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Abstract

Gauging the performance of ML models on data from
unseen domains at test-time is essential yet a challenging
problem due to the lack of labels in this setting. More-
over, the performance of these models on in-distribution
data is a poor indicator of their performance on data from
unseen domains. Thus, it is essential to develop metrics
that can provide insights into the model’s performance at
test time and can be computed only with the information
available at test time (such as their model parameters,
the training data or its statistics, and the unlabeled test
data). To this end, we propose a metric based on Optimal
Transport that is highly correlated with the model’s per-
formance on unseen domains and is efficiently computable
only using information available at test time. Concretely,
our metric characterizes the model’s performance on un-
seen domains using only a small amount of unlabeled data
from these domains and data or statistics from the training
(source) domain(s). Through extensive empirical evalua-
tion using standard benchmark datasets, and their corrup-
tions, we demonstrate the utility of our metric in estimating
the model’s performance in various practical applications.
These include the problems of selecting the source data and
architecture that leads to the best performance on data from
an unseen domain and the problem of predicting a deployed
model’s performance at test time on unseen domains. Our
empirical results show that our metric, which uses informa-
tion from both the source and the unseen domain, is highly
correlated with the model’s performance, achieving a sig-
nificantly better correlation than that obtained via the pop-
ular prediction entropy-based metric, which is computed
solely using the data from the unseen domain.

1. Introduction

Machine Learning (ML) models deployed in the real world
are often faced with data from distributions that differ sig-
nificantly from the ones used for model training. In such

scenarios, prior works [6, 14] have shown a significant
degradation in the performance of these models. This
makes the model’s performance on data from training distri-
bution a poor indicator of their performance on real-world
distributions. Thus, in this work, we focus on the prob-
lem of developing a metric that can be used at test time and
can assess the model’s performance on unseen domains in a
cross-domain setting (referred to as transferability, Def 1, in
our work). This setting is similar to that used in the domain
adaptation (DA) [5, 23] and domain generalization (DG)
[38] literature where the tasks are the same across domains
(e.g., digit classification for MNIST and SVHN). Such a
metric is essential for various practical applications such
as finding the best pre-trained model (trained with different
sources and model architectures) at test time, that yields the
best performance on an unseen target domain. It can also
gauge the performance of a deployed model on unseen tar-
get domains at test time without requiring labels from these
domains. See Fig. 1 for an overview of these applications.

Since this metric will be used at test time to estimate
the model’s performance, it must be efficiently computable
only using information available at test time, which includes
access to unlabeled data from the target domain, parameters
of the pre-trained models, and the knowledge of the source
data (or its statistics) used for training the models. Thus,
we propose, TETOT (Test-time Estimation of Transferabil-
ity via Optimal Transport) a metric that quantifies transfer-
ability in terms of the distributional divergence between the
distribution of the source and that of the unseen target do-
main. Specifically, we use Optimal Transport (OT) to esti-
mate the distributional divergence between the distributions
of the two domains and show that it is highly predictive
of the transferability of the models. A series of analytical
works [1, 4, 7, 24, 31, 42] in both DA and DG has high-
lighted the role of distributional distance-based measures
such as Wasserstein distance, KL divergence, total varia-
tion distance, etc., in estimating model performance under
distribution shifts. While previous works in DA and DG
[1, 12, 13, 22] focus on training models that are robust to
distribution shifts, by minimizing distributional divergence,
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Figure 1. (Best viewed in color.) Overview of the practical applications for which TETOT can be utilized. The first application (left) is to
identify the model architecture that will yield the highest transferability for a particular target domain. The second application (center) is
to identify the best source domain data that will produce a model with the highest transferability to the target domain. The third application
(right) is to assess the performance of a given model on unseen target domains given only unlabeled data from those domains.

we focus on proposing a metric to estimate the transfer-
ability of pre-trained models at test time, useful for various
practical applications (Fig. 1).

