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Abstract

Action recognition has become one of the popular re-
search topics in computer vision. There are various meth-
ods based on Convolutional Networks and self-attention
mechanisms as Transformers to solve both spatial and tem-
poral dimensions problems of action recognition tasks that
achieve competitive performances. However, these meth-
ods lack a guarantee of the correctness of the action sub-
ject that the models give attention to, i.e., how to ensure an
action recognition model focuses on the proper action sub-
ject to make a reasonable action prediction. In this paper,
we propose a multi-view attention consistency method that
computes the similarity between two attentions from two dif-
ferent views of the action videos using Directed Gromov-
Wasserstein Discrepancy. Furthermore, our approach ap-
plies the idea of Neural Radiance Field to implicitly ren-
der the features from novel views when training on single-
view datasets. Therefore, the contributions in this work are
three-fold. Firstly, we introduce the multi-view attention
consistency to solve the problem of reasonable prediction
in action recognition. Secondly, we define a new metric
for multi-view consistent attention using Directed Gromov-
Wasserstein Discrepancy. Thirdly, we built an action recog-
nition model based on Video Transformers and Neural Ra-
diance Fields. Compared to the recent action recognition
methods, the proposed approach achieves state-of-the-art
results on three large-scale datasets, i.e., Jester, Something-
Something V2, and Kinetics-400.

1. Introduction

Automatic action recognition aims to understand hu-
man behaviors in a given video and assign either single
or multiple action categories to the subjects in that video
[65]. It can be considered one of the fundamental research
problems in computer vision with a wide range of appli-

Figure 1. The motivation of our method. Given an action subject
with two different camera views, this work aims to ensure that the
attention of the model is consistent.

cations from camera surveillance, video information re-
trieval, scene understanding, and human-robot interaction
[59]. This problem has numerous subcategories, including
action classification [32, 22, 6, 78, 21] that classifies ac-
tions from a sequence of videos, temporal action localiza-
tion [17, 92, 40, 39, 89] that windows the action segments
in a video, and spatial-temporal action detection that de-
tects actions via both the spatial and the temporal spaces
[23, 21, 64, 82].

With the rise of deep neural networks and the growth of
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large-scale action recognition datasets, many deep learning
frameworks have been successfully applied for many action
recognition tasks [21, 1]. Deploying deep learning mod-
els into practical applications., e.g., medicine, security, and
finance, etc, the predictions of deep learning models have
to be robust and these predictions have to be grounded by
evidence or explanation. However, explaining predictions
produced by deep neural networks remains a challenging
problem. To solve this problem, explainable artificial in-
telligence has been proposed for helping to understand the
failures and debug deep neural networks. Commonly, these
methods visualize the regions of the model that give atten-
tion with respect to the predictions. In particular, Class Ac-
tivation Mapping (CAM) [93] is the early method that vi-
sualizes the attention map of the convolutional neural net-
works using global average pooling layers. Later, Grad-
CAM [60], produces the attention map by backpropagating
the prediction score through the convolutional layers and
combining the gradients with the forward features. Mean-
while, the Transformer [73] visualizes the explanation using
the self-attention weights computed from multi-head self-
attention modules.

This work investigates the plausibility of deep neural net-
work models for action recognition. Moreover, the models
should automatically correct errors in inference to prevent
potentially catastrophic mistakes in future predictions. Our
idea to solve this problem is inspired by the cognitive pro-
cesses of human perception in real-world scenarios. Specif-
ically, the natural visual perception of humans for recogni-
tion tasks is consistent with the spatial transformation of the
perception of the subject, particularly the changes in view-
ing angle. By adopting this approach, we aim to improve the
robustness and accuracy of our deep neural network model
for action recognition via the consistency of the model from
different views. As illustrated in Figure 1, given a sequence
of action representation, i.e., a video and two camera views,
the model can compute attention volumes from these views
and compare their similarity for consistency.

