
1,p (Qa,Ω)Qp/2

max

for every Q ∈ Qa
nn with explicit optimal constants λmin

1,p (Qa,Ω) and λmax
1,p (Qa,Ω).

A second consequence that will be easily checked states that

Corollary 3.2. Assume ∂Ω is C1,α by parts. For any a ∈ (0, 1), we have

ap/2λ1,p(Ω) < λmin
1,p (Qa,Ω) < λmax

1,p (Qa,Ω).

It is natural to wonder at this point what happens if we relax the condition Qmin ≥ a with a ∈ (0, 1]

to Qmin > 0, in other words, if we consider the anisotropic minimization problem in the set Q0. It is

easily checked that

λmin
1,p (Q0,Ω) = inf

a∈(0,1]
λmin
1,p (Qa,Ω).

The next result ensures that λmin
1,p (Q0,Ω) remains positive, however, anisotropic extremizer no longer

exist, so the condition of strict coercivity for some fixed number a ∈ (0, 1] is necessary for its existence.

Theorem 3.3. The optimal lower constant λmin
1,p (Q0,Ω) is always positive. In addition, anisotropic

minimizers do not exist in Q0 provided that ∂Ω is C1,α by parts.

Unlike the upper constant λmax
1,p (Qa,Ω), the lower λmin

1,p (Qa,Ω) depends on the sets Qa. In general,

we have λmin
1,p (Qa,Ω) ≤ λmin

1,p (Qb,Ω) whenever a ≤ b since Qb ⊂ Qa.

Other important topic concerns the stability of λmin
1,p (Qa,Ω) in relation to the sets Qa. This follows

directly from the quantitative anisotropic inequality:

Theorem 3.4 (Quantitative I). Let a ∈ (0, 1) and b ∈ [a, 1). The upper quantitative anisotropic

inequality states that

λmin
1,p (Qb,Ω)

λmin
1,p (Qa,Ω)

− 1 ≤ p

√

bp−1(b− a)

ap(1− a)
.

Moreover, it is sharp in the sense that equality implies b = a.

We also establish a reverse quantitative anisotropic inequality.

Theorem 3.5 (Quantitative II). Let a ∈ (0, 1) and b ∈ [a, 1). The lower quantitative anisotropic

inequality

λmin
1,p (Qb,Ω)− λmin

1,p (Qa,Ω) ≥ C(a, b, p,Ω)(b− a)

holds for

C(a, b, p,Ω) =

{

pa(p−2)/2

2
c0(p,Ω), if p ≥ 2

pb(2−p)/2

2
λ1,p(Ω)

(p−2)/2c0(p,Ω)
2/p, if 1 < p < 2,

where

c0(p,Ω) := inf
A∈O

inf
u∈W 1,p

0 (Ω)

{
∫∫

ΩA

|Dxu|p dA : ‖u‖p = 1

}

is a positive constant.

Moreover, both are sharp provided that ∂Ω is C1,α.
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Regardless of the shape of the membrane Ω, Theorem 3.2 guarantees that λmin
1,p (Qa,Ω) always admits

at least one anisotropic minimizer. The final two theorems of this section deal with the exact multiplicity

of these extremizers. They seem to point to a close relationship between the numbers of anisotropic

minimizers and of certain symmetries of the region Ω. In particular, we give a complete answer to (B1)

in the case of disks and a class of rectangles.

Theorem 3.6. Let a ∈ (0, 1) and assume Ω is a disk D centered at the origin. Then,

λmin
1,p (Qa, D) = λQa

1,p(D) = ap/2λ1,p(Ea),
where Ea denotes the elliptical region {(x,√ay) : (x, y) ∈ D}.

Moreover, the set of all anisotropic minimizers is precisely given by {Qα : α ∈ [a, 1]}.