TETOT is efficiently computable at test time using un-
labeled samples from the unseen domain. In particular,
TETOT uses a small number of labeled samples from the
source (training) distribution and uses the source classifier
to obtain the pseudo-labels for the target domain samples.
Moreover, for scenarios, where the source domain data is
not accessible (e.g., due to privacy constraints) we also pro-
pose a variant of TETOT that can be estimated by using only
statistics (mean and covariance) of the source data. The ef-
ficient computability of TETOT with information accessi-
ble at test time makes it practically useful for gauging the
model’s performance in this setting.

To evaluate the effectiveness of TETOT we evaluate the
Pearson correlation coefficient between transferability and
TETOT on various practical problems. We use the popu-
lar PACS and VLCS benchmark datasets along with their
corrupted versions in our evaluation and consider models
trained using both a single domain and multiple domains.
We evaluate TETOT on the problems of architecture and
source domain selection. These problems aim to find the
model architecture and training data that will yield the high-
est performance transferability to the data from an unseen
domain. We also evaluate the effectiveness of TETOT on
the problem of estimating the transferability of a model on
various unseen domains. Our empirical results demonstrate
that TETOT produces a high correlation with transferabil-
ity in all the applications, making it an effective metric for
estimating transferability at test time.

We extensively compare the correlation of TETOT with
transferability with average prediction entropy, a popular

metric that is also applicable in the test time setting consid-
ered here but does not require the information of the source
data for its computation. This metric has been shown to
achieve a good correlation with transferability in [37] and
has been used extensively to adapt the model to distribu-
tion shifts by using test-time adaptation [18, 21, 28, 33, 37].
Even though prediction entropy is highly effective in pre-
dicting transferability, TETOT significantly outperforms it
in all applications. This suggests the importance of utilizing
source domain information in metrics to compute transfer-
ability. Our main contributions are summarized below:

• We propose TETOT, for assessing the transferability
of classification models to unseen domains at test time
based on the divergence between the distributions of the
source and the target domains.

• TETOT is efficiently computable using unlabeled target
domain data, requires only a small number of samples
from the source, and can even be computed with access
to only statistics of the source data.

• We demonstrate the effectiveness of TETOT in produc-
ing a better correlation with transferability compared to
the popular entropy-based metric on practical problems
including architecture selection, source selection, and
estimating model performance on unseen domains.

2. Related Work
Learning under distribution shifts: ML models suffer
degradation of performance when faced with data from un-
seen distributions. Analytical works in the areas of DA
[4, 5, 23, 24, 31, 42] and DG [1, 12, 13, 30, 40, 41] ex-
plain the reason for performance degradation in terms of
the divergence between the distributions used for training
and that encountered at test time. Following these, a large



body of works [12, 16, 22, 42] exists that learn models by
minimizing different divergence metrics for learning a rep-
resentation space where the distance between the distribu-
tions of training and unseen distributions can be minimized.
Based on these, we propose to use a distance-based metric
dependent on both source and unseen domain data to get in-
sights into the performance of a model at test time allowing
us to select the best model from a set of models (having dif-
ferent architectures and trained on different datasets) to use
for prediction.
Prediction entropy for transferability estimation: Re-
cently, [18, 21, 28, 33, 37] showed the effectiveness of pre-
diction entropy as a metric to adapt models at test time to
distribution shift. Two main factors make prediction en-
tropy suitable for this task. First, it is correlated well with
transferability to unseen domains (especially common cor-
ruptions of benchmark datasets [15, 27]) and second, the
ease of its estimation only using unlabeled target domain
data. However, as we demonstrate extensively in Sec. 4, our
TETOT metric is much better correlated with transferability
and only has a slightly higher computational cost compared
to entropy in our experiments.
Estimating performance after transfer learning (TL):
A recent line of work in TL focuses on developing scores
[3, 17, 26, 29, 32, 39] correlated with the performance of
models after they have been fine-tuned on the target domain
(referred to as full fine-tuning in TL). Some of the works
in this area include Negative Conditional Entropy (NCE)
[34], which uses negative conditional entropy between the
true labels of the source and target domains, LEEP [29],
which computes NCE using the target domain labels and
pseudo labels for the target domain from a source pre-
trained model, and OTCE [32], which uses optimal trans-
port coupling to compute conditional entropy between the
two domains, to estimate performance after full fine-tuning.
While these works show the utility of their metrics on the
problems of source model/architecture selection, our work
and setting are fundamentally different from works in this
line of research. This is due to the following reasons.
Firstly, we work in the setting when the label sets of the
source and target domains are the same (see Sec. 3.1) un-
like in TL where label sets could be different. Secondly, we
assume that we do not have access to the labels of the tar-
get domain (which is a critical requirement for estimating
the scores proposed in this line of work). Lastly, we define
transferability as the accuracy of the pre-trained model on
the target domain (Def. 1) rather than the performance af-
ter fine-tuning using labels of the target domains, as used in
this line of work.