In detail, to guarantee the action recognition model pro-
duces a reasonable prediction, the attention of the model
to the action subject should be consistent when the view
of the video changes. To make the attention of the model
consistent with view changes, we first measure the similar-
ity between attention maps from different views of a video.
Since the changing of view transforms the model’s atten-
tion, we have to find a metric that compares the structures
between the two attentions. Gromov-Wasserstein distance
[48] has succeeded in objective matching and applied to im-
age matching in computer vision [90]. However, in image
matching, the Gromov-Wasserstein distance computes the
topological similarity of images that ignores the motion of
the subject, which is crucial in action recognition. We pro-
pose a direction-information approach that maintains the

motion features from Gromov-Wasserstein distance com-
puting to mitigate this problem.

Furthermore, although there are multi-view action recog-
nition datasets [76, 61, 41] that might be suitable for our
approach in the training phase, these datasets are recorded
in the laboratory environment. We want to focus on the
datasets from real-world contexts even though they consist
of single-view videos [46, 22, 32]. Thanks to the develop-
ment of neural fields in visual computing [84], especially
Neural Radiance Fields [86], we can render information
from novel views that can obtain the attention of the model
from multiple views.
Contributions of this Work: Our contributions in this pa-
per are summarized as follows. Firstly, we present the
investigation on multi-view attention consistency to solve
the problem of reasonable prediction in action recognition.
Secondly, we propose a new metric for multi-view atten-
tion consistency using Directed Gromov-Wasserstein Dis-
crepancy. Thirdly, we develop an action recognition model
based on Video Transformer and Neural Radiance Fields
ideas to obtain attention from different views. Finally, the
experimental results on three large-scale action recogni-
tion benchmarks, i.e., Jester [46], Something-Something V2
[22], and Kinetics-400 [32], have shown the effectiveness of
our proposed method.

2. Related Work

2.1. Video Action Recognition

Video understanding is a popular topic in computer vi-
sion due to its applications, such as camera surveillance, hu-
man behavior analysis, autonomous driving, and robotics.
Many traditional methods were proposed in the early days
using hand-crafted features [74, 75, 53, 35], particularly Im-
proved Dense Trajectories (IDT) [75], which achieved high
performance at that time.

With the successful development of deep learning and
the existence of large-scale video action datasets such as Ki-
netics [32, 4, 5], AVA [23], and Something-Something [22],
many deep learning frameworks were introduced. Most of
the approaches focused on learning spatial-temporal fea-
tures from the videos. Many methods from early progress
using 2D CNNs for video problems demonstrated promis-
ing results [30, 16]. However, these methods did not out-
perform the traditional hand-crafted features methods due
to their inability to motion handling.

Later methods focused on the motion information, find-
ing an appropriate way to describe the temporal relationship
between frames to improve the performance of CNN-based
video action recognition. There are two categories of ap-
proaches. The first group of methods utilized the optical
flow [27] of the video to describe scene movements. [62]
proposed two-stream networks, including spatial and tem-
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Figure 2. The proposed action classification model. The input video is decomposed into patched and embedded. Then the embedded
patches are computed via Transformer blocks. The representation vectors are mapped into the weights of MLP in the feature renderer.
With the querying rays, the module renders feature vectors used for the last Transformer block before the classification.

poral streams. The spatial stream extracted features from
raw video frames to capture visual appearance information.
The temporal stream extracted features from optical flow
images to capture the motion content of the video.

The second group of methods for video action recogni-
tion includes 3D-CNN-based methods. Inspired by [29],
C3D [67] applied 3D convolutions to model the spatial and
temporal features together. However, 3D networks are hard
to optimize due to their large number of parameters.