Theorem 3.7. Let a ∈ (0, 1) and assume Ω is the rectangle Ra = [−1, 1]× [−1/
√
a, 1/

√
a]. Then,

λmin
1,p (Qa, Ra) = λQa

1,p(Ra) = ap/2λ1,p(R).

where R denotes the square [−1, 1]× [−1, 1].

Moreover, the unique anisotropic minimizers are Qa and Q1.

4 Optimization problems associated to λmax
1,p (Qa,Ω)

We begin with a monotonicity result which will be used in the proof of Theorems 3.1, 3.2 and 3.3 and

Corollary 3.2.

Proposition 4.1. Let Q1, Q2 ∈ Q. It holds that λQ1
1,p(Ω) ≤ λQ2

1,p(Ω) whenever Q1 ≤ Q2 in R2.

Moreover, λQ1
1,p(Ω) = λQ2

1,p(Ω) only when Q1 = Q2 in R2 provided that ∂Ω is C1,α by parts.

For the proof of the second part of this statement we recall a simple property about nonnegative

quadratic forms.

Lemma 4.1. Let Q be a nonnegative quadratic form on R2. If Q 6≡ 0, then either Q > 0 in R2\{(0, 0)}
or the kernel of Q is a straight line in R2.

Proof. Let M be a symmetric matrix that represents Q, that is, Q(v) = 〈v,Mv〉 with v = (x, y). Using

that Q ≥ 0 we ensure that Q(v0) = 0 if, and only if, Mv0 = 0. Assume Q(v0) = 0 and consider the

function hv(t) = Q(tv + v0) for t ∈ R, where v is any nonzero fixed vector in R2. Noting that

hv(t) = t2〈v,Mv〉+ 2t〈v,Mv0〉+ 〈v0,Mv0〉.
and t = 0 is a minimum point of hv(t), we have h′v(0) = 0, or equivalently 〈v,Mv0〉 = 0. Since v is an

arbitrary vector, it follows that Mv0 = 0. The reciprocal is immediate.

Assume now that Q 6≡ 0. For the conclusion, it suffices to show that there are no two linearly

independent vectors in the kernel of Q. Let v1, v2 be nonzero vectors such that Q(v1) = 0 = Q(v2).

Then, from the above claim, we have Mv1 = 0 =Mv2. If v1 and v2 are linearly independent, then they

span R2 and therefore M ≡ 0, so Q ≡ 0, contradicting the hypothesis of the statement.
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Proof of Proposition 4.1. The claim λQ1

1,p(Ω) ≤ λQ2

1,p(Ω) is immediate once it follows readily of the varia-

tional characterization. The part that needs to be carefully checked is that equality λQ1

1,p(Ω) = λQ2

1,p(Ω)

implies Q1 = Q2 in R2. Proceeding by contradiction and applying Lemma 4.1 to the nonnegative

quadratic form Q = Q2 − Q1, it follows that Q1 < Q2 at least in R2 except a straight line passing

through the origin.

Let ϕp ∈ W 1,p
0 (Ω) ∩ C1,β(Ω) be a positive minimizer for λQ1

1,p(Ω) normalized by ‖ϕp‖p = 1. Using

the assumption that ∂Ω is C1,α by parts, we recall that ϕp extends C1,β until the boundary up to a

finite number of points. Then, applying the Hopf’s Lemma to the quasilinear elliptic operator ∆Q1
p ,

we guarantee that ∇ϕp is a nonzero vector on each C1,α part of ∂Ω pointing inward of Ω. Since Ω

is a domain, we can choose a point (x0, y0) on some smooth part of ∂Ω so that Q1(∇ϕp(x0, y0)) <

Q2(∇ϕp(x0, y0)). It is clear that the strict inequality Q1(∇ϕp) < Q2(∇ϕp) remains in the open Ωδ =

{(x, y) ∈ Ω : |(x − x0, y − y0)| < δ} for δ > 0 small enough. Using the strict inequality in Ωδ and