3. Test-time assessment of transferability
Here we present our definition of the transferability of a
model trained on source domain(s) to an unseen target do-

main. This is followed by the details of our proposed metric,
TETOT, for estimating transferability at test time.

3.1. Notation and problem setting

Let PS(x, y) and PT (x, y) denote the distributions of the
source and the target domains defined on XS × YS and

XT × YT respectively. Let Di
S = (xi

j , y
i
j)

mi

j=1
∼ P i

S(x, y)

denote the mi samples from the ith source domain with
i ∈ {1, ..., NS} where NS denotes the number of source
domains used for training the model. Similarly, let DT =
(xj , yj)

n
j=1 ∼ PT (x, y) denote n samples from the target

domain. We assume that the feature spaces are common
(i.e., XS = XT = X ) such as RGB images of the same in-
put dimension but from different domains (such that PS ̸=
PT ), and the same target label sets (i.e., YS = YT = Y).
This setting is commonly considered in the DA [5] and DG
[38] literature. In this setting, a model trained on the data
from the source domain(s) is available and we denote by
g : X → Z the encoder of this model (we consider all
layers up to the final fully connected layer as part of the
encoder) and h : Z → Y denotes the final classifier head
producing the probability distribution over the label set.

Based on this setup, our definition of transferability con-
siders how the model trained with data from the source do-
main(s) performs when faced with data from potentially un-
seen domains. In contrast to previous works [3, 17, 29,
32, 39], proposing metrics correlated with transfer learning
performance, we work in the domain generalization setting,
where all the model weights are frozen i.e., neither the en-
coder nor the classifier is updated at test time. Thus, the
ground truth of transferability to an unseen domain is ob-
tained by evaluating the model’s accuracy on the labeled
data from the target domain formally defined below.

Definition 1. (Transferability). Transferability of a model
trained on the source domain S to an unseen target domain
T is measured as the model’s accuracy on T i.e.,

E(x,y)∈PT (x,y)[accuracy(h(g(x)), y)],

where g : X → Z is the pre-trained encoder and h : Z →
Y is the pre-trained classifier producing a probability distri-
bution over Y .

Measuring actual transferability as defined above re-
quires the knowledge of the labels of the data from the un-
seen domains, which are not available in any practical appli-
cation. However, the model is still expected to make correct
predictions on this data. Moreover, the model’s accuracy on
the test data derived from PS may not indicate the model’s
performance on the data from unseen domains, especially in
the presence of a distribution shift (PS ̸= PT ). This makes
it essential to have access to a metric that can gauge the
transferability of the model at test time without requiring
access to labels of the target data.