The rise of Transformer approaches plays an impor-
tant role due to their competitive accuracy and maintained
computational resources compared to convolutional meth-
ods. The early video transformer model ViViT [1] factor-
ized the spatial and temporal dimensions of the video to
handle spatial-temporal information from a long sequence
of frames. TimeSformer [3] demonstrated that separat-
ing spatial and temporal attention within each block in-
creases the accuracy and performance of the standard video
Transformer. Video Swin Transformer [42] computed self-
attention locally via window shifting for better computa-
tional speed and accuracy. DirecFormer [70] introduced a
directed self-attention mechanism between frames for mo-
tion robustness. The spatial-temporal transformer frame-
work was also applied in video group activity recognition
[10, 9, 8]. Moreover, a geometric-based Transformer was
proposed for cross-view action recognition [71]. Mean-
while, a dynamic graph-based Transformer was applied to
analyze the spatial-temporal relationship between subjects

from multiple camera views [58].

2.2. Attention Map Consistency

There are many approaches considering the consistency
inference of the vision model. Some methods focused on
the deep equivariance indicating that the representation of
the input should follow the transformation of that input
[11, 15, 81, 45, 80]. Another group of approaches col-
laborated on different neural network modules that transfer
the learned information between these networks [88, 66, 51,
57].

The consistency of visual attention maps has recently re-
ceived interest in computer vision. There have been several
works on evaluating and optimizing models from the con-
sistency between multiple attention maps for visual tasks.
Some works focused on the consistency between attention
maps under different augmentation and masking procedures
[25, 36, 12, 55]. At the same time, other methods inspected
the consistency between attention maps from different lay-
ers [77, 85] or different networks [88]. FALCON [72]
introduced contrastive learning between attention maps to
model the background shift problem in continual semantic
segmentation. Meanwhile, ATCON [50] utilized the con-
sistency between multiple attention map methods. Unlike
those methods, we focus on the attention consistency be-
tween two views of an action subject.
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2.3. Neural Radiance Fields

The objective of the Neural Radiance Fields (NeRF) is
to synthesize views of a scene by querying the position and
direction of points along camera rays and using classic vol-
ume rendering techniques to project the output colors and
densities into an image [49]. There is a rise in NeRF vari-
ants for different tasks. NeRF++ [91] improves the qual-
ity of unbounded 3D scenes using an inverted-sphere back-
ground parameterization. Some frameworks propose back-
propagating into camera parameters to enable camera pose
estimation [79, 37, 86]. GRF [69], and PixelNeRF [87] syn-
thesize novel images from prior information by extracting
features from images of a scene. D-NeRF [56], NR-NeRF
[68], and Nerfies [52] perform non-rigidly deformation re-
construction for dynamic scenes. NeRF framework is also
applied to high-resolution image generation by rendering
low-resolution feature maps and progressively applying up-
sampling in 2D [24]. In this work, we adopt the idea of
NeRF as a layer for action recognition to model the low-
resolution features from multiple camera views.

3. Our Proposed Method
Let x ∈ RT×H×W×3 be an input video where T , H ,

and W are the number of frames, height, and width of a
video, β ∈ R be a moving angle of the video camera,
F : RT×H×W×3 × R → RC × Rt×h×w where C is the
number of action classes be an action classification func-
tion mapping a video x with camera angle β to an action
prediction y ∈ RC and a spatial-temporal attention volume
a ∈ Rt×h×w corresponding to the video where (t, h, w) is
the shape (time, height, width) of the attention. Our goal is
to learn a deep neural network to classify the actions and de-
fine a metric that computes the consistency between the at-
tention volumes of the model from different camera views.

In this section, we will present the fundamentals of the
Video Transformer [1, 3, 42] in Section 3.1. Then in Sec-
tion 3.2, we will talk about the usage of Neural Radiance
Fields [49] for attention volumes in different camera views.
Finally, Section 3.3 proposes the attention-consistent sim-
ilarity computing using directed Gromov-Wasserstein Dis-
crepancy [54].

3.1. Video Transformer

In this work, we follow the Video Transformer frame-
works for action recognition. In detail, the video x is de-
composed into P patches and embedded via positional en-
coding. Then the embedded patches {z(0)i }Pi=1 are feed-
forwarded into a Transformer encoder [73].