Q1(∇ϕp) ≤ Q2(∇ϕp) in Ω \ Ωδ, we get

λQ1

1,p(Ω) ≤
∫∫

Ω

Q
p
2
1 (∇ϕp) dA =

∫∫

Ωδ

Q
p
2
1 (∇ϕp) dA+

∫∫

Ω\Ωδ

Q
p
2
1 (∇ϕp) dA

≤
∫∫

Ωδ

Q
p
2
1 (∇ϕp) dA+

∫∫

Ω\Ωδ

Q
p
2
2 (∇ϕp) dA

<

∫∫

Ωδ

Q
p
2
2 (∇ϕp) dA+

∫∫

Ω\Ωδ

Q
p
2
2 (∇ϕp) dA = λQ2

1,p(Ω).

Proof of Theorem 3.1. By definition, for any Q ∈ Qa, we have Q(x, y) ≤ Q(x, y) := x2 + y2 for all

(x, y) ∈ R2 and so, by Proposition 4.1,

λmax
1,p (Qa,Ω) = λQ1,p(Ω) = λ1,p(Ω)

since Q ∈ Qa. Moreover, by the same proposition, the strict inequality λQ1,p(Ω) < λQ1,p(Ω) holds whenever

Q 6≡ Q, so that Q is the unique anisotropic extremizer for λmax
1,p (Qa,Ω).

5 Optimization problems associated to λmin
1,p (Qa,Ω)

First we develop all the necessary ingredients to prove the existence and shape of anisotropic extremizers

for λmin
1,p (Qa,Ω) on Qa.

5.1 The structure of the set Qa

Let

Qa := {Q(x, y) ∈ Qa : Qmin = a}.
Clearly, we have Qa ⊂ Qa. The next result describes precisely the set Qa.

Proposition 5.1. For each a ∈ (0, 1), the set Qa is precisely given by {Qα : α ∈ [a, 1]}, where Qα is

as defined in Section 3.
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Proof. Let Q = αx2 + 2βxy + γy2 with α, γ > 0, β ≥ 0 and β2 < αγ. Consider an orthogonal matrix

A diagonalizing the symmetric matrix

M =

[

α β

β γ

]

,

into its real eigenvalues µ1 and µ2 which can be assumed µ1 ≤ µ2. One easily checks that (Q◦A)(x, y) =
µ1x

2 + µ2y
2. Hence, Q ∈ Qa if, and only if, µ1 = a and µ2 = 1. But this is equivalent to say that β

and γ satisfy the system

{

(α− a)(γ − a) = β2

(α− 1)(γ − 1) = β2,

whose solution is given for each α ∈ [a, 1] by

β(α) =
√

(1− α)(α− a) and γ(α) = 1 + a− α.

A direct consequence of this result is

Corollary 5.1. Let a ∈ (0, 1). For any α ∈ [a, 1], we have Qα ◦ Aα = Qa, where Aα denotes the

orthogonal matrix

Aα =





√

1−α
1−a

√

α−a
1−a

−
√

α−a
1−a

√

1−α
1−a



 .

In particular, there is a natural bijection between Qa and {Aα : α ∈ [a, 1]} which in turn is in

correspondence with the set of rotations O defined in the introduction.

Proof. It is immediate to see that the columns of Aα are eigenvectors de M associated to a and 1 in

this order and also that the set {Aα : α ∈ [a, 1]} coincides with O = {Rθ : θ ∈ [0, π
2
]}, where

Rθ =

[

cos θ sin θ

− sin θ cos θ

]

.

A convenient way to look at the set Qa is through the disjoint decomposition ˙⋃
b∈[a,1]Qb. Using this

viewpoint, we establish the following key relation:

Theorem 5.1. Let a ∈ (0, 1). Given any Q ∈ Qa there is a function Qα ∈ Qa such that

Q(x, y) =
1− b

1− a
Qα(x, y) +

b− a

1− a
(x2 + y2), ∀(x, y) ∈ R2,

where b ∈ [a, 1] is the number for which Q ∈ Qb.