3.2. Background on Optimal Transport (OT)

Optimal Transport (OT) [35] provides a framework to com-
pare two probability distributions in a manner consistent
with their geometry. This has made OT a popular choice
for analyzing the performance of ML models when faced
with distribution shifts. Formally, let Π(P,Q) be the space
of joint probability distributions having P and Q as the
marginal distributions and let c(x1, x2) denote the dissim-
ilarity (base distance) between two samples x1 and x2.
Then, OT aims to find the coupling π ∈ Π(P,Q) to min-
imize the transportation cost for moving the mass from dis-
tributions P to Q. Mathematically,

OTc(P,Q) = inf
π∈Π(P,Q)

Eπ[c(x1, x2)]. (1)

When the cost c(x1, x2) = d(x1, x2)
p, where d is the metric

of the underlying (complete and separable) metric space, for
some p ≥ 1, then OTc(P,Q)

1
p =: Wp(P,Q) denoted as

the p−Wasserstein distance.
Since in practice we usually only have access to finite

samples, one can construct discrete empirical distributions
P =

∑m
i=1 aiδxi

1
and Q =

∑n
i=1 biδyi

1
, where a and b are

vectors in the probability simplex. In this case, the pairwise
costs can be represented with a m × n cost matrix C such
that Cij = c(xi

1, x
j
2) and the OT cost can be computed via a

linear program that scales cubically in terms of the samples
size. Since this may be prohibitive for problems with large
sample sizes, efficient solvers such as the Sinkhorn algo-
rithm [8] have been proposed. In this work, we rely on the
network simplex flow algorithm from POT [11] to compute
the optimal coupling as detailed in the next section.

3.3. Estimating transferability via TETOT

The degradation of the performance of a model on distri-
butions different from the ones used for training and the
lack of labels of the target domain data at the time of test-
ing makes it imperative to develop metrics that can gauge
the model’s performance at test time. Thus, we propose an
OT distance-dependent metric to analyze the performance
of models on unseen domains at test time. The efficient esti-
mation of this metric without labels from the target domain,
its intuitive meaning, and high correlation with ground truth
transferability (as demonstrated in Sec. 4) makes it an effec-
tive way to gauge the model’s performance at test time.

Following the line of the analytical works on understand-
ing transferability in the DA [5, 9, 24, 31], DG [1, 25] and
TL [2, 26, 34] settings in terms of various distributional di-
vergence metrics, TETOT, gauges model’s performance at
test time based on the OT distance between the distributions
of the target and the source domains. Our base distance c
to be used in the computation of the OT distance consists
of two parts. The first part focuses on measuring the dis-
similarity between the features of the source and the target

Algorithm 1 Computing TETOT
Input: Source domain data DS , Target domain data DT ,
pre-trained encoder g and classifier h, number of source
samples n, number of target samples m, λ.
Output: TETOT := OT distance between source and target
domain’s distributions.

# Select samples from source and target domains
Randomly sample m points, (xi

S , y
i
S) ∼ DS .

Randomly sample n points, (xj
T , y

j
T ) ∼ DT .

# Compute the pairwise cost matrix based on features and
# labels
for i = 1, · · · ,m and j = 1, · · · , n do
Cij

features = ∥g(xi
S)− g(xj

T )∥2.
Cij

labels = ∥yiS − h(g(xj
T ))∥2.

end for

# Compute the final cost matrix
Cfinal = Cfeatures + λClabels.

# Compute TETOT:= OTc(PS , PT ) by solving Eq. 1

min
π∈Π(PS ,PT )

∑
i,j

πijCij
final

s.t.
∑
j

πij =
1

m
∀i,

∑
i

πij =
1

n
∀j.

return TETOT.