The Transformer encoder [73] consists of L blocks of
alternating layers of multi-head self-attention (MSA) and
MLP. The layer normalization (LN) [2] is applied before
each block and the residual connection is applied after each

layer.

z′(ℓ)p = MSA(LN(z(ℓ−1)
p )) + z(ℓ−1)

p , ℓ = 1 . . . L (1)

z(ℓ)p = MLP(LN(z′(ℓ)p )) + z′(ℓ)p , ℓ = 1 . . . L (2)

At each multi-head self-attention layer, a query, key, and
value vector is computed for each patch from the represen-
tation z

(ℓ−1)
p encoded from the previous block.

q(ℓ,a)
p = W

(ℓ,a)
Q LN(z(ℓ−1)

p ) (3)

k(ℓ,a)
p = W

(ℓ,a)
K LN(z(ℓ−1)

p ) (4)

v(ℓ,a)
p = W

(ℓ,a)
V LN(z(ℓ−1)

p ) (5)

Then the self-attention weights vector ααα(ℓ,a)
p ∈ RP is com-

puted from query vector q(ℓ,a)
p and the concatenation of key

vectors {k(ℓ,a)
p′ }Pp′=1 as:

k(ℓ,a) = concat([k(ℓ,a)
1 ,k

(ℓ,a)
2 , . . . ,k

(ℓ,a)
P ]) (6)

ααα(ℓ,a)
p = softmax

q
(ℓ,a)
p√
d

⊤

· k(ℓ,a)
 (7)

where d is the dimension of the query and key vectors.
The encoding z

′(ℓ)
p is computed by firstly calculating the

weighted sum of the value vectors for each self-attention
head:

s(ℓ,a)p =

P∑
i=1

α
(ℓ,a)
p,i v

(ℓ,a)
i (8)

Then these vectors all over the heads are concatenated and
projected with residual connection:

s(ℓ)p = concat




s
(ℓ,1)
p

s
(ℓ,2)
p

...
s
(ℓ,A)
p


 (9)

z′(ℓ)p = W
(ℓ)
O s(ℓ)p + z(ℓ−1)

p (10)

Hence, z′(ℓ)p is passed through an MLP with residual con-
nection as Equation 2 to obtain encoding z

(ℓ)
p .

3.2. Neural Radiance Field for Attention Volume

To obtain the attention map from a novel camera view, a
trivial approach is explicitly rendering a video from that an-
gle using NeRF frameworks [49]. However, this approach
requires a large computational resource and is not applica-
ble to our action recognition method. To reduce the compu-
tational cost, we implicitly change the attention map with-
out modifying the video, i.e. render a feature map that has
a lower resolution based on the StyleNeRF idea [24].
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In detail, given an input video x ∈ RT×H×W×3, we
compute the feature volume of x using Transformer z =
f(x), z ∈ Rt×h×w×d, as discussed in Section 3.1. Follow-
ing the idea of StyleGAN [31], we map the feature volume
z to style vectors w ∈ W and modulate to the weight ma-
trix of the MLP layers in the NeRF module. Next, given
an camera parameter matrix c ∈ R3×4, we render a low-
resolution feature volume zg = g(z, c), zg ∈ Rt×h×w×d.
A feature vector zgr ∈ Rd is rendered from a ray r using
volumetric rendering calculating the cumulation weighted
feature vectors obtained from MLPs. In theory, the feature
zgr can be compute as:

zgr =

∫ ∞

0

T (u)σ(r(u))zgr(u)du (11)

where T (u) = exp
(
−
∫ u

0
σ(r(v))dv

)
is the probability that

the ray travels from the origin of the camera to u without
hitting any other particle, σ(r(u)) is the density of point
u on the ray r [49]. Then, we can discretize the Equation
11 using a discrete set of samples on ray r and apply the
discrete volumetric rendering based on [47]:

zgr =

N∑
i=1

Ti(1− exp (σiδi))z
g
r,i (12)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
and δi is the distance be-

tween two adjacent points on the ray.
Finally, we compute the feature for action classification

and visual attention using the low-resolution feature volume
zg via another Transformer block. The model can be visual-
ized as Figure 2. Here we use Video Swin Transformer [42]
as a video extractor. Note that this framework can be ap-
plied to other Transformer architectures such as ViViT [1]
and TimeSformer [3]. The difference of Video Swin Trans-
former [42] from the others [1, 3] is the multi-head self-
attention computing between patches in the shifted win-
dows instead of computing the self-attention between the
patches in the whole video.