Particularly, this statement implies that Q ≥ Qα in R2 and Q ≡ Qα if, and only if, b = a.

10



Proof. Let Q ∈ Qa and let b ∈ [a, 1] be such that Q ∈ Qb. Writing Q(x, y) = ᾱx2 + 2β̄xy + γ̄y2 with

ᾱ, γ̄ > 0, β̄ ≥ 0 and β̄2 < ᾱγ̄, by Proposition 5.1, we know that

ᾱ ∈ [b, 1], β̄ =
√

(1− ᾱ)(ᾱ− b) and γ̄ = 1 + b− ᾱ.

Let us seek a function Qα ∈ Qa such that

Q ≥ Qα in R2. (5)

Again by that proposition, we have Qα(x, y) = αx2 + 2βxy + γy2 where

α ∈ [a, 1], β =
√

(1− α)(α− a) and γ = 1 + a− α.

Notice that the inequality (5) holds if, and only if,

(β̄ − β)2 − (ᾱ− α)(γ̄ − γ) ≤ 0. (6)

The idea now is to prove the equivalence between this inequality and the relation

α =
1− a

1− b
ᾱ +

a− b

1− b
. (7)

Replacing β̄ and γ̄ in function of ᾱ and β and γ in function of α in (6), after some development, we

arrive at

(1− α)(ᾱ− b) + (1− ᾱ)(α− a)− 2
√

(1− α)(ᾱ− b)(1 − ᾱ)(α− a) ≤ 0.

On the other hand, this inequality can be rewritten as

(
√

(1− α)(ᾱ− b)−
√

(1− ᾱ)(α− a))2 ≤ 0.

Consequently,

(1− α)(ᾱ− b) = (1− ᾱ)(α− a)

which yields the value of α as in (7). This equation also allows us to express ᾱ, β̄ and γ̄ in terms

respectively of α, β and γ. Indeed, it can be placed into three suitable ways:

ᾱ =
1− b

1− a
α +

b− a

1− a
, (8)

1− ᾱ =
1− b

1− a
(1− α) and ᾱ− b =

1− b

1− a
(α− a).

The last equalities clearly imply that α ∈ [a, 1] if, and only if, β ∈ [b, 1]. Moreover, they produce the

relations

β̄ =
√

(1− ᾱ)(ᾱ− b) =
1− b

1− a

√

(1− α)(α− a) =
1− b

1− a
β (9)

and

γ̄ = 1 + b− ᾱ =
1− b

1− a
(1− α) + b =

1− b

1− a
(1 + a− α) +

b− a

1− a
=

1− b

1− a
γ +

b− a

1− a
. (10)

11



Plugging (8), (9) and (10) in Q, we deduce that

Q(x, y) =
1− b

1− a
Qα(x, y) +

b− a

1− a
(x2 + y2).

5.2 Proof of Theorem 3.2 and Corollary 3.2

We first prove Theorem 3.2 and after we invoke it in the proof of Corollary 3.2.

Proof of Theorem 3.2. Let Q ∈ Qa and assume that Q ∈ Qb for some b ∈ (a, 1]. By Theorem 5.1, there

exists Qα ∈ Qa such that Q ≥ Qα and Q 6≡ Qα since b > a. By Proposition 4.1, we have in general

that λQ1,p(Ω) ≥ λQα

1,p (Ω). Therefore, it follows that

λmin
1,p (Qa,Ω) = inf

Q∈Qa

λQ1,p(Ω)

and moreover, by assuming ∂Ω is C1,α by parts, the above monotonicity is strict, so that any anisotropic

extremizer, if exist, belongs to Qa.