domains and the second focuses on measuring the differ-
ence between the labels of the two domains. To compute
the distance between the features, we follow previous works
[9, 25, 36] and measure the distance between the outputs of
the encoder g for the source and target domains. We define
the cost cfeatures using

cfeatures(xS , xT ) = ∥g(xS)− g(xT )∥2, (2)

where xS and xT denote a single sample drawn from the
source and target domains, respectively. As shown in pre-
vious works [19, 24], relying only on feature distance is
not enough to explain transferability and can be improved
if augmented with label information. To this end, we pro-
pose to augment the base distance with a cost dependent
on the labels of the data of the two domains. Since we do
not have label information about the target domain, we rely
on the pseudo-labels of the target domain as predicted by
the source classifier. Many previous works have demon-
strated the effectiveness of pseudo-labels in learning mod-
els for various applications including DA [7, 9]. While the
pseudo labels may not be aligned with the true labels of the
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Figure 2. (Best viewed in color.) The superiority of TETOT (top row) in achieving a high (negative) correlation (ρ in the plot titles) with
transferability compared to prediction entropy (bottom row) for selecting the best model architecture for making predictions on a given
target domain at test time. Models are trained using Cartoon (C) as the source domain (in the single domain setting) and Art (A), Photos
(P), and Sketch (S) (in a multi-domain setting) from PACS and evaluated on various target domains.

target domain, we find that incorporating them improves the
correlation of TETOT with transferability beyond only us-
ing the feature-based cost (see Sec. 4.6). Thus, our label
cost is obtained as follows

clabels(yS , ŷT ) = ∥yS − h(g(xT ))∥2, (3)

where yS denotes the one-hot encoded label of the sample
from the source data and ŷT := h(g(xT )) denotes the soft-
max output of the source classifier on the sample from the
target domain. Using Eq. 2 and 3, we define the base dis-
tance c as

c((xS , yS), (xT , ŷT )) = cfeatures(xS , xT )

+λ clabels(yS , ŷT ),
(4)

where λ denotes the weight to put on the label cost. When
λ = 0, we recover the OT distance based on only marginal
distribution matching as is common in the DA literature.
Due to the difference between the pseudo and the true tar-
get domain labels, tuning λ is essential. However, we find
in our experiments (in Sec. 4.6) that a value of 1 works well
across various domains and applications. Using the base
distance defined in Eq. 4, we solve Eq. 1 by using the net-
work simplex flow algorithm and use the computed TETOT,
to predict transferability in various applications. The details
of computing TETOT are presented in Alg. 1.

Table 1. TETOT achieves a higher (negative) correlation to trans-
ferability than entropy on the architecture selection problem on
PACS and VLCS datasets.

Dataset Entropy TETOT
PACS -0.40 -0.62
VLCS -0.29 -0.40

Average -0.35 -0.51

4. Experiments

In this section, we present the evaluation results of using
TETOT for predicting transferability in various practical ap-
plications as mentioned in Fig. 1. We show the Pearson cor-
relation coefficient (ρ) between TETOT and ground truth
transferability in our evaluation. A high negative correla-
tion (ρ) implies higher transferability between the source
and target domains. Along with applications mentioned in
Fig. 1, we also show how to estimate transferability using
only statistics from the source data, which may be required
in scenarios where source data is costly to store or private
and hence cannot be accessed at test time. Following this,
we show the effect of the number of samples used for es-
timating the metric and the sensitivity of the metric to the
choice of λ in Eq. 4.

Our evaluation includes two popular benchmark
datasets, PACS [20] and VLCS [10] with four do-



Table 2. TETOT achieves a superior correlation compared to en-
tropy for selecting the source domain that achieves the highest
transferability to a target domain.

Dataset Entropy TETOT
PACS -0.47 -0.94
VLCS -0.58 -0.92

Average -0.53 -0.93

Table 3. TETOT is significantly better at predicting transferability
of a model to unseen domains (achieves a higher (negative) corre-
lation to transferability) compared to entropy on PACS and VLCS
datasets.