3.3. Attention Consistent Similarity

Observe that from the same action, when we capture it
from different views, the attention maps might differ. How-
ever, due to the view consistency, the model focuses on the
same points, thus the motion and the structure of the at-
tention maps should be the same. Hence, to compare the
similarity between two attention maps, we have to define a
function that is robust to the transition of the camera which
causes translation to attention maps. We find that Gromov-
Wasserstein (GW) distance [48] has this property.

Recall the Gromov-Wasserstein distance [48] compares
distributions by computing the similarity between the met-
rics defined within each of the spaces, meaning the struc-
tures of the distributions. Given n samples of the compared

distributions p and p̄, we can discrete the formulation of
the Gromov-Wasserstein distance into a discrepancy func-
tion [54] using a distance matrix D ∈ Rn×n between sam-
ples and a probability vector p ∈ Rn,

∑
i pi = 1 for each

space. Then the Gromov-Wasserstein discrepancy is formu-
lated as:

GW(D, D̄,p, p̄) = min
T∈Up,p̄

ED,D̄(T )

= min
T∈Up,p̄

∑
i,j,k,l

L(Di,k, D̄j,l)Ti,jTk,l

(13)
where Up,p̄ = {T ∈ (R+)

n×n;T1n = p, T⊤
1n = p̄} is

a set of all coupling matrices T between p and p̄, D and
D̄ are intra-distance matrices of the two distributions, and
L(u, v) is a loss function between the two scalars.

To apply the Equation 13 for consistency comparison of
two attention a1, a2 ∈ Rt×h×w, we compute intra-distance
matrices D1, D2 ∈ Rthw×thw between points in each atten-
tion volume. After reshaping the attentions into probability
vectors p1,p2 ∈ Rthw, we have an attention consistency
loss function as Equation 14.

LGW(a1, a2) = GW(D1, D2,p1,p2) (14)

Directed Gromov-Wasserstein Discrepancy This applica-
tion of Gromov-Wasserstein distance is similar to [90, 63]
for objective mapping. In regular, the intra-distance matrix
is calculated using Euclidean distance and the loss function
L(u, v) is the squared error loss L2(u, v) = 1

2 (u − v)2.
However, in our case, the points in the attention have po-
sition information that represents the motion and structural
information of the video. If we directly apply the Euclidean
distance, the information such as motions and spatial struc-
ture of the attention will be omitted. To alleviate this prob-
lem, we add the direction information to the intra-distance
matrix. In particular, we replace the intra-distance matrix
D with an intra-vector matrix V ∈ Rthw×thw×3 that cal-
culates the vectors between two points in the attention vol-
ume. Then the L(u, v) from Equation 13 is defined as a
cosine similarity function Lcosine(u,v) scaled to be in the
range [0, 1] where 0 means the two vectors are in the same
direction and 1 means the two vectors are in the opposite
direction. Hence the directed Gromov-Wasserstein (DGW)
discrepancy is formulated as:

DGW(V, V̄ ,p, p̄) = min
T∈Up,p̄

∑
i,j,k,l

Lcosine(Vi,k, V̄j,l)Ti,jTk,l

(15)
where Lcosine(u,v) is defined as:

Lcosine(u,v) =
1

2

(
1− u⊤v

∥u∥∥v∥

)
(16)

Hence, the attention consistency loss function is now com-
puted as Equation 17.