On the other hand, by Corollary 5.1, each function Q ∈ Qa corresponds to an orthogonal matrix

A ∈ O such that Q ◦ A = Qa. Then, using the change of variable v(X ′) = u(X) for X ′ = ATX ∈ ΩA

with X = (x, y) and X ′ = (x′, y′), we obtain

∫∫

Ω

Q
p
2 (∇u) dA =

∫∫

ΩA

Q
p
2
a (∇v) dA and

∫∫

Ω

|u|p dA =

∫∫

ΩA

|v|p dA,

which yields λQ1,p(Ω) = λQa

1,p(ΩA). Making now the change v(x′, y′) = u(x, y) for x′ = x and y′ =
√
ay for

(x′, y′) ∈ Ωa
A, we get

∫∫

ΩA

Q
p
2
a (∇u) dA = a(p−1)/2

∫∫

Ωa
A

|∇v|p dA and

∫∫

ΩA

|u|p dA = a−1/2

∫∫

Ωa
A

|v|p dA,

and so λQa

1,p(ΩA) = ap/2λ1,p(Ω
a
A). Consequently, we derive

λmin
1,p (Qa,Ω) = inf

A∈O
λQa

1,p(ΩA) = ap/2 inf
A∈O

λ1,p(Ω
a
A).

Notice now that O is a closed subset of the compact set of all orthogonal 2 × 2 matrices and the first

eigenvalue of the p-Laplace operator λ1,p(Ω) depends continuously on Ω with respect to the Hausdorff

topology (see Theorem 3.2 in [42]). Hence, the above infimum is always attained and therefore,

λmin
1,p (Qa,Ω) = min

A∈O
λQa

1,p(ΩA) = ap/2min
A∈O

λ1,p(Ω
a
A).

Moreover, each minimizer A ∈ O is associated to the anisotropic extremizer Q = Qa ◦ AT ∈ Qa for

λmin
1,p (Qa,Ω).

Proof of Corollary 3.2. Let a ∈ (0, 1). Consider the functions Q(x, y) = a(x2+y2) andQ(x, y) = x2+y2.

By Theorems 3.1 and 3.2, we know that

λmin
1,p (Qa,Ω) = λQα

1,p (Ω) and λmax
1,p (Qa,Ω) = λQ1,p(Ω)

12



for some Qα ∈ Qa. From the definition of Qa, one knows that Q � Qα � Q in R2. Since ∂Ω is C1,α by

parts, by Proposition 4.1, we get

ap/2λ1,p(Ω) = λ
Q

1,p(Ω) < λQα

1,p (Ω) < λQ1,p(Ω),

so that

ap/2λ1,p(Ω) < λmin
1,p (Qa,Ω) < λmax

1,p (Qa,Ω).

5.3 Proof of Theorem 3.3

We start proving the positivity of λmin
1,p (Q0,Ω). For any a ∈ (0, 1], due to Theorem 3.2, we have

λmin
1,p (Qa,Ω) = λQa

1,p(ΩA) for some rotation A ∈ O. If ua ∈ W 1,p
0 (Ω) with ‖ua‖p = 1 is an eigenfunction

associated to λQa

1,p(ΩA), then

λmin
1,p (Qa,Ω) = λQa

1,p(ΩA) =

∫∫

ΩA

Q
p
2
a (∇ua) dA

=

∫∫

ΩA

(

a|Dxua|2 + |Dyua|2
)

p
2 dA

≥
∫∫

ΩA

|Dyua|p dA

≥ d(p,ΩA)

∫∫

ΩA

|ua|p dA = d(p,ΩA),

where d(p,ΩA) = tppw(ΩA, ξ)
−p is the positive constant given in Lemma 1 of [34] with ξ = (0, 1). Hence,

using that O is compact and w(ΩA, ξ) depends continuously on A, one has

d0(p,Ω) := inf
A∈O

d(p,ΩA) = min
A∈O

d(p,ΩA) > 0,

so that

λmin
1,p (Q0,Ω) = inf

a∈(0,1]
λmin
1,p (Qa,Ω) ≥ d0(p,Ω) > 0.