Dataset Entropy TETOT
PACS -0.39 -0.93
VLCS -0.34 -0.80

Average -0.36 -0.86

mains each. PACS [20] consists of 9991 images from
Art, Cartoons, Photos, and Sketches across 7 different
classes and VLCS [10] consists of 10729 images from
Caltech101, LabelMe, SUN09, PASCAL VOC 2007
across 5 different classes. We also present an evalua-
tion of corrupted versions of these datasets to mimic
different unseen distributions. We use common cor-
ruptions [15] including {brightness, contrast,
spatter, saturate, elastic transform,
gaussian blur, defocus blur, zoom blur,
gaussian noise, shot noise, impulse
noise, speckle noise} with 5 different severity
levels in our evaluation.

For our experiments, we fine-tune models pre-trained on
the Imagenet dataset with ERM using labeled data from
the source domain with an addition of a 128-dimensional
bottleneck layer followed by a linear fully connected layer,
with 7 units for the PACS and 5 units for the VLCS dataset,
for classification. To make OT distance from different
models/datasets comparable we normalize the output of the
trained encoder separately for source and target representa-
tions before computing Cfeature in all experiments except
for those in Sec. 4.5.

We compare the correlation between transferability
and our metric on various domains, with a popular
target data-only dependent metric of prediction entropy
(computed as 1

n

∑
x∈DT

H(h(g(x)),where H(ŷ) =
−∑

c∈Y p(ŷc) log(p(ŷc)). This metric has previously been
shown to achieve high correlation with transferability and
thus used in various test-time adaptation [21, 28, 33, 37]
works to adapt the model to distribution shifts. While the
prediction entropy produces a high correlation with trans-
ferability, TETOT which uses both source and target data

achieves a significantly better correlation across various ap-
plications and can be computed merely in ≈2 seconds on
the PACS dataset on our hardware. Our code can be found at
https://github.com/akshaymehra24/TETOT.

4.1. Architecture selection for a target domain

In this section, we show how TETOT can be used for select-
ing the model architecture that leads to the highest trans-
ferability to an unseen target domain at test time. For this
experiment, we used eight model architectures including
ResNet18, ResNet34, ResNet50, ResNet101, ResNet152,
DenseNet121, DenseNet169, and DenseNet201. We con-
sider models trained on PACS and VLCS in both single
and multi-domain settings. For the single-domain setting,
the models are trained using only one of the four domains
from these datasets, whereas in the multi-domain setting,
the models are trained using three out of the four domains.
Then, given a target domain (e.g., Art from PACS), we com-
pute the correlation between the transferability and TETOT
of all eight architectures trained on a particular source do-
main(s) (e.g., Cartoon from PACS). The results in Fig. 2
show that TETOT achieves a high correlation with trans-
ferability on this problem, significantly better than using
prediction entropy. Moreover, our results in Table 1, av-
eraged over all 32 target domains (12 for single domain and
4 for multi-domain setting for each dataset) in PACS and
VLCS for models trained in both single and multi-domain
settings show the high correlation achieved by TETOT with
transferability on this problem and show the superiority of
TETOT compared to prediction entropy. This demonstrates
that TETOT can be used to select the model architecture
to use for making the predictions at the test time with just
access to unlabeled data from the target domain.

4.2. Source dataset selection for a target domain

Here we present the results of using TETOT to select the
model trained with the best source domain for a given tar-
get domain. For this experiment, we fix the model archi-
tecture to ResNet50 and train it in both single and multi-
domain settings on PACS and VLCS datasets. Then for a
given target domain, e.g., Art from PACS, we aim to use
TETOT to find the model that achieves the highest trans-
ferability to the target domain, among the models trained
on Cartoon, Photos, Sketch, or a combination of the three.
The averaged results over 8 different target domains (4 from
PACS and 4 from VLCS) in Table 2, show that TETOT sig-
nificantly outperforms prediction entropy and achieves al-
most a perfect negative correlation with transferability on
this problem. This highlights the effectiveness of TETOT
in selecting the best source domain that provides the high-
est transferability to a target domain.

https://github.com/akshaymehra24/TETOT


6 8 10

20

40

60

(C, P, S) → A (ρ = -0.99)