LDGW(a1, a2) = DGW(V1, V2,p1,p2) (17)
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Gromov-Wasserstein Discrepancy Optimization Com-
puting the Gromov-Wasserstein discrepancy is a quadratic
programming problem that is difficult to solve. Even those,
we can approximately solve this problem using entropic
regularization as Equation 18 for more efficient optimiza-
tion [54].

GWϵ(D, D̄,p, p̄) = min
T∈Up,p̄

ED,D̄(T )− ϵE(T ) (18)

E(T ) = −
∑
i,j

Ti,j log(Ti,j) (19)

Then, it can be solved via projected gradient descent meth-
ods. This can be treated as the Optimal Transport prob-
lem and can be solved by the Sinkhorn-Knopp algorithm
[13]. The directed Gromov-Wasserstein discrepancy can be
solved similarly to Equation 18.

Finally, the total loss function of our method is defined
as in Equation 20.

Ltotal = λclsLcls + λDGWLDGW (20)

where Lcls is the cross-entropy loss of the classification; λcls
and λDGW are the hyperparameters controlling the impor-
tance between losses.

4. Experiments
In this section, we present our experiments on three

popular action recognition datasets, including Jester [46],
Something-Something V2 [22], and Kinetics-400 [32].
Firstly, we describe our implementation details and the
datasets used for our experiments. The datasets samples
are illustrated as Figure 4. For all the comparisons of the
methods, we evaluate the performances by Top-1 and Top-5
recognition accuracy. Secondly, we analyze our quantita-
tive results with different settings, as shown in the ablation
study on the Jester dataset. We also visualize the quality of
our model via different consistency losses to illustrate the
robustness of the model to different camera angles. Lastly,
we compare our evaluation results on the Kinetics-400 [32]
and Something-Something V2 [22] datasets to prior state-
of-the-art methods.

4.1. Datasets

Jester [46] The dataset is a large-scale video gesture
dataset. It consists of 148,092 videos of humans perform-
ing 27 types of basic, pre-defined hand gestures in front of
a laptop camera or webcam. The dataset contains 118,562
videos for training, 14,787 videos for validation, and 14,743
videos for testing. In our experiment, we follow the evalu-
ation protocol of the previous papers to report the accuracy
of the model on the validation set.
Something-Something V2 [22] It is a dataset of humans
performing actions with everyday objects. The dataset

includes 220,847 videos from 174 classes, with 168,913
videos for training, 24,777 videos for validation, and 27,157
videos for testing. Similar to the previous works, we report
the accuracy of the model on the validation set. Both Jester
and Something-Something V2 datasets are under licenses
registered by Qualcomm Technologies Inc. that are pub-
licly available for academic research.
Kinetics-400 [32] The dataset contains 400 human action
classes, with at least 400 videos downloaded from YouTube,
and each video lasts for around 10 seconds. In detail,
the dataset consists of 306,245 videos, including 234,619
videos for training and 19,761 videos for validation. The
dataset covers different types of actions: Person Actions
(e.g. drinking, smoking, singing, etc.), Person-Person Ac-
tions (e.g. shaking hands, kissing, wrestling, etc.), and
Person-Object Actions (e.g., washing dishes, opening a bot-
tle, making a sandwich, etc.). The Kinetics dataset is li-
censed by Google Inc. under a Creative Commons Attribu-
tion 4.0 International License.

4.2. Implementation Details

The model is built based on Video Swin Transformer
[42] and consists of 4 stages of Swin Transformer. The
number of Swin Transformer blocks for each stage is
(2, 2, 18, 2). The feature computed after the third stage is
used for rendering a low-resolution feature via the NeRF
module. Then, this feature is computed via the last Swin
Transformer stage for classification and visual attention.
The low-resolution feature has a size of 4 × 7 × 7 × 1024.
The NeRF module has 8 MLP layers with Leaky ReLU ac-
tivations [44] and the width of each layer is 1024.

The attention for consistency computing is obtained
from the last Transformer block. Initially, the attention has
the size of A × twh × twh where A = 32 is the num-
ber of self-attention heads. We reshape the attention into
A × twh × t × w × h and average the attention along the
second dimension to derive A attention volumes each sizes
t × w × h. Then we compute the average attention con-
sistency loss LGW or LDGW of A pairs of attention volumes
between two camera views.