The second statement is proved by contradiction. Assume that there isQ ∈ Q0 such that λmin
1,p (Q0,Ω) =

λQ1,p(Ω). Set a = Qmin > 0, so λmin
1,p (Q0,Ω) = λmin

1,p (Qa,Ω). From Theorem 3.2, we know that

λmin
1,p (Qa,Ω) = λQa

1,p(ΩA) for some A ∈ O. Since Qa ≥ Qa/2 in R2 and Qa 6≡ Qa/2, by Proposition 4.1, we

get

λmin
1,p (Q0,Ω) = λQa

1,p(ΩA) > λ
Qa/2

1,p (ΩA) = λQ̃1,p(Ω)

with Q̃ = Qa/2 ◦ AT ∈ Q0, which is a contradiction.

13



5.4 Proof of Theorems 3.4 and 3.5

Proof of Theorem 3.4. Let a ∈ (0, 1) and b ∈ [a, 1). Given Q ∈ Qb, by Theorem 5.1, there is a function

Qα ∈ Qa such that

Q(x, y) =
1− b

1− a
Qα(x, y) +

b− a

1− a
|(x, y)|2.

Let ϕp ∈ W 1,p
0 (Ω) with ‖ϕp‖p = 1 such that

∫∫

Ω

Q
p
2
α(∇ϕp) dA = λmin

1,p (Qa,Ω).

Then using the mean value theorem,

λmin
1,p (Qb,Ω)− λmin

1,p (Qa,Ω) ≤
∫∫

Ω

Q
p
2 (∇ϕp) dA−

∫∫

Ω

Q
p
2
α(∇ϕp) dA =

∫∫

Ω

Q
p
2 (∇ϕp)−Q

p
2
α (∇ϕp) dA

≤
∫∫

Ω

pQ
p−1
2 (∇ϕp)

(

Q
1
2 (∇ϕp)−Q

1
2
α(∇ϕp)

)

dA

≤ p

∫∫

Ω

Q
p−1
2 (∇ϕp)

(

√

1− b

1− a
Q

1
2
α(∇ϕp) +

√

b− a

1− a
|∇ϕp| −Q

1
2
α(∇ϕp)

)

dA

≤ p√
1− a

∫∫

Ω

Q
p−1
2 (∇ϕp)

((√
1− b−

√
1− a

)

Q
1
2
α(∇ϕp) +

√
b− a|∇ϕp|

)

dA

≤ p√
1− a

∫∫

Ω

Q
p−1
2 (∇ϕp)

√
b− a|∇ϕp| dA

≤ p
√
b− a√
1− a

∫∫

Ω

Q
p−1
2 (∇ϕp)

Q
1
2
α(∇ϕp)√

a
dA

=
p
√
b− a

√

a(1− a)

∫∫

Ω

(

1− b

1− a
Qα(∇ϕp) +

b− a

1− a
|∇ϕp|2

)
p−1
2

Q
1
2
α(∇ϕp) dA

≤ p
√
b− a

√

a(1− a)p

∫∫

Ω

(

1− b+
b− a

a

)
p−1
2

Q
p
2
α (∇ϕp) dA

= p

√

bp−1(b− a)

ap(1− a)
λmin
1,p (Qa,Ω).

Hence, we derive the upper quantitative inequality

λmin
1,p (Qb,Ω)

λmin
1,p (Qa,Ω)

− 1 ≤ p

√

bp−1(b− a)

ap(1− a)
,

which is sharp since equality in the above third inequality only holds when b = a since b < 1.