TETOT

A
cc

ur
ac

y

5 6 7
50

60

70

80

(A, P, S) → C (ρ = -0.94)

TETOT

A
cc

ur
ac

y

6 7 8 9

40

60

80

(A, C, S) → P (ρ = -0.9)

TETOT

A
cc

ur
ac

y

7 8 9

50

60

70

80

(A, C, P) → S (ρ = -0.88)

TETOT

A
cc

ur
ac

y

0.5 1.0 1.5

20

40

60

(C, P, S) → A (ρ = -0.71)

Entropy

A
cc

ur
ac

y

0.2 0.4 0.6 0.8
40

50

60

70

80

(A, P, S) → C (ρ = -0.88)

Entropy

A
cc

ur
ac

y

0.5 1.0

40

60

80

(A, C, S) → P (ρ = -0.93)

Entropy

A
cc

ur
ac

y

0.2 0.4 0.6
40

50

60

70

80

(A, C, P) → S (ρ = -0.58)

Entropy

A
cc

ur
ac

y

Figure 3. (Best viewed in color.) The superiority of TETOT (top row) compared to prediction entropy (bottom row) in achieving a high
(negative) correlation (ρ in the plot titles) with transferability on unseen domains encountered at test time. Models are trained using
multiple source domains and evaluated on an unseen target domain from the PACS dataset. (The black triangle denotes the original data of
the target domain whereas the colored triangles denote the target domain data corrupted by different corruptions and severity levels)

4.3. Assessing transferability to unseen domains

In this section, we evaluate the performance of TETOT in
predicting the transferability of a given model to data from
unseen domains. For this experiment, we use ResNet50
models trained with different source domains in both sin-
gle and multi-domain settings on PACS and VLCS datasets.
Using a fixed model, we evaluate how TETOT computed us-
ing only the unlabeled data from a target domain correlates
with the accuracy of the model on this target domain. Re-
sults in Fig. 3, show that TETOT is highly (negatively) cor-
related with the accuracy of the model on various target do-
mains. To generate a wide array of unseen target domains,
we add corruptions (with 5 different severity levels) to the
original target domain similar to those used in [14, 27]. A
high correlation of TETOT with transferability (better than
entropy as shown in Table 3) allows TETOT to be used at
test time to get insights into the performance of the model
on unseen domains. Specifically, suppose the TETOT met-
ric is high compared to the TETOT metric of the original
test set (which can be saved as a reference during the model
training stage). In that case, likely, the model is not produc-
ing good predictions on the unseen domain. Based on this
information, test-time adaptation procedures such as TENT
[37] can be invoked and the model can be adapted to the
distribution of the unseen domain. Thus, TETOT is a useful
metric for gauging model performance at test time.

4.4. Effect of sample size on TETOT

In this section, we show that TETOT achieves a high corre-
lation with transferability even by using a portion of the data
from the source and target domains. For this experiment, we
present the correlation between transferability and TETOT
on the architecture selection problem for the case when the
target domain is fixed to Cartoon and the eight different ar-
chitectures (considered in Sec. 4.1) are trained using the re-
maining three domains from the PACS dataset. The results
in Fig. 4, show that the Pearson correlation coefficient be-
tween TETOT and transferability remains consistently high
for different proportions of the source and target domain
data on this problem.

4.5. Estimating transferability without source data

In practical scenarios, it may be difficult to access the source
dataset (due to privacy constraints or memory limitations of
devices used for model deployment) used for training the
models, making transferability estimation challenging. Us-
ing the flexibility of the OT framework, we propose a metric
that can be estimated with just the statistics (mean and co-
variance) of the source data avoiding the need to access the
entire source dataset. Specifically, we use the following cost
c = c2features in Eq. 4. Using this cost, the square root of
the optimal transport distance computed using Eq. 1 is the
same as the 2-Wasserstein distance as mentioned in Sec. 3.2.
To simplify the computation further, we assume that distri-
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Figure 4. The Pearson correlation coefficient between transfer-
ability and TETOT remains high and better than entropy (a higher
negative correlation is better i.e., a smaller number is better) for
different sample sizes of the source and target domains.