Proof of Theorem 3.5. We first get a lower quantitative inequality for p ≥ 2. Let Q ∈ Qb and choose a

positive function ψp ∈ W 1,p
0 (Ω) with ‖ψp‖p = 1 such that

λmin
1,p (Qb,Ω) =

∫∫

Ω

Q
p
2 (∇ψp) dA.
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Again taking Qα ∈ Qa as in Theorem 5.1 and applying the mean value theorem, one gets

λmin
1,p (Qb,Ω)− λmin

1,p (Qa,Ω) ≥
∫∫

Ω

Q
p
2 (∇ψp) dA−

∫∫

Ω

Q
p
2
α(∇ψp) dA

≥
∫∫

Ω

p

2
Q

p
2
−1

α (∇ψp) (Q(∇ψp)−Qα(∇ψp)) dA

=
p

2

∫∫

Ω

Q
p
2
−1

α (∇ψp)

(

1− b

1− a
Qα(∇ψp) +

b− a

1− a
|∇ψp|2 −Qα(∇ψp)

)

dA

=
p

2

∫∫

Ω

Q
p
2
−1

α (∇ψp)
b− a

1− a

(

|∇ψp|2 −Qα(∇ψp)
)

dA

≥ pa(p−2)/2(b− a)

2(1− a)

∫∫

Ω

|∇ψp|p−2
(

|∇ψp|2 −Qα(∇ψp)
)

dA

=
pa(p−2)/2(b− a)

2(1− a)

∫∫

ΩA

|∇vp|p−2
(

|∇vp|2 − a|Dxvp|2 − |Dyvp|2)
)

dA

=
pa(p−2)/2(b− a)

2

∫∫

ΩA

|∇vp|p−2|Dxvp|2 dA

≥ pa(p−2)/2(b− a)

2

∫∫

ΩA

|Dxvp|p dA,

where A ∈ O is the matrix so that Qα ◦ A = Qa and vp = ψp ◦ A. Therefore,

λmin
1,p (Qb,Ω)− λmin

1,p (Qa,Ω) ≥ pa(p−2)/2(b− a)

2
c0(p,Ω),

where, as in the statement,

c0(p,Ω) := inf
A∈O

inf
u∈W 1,p

0 (Ω)

{
∫∫

ΩA

|Dxu|p dA : ‖u‖p = 1

}

.

The case 1 < p < 2 is treated in a similar manner. With the same notation, applying the mean

value theorem and then reverse Hölder inequality, we have

λmin
1,p (Qb,Ω)− λmin

1,p (Qa,Ω) ≥
∫∫

Ω

Q
p
2 (∇ψp) dA−

∫∫

Ω

Q
p
2
α(∇u) dA

≥
∫∫

Ω

p

2
Q

p
2
−1(∇ψp) (Q(∇ψp)−Qα(∇ψp)) dA

=
p

2

∫∫

Ω

Q
p
2
−1(∇ψp)

(

1− b

1− a
Qα(∇ψp) +

b− a

1− a
|∇ψp|2 −Qα(∇ψp)

)

dA

=
p

2

∫∫

Ω

Q
p
2
−1(∇ψp)

b− a

1− a

(

|∇ψp|2 −Qα(∇ψp)
)

dA

≥ p(b− a)

2(1− a)

∫∫

Ω

|∇ψp|p−2
(

|∇ψp|2 −Qα(∇ψp)
)

dA

=
p(b− a)

2(1− a)

∫∫

ΩA

|∇vp|p−2
(

|∇vp|2 − a|Dxvp|2 − |Dyvp|2
)

dA

=
p(b− a)

2

∫∫

ΩA

|∇vp|p−2|Dxvp|2 dA
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≥ p(b− a)

2

(
∫∫

ΩA

|∇vp|p dA
)

p−2
p
(
∫∫

ΩA

|Dxvp|p dA
)

2
p

=
p(b− a)

2

(
∫∫

Ω

|∇ψp|p dA
)

p−2
p
(
∫∫

ΩA

|Dxvp|p dA
)

2
p

≥ p(b− a)

2

(
∫∫

Ω

Q
p
2 (∇ψp)

bp/2
dA

)

p−2
p
(
∫∫

ΩA

|Dxvp|p dA
)

2
p

=
pb(2−p)/2(b− a)

2

(

λmin
1,p (Qb,Ω)

)

p−2
2

(
∫∫

ΩA

|Dxvp|p dA
)

2
p

≥ pb(2−p)/2(b− a)

2
λ1,p(Ω)

(p−2)/2c0(p,Ω)
2/p.

Besides, if u ∈ W 1,p
0 (Ω) and ‖u‖p = 1, we have

∫∫

ΩA

|Dxu|p dA ≥ c(p,ΩA)

∫∫

ΩA

|u|p dA = c(p,ΩA),

where c(p,ΩA) = tppw(ΩA, ξ)
−p is the positive constant given in Lemma 1 of [34] with ξ = (1, 0). Arguing

exactly as in the proof of Theorem 3.3, we deduce that

c0(p,Ω) ≥ inf
A∈O

c(p,ΩA) = min
A∈O

c(p,ΩA) > 0.

Finally, if ∂Ω is of C1,α class, then ψp ∈ C1,β(Ω) and, thanks to the Hopf’s Lemma, |∇ψp|−1∇ψp

maps the unity circle S1. Consequently, equality in the second inequality of both cases implies that

Q(∇ψp) = Qα(∇ψp), so that Q ≡ Qα and then b = a.

5.5 Proof of Theorems 3.6 and 3.7

Proof of Theorem 3.6: When Ω is a disk D centered at the origin, we have that ΩA = D and Ωa
A = Ea

for every A ∈ O. Thus, λQa

1,p(ΩA) doesn’t depend on A and is equal to the constant value λQa

1,p(D) =

ap/2λ1,p(Ea). Therefore, by Theorem 3.2, it follows that

λmin
1,p (Qa, D) = λQa

1,p(D) = ap/2λ1,p(Ea)

and the corresponding set of extremizers is

Qa = {Qa ◦ AT : A ∈ O} = {Qα : α ∈ [a, 1]}.

The proof of Theorem 3.7 uses an important result on minimization of λ1,p(R) over all quadrilaterals

R of same area. The Faber-Krahn inequality for quadrilaterals states that the minimum of λ1,p(R) is

attained only at squares of same area. For p = 2, this is a classical theorem due to Pólya and Szegö

[48] whose proof is based on Steiner’s symmetrization arguments. For p 6= 2, the result is also true and

its proof is carried out step by step as in [48], see for example the proof of Theorem 1.1 of [46] where

the same method is employed in the nonlocal p-Laplace case.
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Proof of Theorem 3.7: Assume Ω = Ra = [−1, 1] × [−1/
√
a, 1/

√
a] for a ∈ (0, 1). Notice that Ωa

A is a

quadrilateral of area 4 for any A ∈ O. Recall that the minimizers of λmin
1,p (Qa, Ra) are given by Qa ◦AT

where A minimizes λ1,p(Ω
a
A). On the other hand, there are only two matrices A ∈ O that transform Ωa

A

into a square, namely, the identity matrix I and

A =

[

0 1

−1 0

]

.

Therefore, the unique minimizers of λmin
1,p (Qa, Ra) are Qa and Qa ◦AT = Q1. Finally, using the identity

matrix, we derive

λmin
1,p (Qa, Ra) = λQa

1,p(Ra) = ap/2λ1,p(R),

where R = [−1, 1]× [−1, 1].
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nung die kreisförmige den tiefsten Grundton gibt, Sitzungsberichte 8 Bayer Akad. d. Wiss., 1923.

[32] N. Fusco, F. Maggi, A. Pratelli - Stability estimates for certain Faber-Krahn, isocapacitary and

Chegeer inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 8:51-71, 2009.

[33] N. Fusco, Y.R. Zhang - A quantitative form of Faber-Krahn inequality, Calc. Var. Partial Differential

Equations 56, no. 5, 44 pp, 2017.
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