butions of the source and target domains follow the Normal
distribution. This allows us to estimate the 2-Wasserstein
distance in a closed form using only on the statistics of
the source and target domains. Let µ̂S = 1

m

∑
x∈DS

g(x),
Σ̂S = 1

m

∑
x∈DS

(g(x)− µ̂S)
T (g(x)− µ̂S) and let µ̂T , Σ̂S

be defined in a similar manner, then OT(PS , PT ) is

W 2
2 (PS , PT ) = ∥µ̂S − µ̂T ∥22 + tr(Σ̂S + Σ̂T − 2(Σ̂

1
2

S Σ̂T Σ̂
1
2

S ).
(5)

We refer to this as approximate TETOT (TETOT-approx).
Our results in Table 4 show that this metric also achieves
a high correlation with transferability while being slightly
worse than TETOT on the problem of architecture selection
on the PACS dataset. Similar to the previous section, the
target domain is fixed to Cartoon from PACS, and the trans-
ferability of eight architectures trained on the other three
domains is estimated via TETOT.

4.6. Effect of different λ in Eq. 4 for TETOT

In this section, we show how λ the coefficient of the la-
bel cost in Eq. 4 influences the correlation of TETOT and
transferability. We test λ ∈ {0, 1, 1E2, 1E4}, where λ =0
corresponds to only using the marginal feature distribution
for computing the distance between the distributions of the
source and target domains. Our results in Table 5 show
that λ =1 achieves the highest correlation on both PACS
and VLCS datasets for the problem of architecture selec-
tion using models trained in the multi-domain setup, where
three domains are used for training the eight architectures
(in Sec. 4.1) and the remaining domain is used as the tar-
get domain for evaluation. We also see that λ =1 outper-
forms the case of marginal matching (with λ =0), suggest-
ing that incorporating label distance is useful for improving
the correlation between TETOT and transferability. How-
ever, since we only have access to pseudo labels for the data
from the target domain which may be incorrect, emphasiz-

Table 4. Effective transferability estimation with TETOT-approx
:= W 2

2 (PS , PT ) using only statistics from the two domains.

Metric Pearson Corr. Coeff.
TETOT-approx -0.60

TETOT -0.75

Table 5. Effect of using different values of λ in the base distance
defined in Eq. 4 for computing TETOT. TETOT with small label
cost achieves the best correlation with transferability.

Dataset 0 1 1E2 1E4
PACS -0.74 -0.76 -0.74 -0.65
VLCS -0.24 -0.25 -0.25 -0.24

Average -0.49 -0.51 -0.50 -0.44

ing the label cost, to force label-wise matching, degrades
the correlation. Thus a small label cost with λ =1 yields
the highest correlation (-0.51) and performs competitively
to the correlation obtained using true labels for the target
domain (-0.55).

5. Conclusion

In this work, we proposed TETOT, an efficiently com-
putable metric to gauge a model’s performance at test time.
Our metric can estimate transferability only using the in-
formation available at test-time, which includes the knowl-
edge of the source data (or its statistics), parameters of var-
ious pre-trained models, and unlabeled data from the tar-
get domain. Using these, TETOT computes the distribu-
tional divergence between the distributions of the source
and target domain using Optimal Transport. We showed the
effectiveness of TETOT on various practical applications
such as architecture selection, source selection, and predict-
ing the performance of unseen domains. We used PACS
and VLCS along with their corrupted versions to demon-
strate that TETOT achieves a high (negative) correlation
with transferability and significantly outperforms the com-
petitive prediction entropy-based metric in all applications.
Our results demonstrated the utility of TETOT in estimat-
ing the performance of models, at test time, on data from
unseen domains.
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