The input video consists of T = 8 frames and the res-
olution of each frame is 224 × 224 (H = W = 224).
We train the model with a batch size of 16. We employ
the AdamW [43] optimizer and train for 30 epochs with the
learning rate lr = 10−4. We set the control hyperparame-
ters of losses to 1.0, i.e. λcls = λDGW = 1.0. In novel views
rendering training, we sample the camera angle in the range
[−10◦, 10◦] turning horizontally around an imagined center
of the scenes in videos.

For inference, similar to the Video Swin Transformer
[42] which follows [1], our method uses 4 × 3 views en-
sembling, where a video is uniformly sampled as four clips
in the temporal dimension, and the shorter spatial side of
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Figure 3. The attention visualization of four frames (a) from two camera angles β = −10◦ and β = 10◦ on the three settings: (b) without
LGW and LDGW, (c) with LGW, and (d) with LDGW.

Figure 4. The samples of three large-scale action recognition
datasets: (a) Jester [46], (b) Something-Something V2 [22], and
(c) Kinetics-400 [32].

each frame is scaled to 224 pixels. We take the three crops
of size 224×224 that cover the longer side. Then we obtain

Model Novel
Views LGW LDGW Top-1 Top-5

I3D [7] - - - 91.46 98.67
3D-SqueezeNet [28] - - - 90.77 -
ResNet-50 [26] - - - 93.70 -
ResNet-101 [26] - - - 94.10 -
3D-MobileNetV2 [33] - - - 94.59 -
ResNeXt-101 [83] - - - 94.89 -
ViVit [1] - - - 81.70 93.80
TimeSformer [3] - - - 94.14 99.19
Swin-B [42] - - - 96.56 99.82
Ours 96.50 99.83
Ours ✓ 96.69 99.80
Ours ✓ ✓ 96.77 99.84
Ours ✓ ✓ 96.94 99.87

Table 1. Ablation Study on Jester dataset [46]. We evaluate the
performance of attention consistency in three settings: without at-
tention consistency loss, with GW loss, and with directed GW loss.

the final result by averaging the scores of all the views.

4.3. Ablation Study

To demonstrate the effectiveness of our directed
Gromov-Wasserstein loss LDGW, we evaluate the perfor-
mance of the action recognition model in the three settings,
i.e., training without attention consistency loss, with regular

7



Model Top-1 Top-5
I3D [7] 74.20 91.30
SlowFast R101+NL [21] 79.80 93.90
X3D-XXL [20] 80.00 94.50
TimeSformer-L [3] 80.70 94.70
MViT-B [18] 81.20 95.10
ViViT-L [1] 81.70 93.80
Swin-B ImageNet-1K [42] 80.60 94.60
Swin-B ImageNet-21K [42] 82.70 95.50
Ours 83.49 96.17

Table 2. Comparison to state-of-the-art methods on Kinetics-
400 dataset [32]. The proposed evaluation result is trained using
directed Gromov-Wasserstein loss LDGW .

Gromov-Wasserstein loss LGW, and with directed Gromov-
Wasserstein loss LDGW. We also evaluate the Video Swin
Transformer [42] and our model training without novel view
rendering. The results are shown in Table 1.
Effectiveness of Novel View Rendering Training We
compare the evaluations of our model when we train with
a single view for each video, i.e., the camera angle is at
β = 0◦, and with the multiple views for each video, i.e.,
sampling multiple camera angles to render novel views im-
plicitly. As in Table 1, the novel-views training strategy
increases the accuracy from 96.50% to 96.69%.
Effectiveness of Directed Gromov-Wasserstein Discrep-
ancy Illustrated as Table 1, with the Gromov-Wasserstein
loss LGW, the performance of our model has been im-
proved. Furthermore, the directed Gromov-Wasserstein loss
LDGW gets better result compared to the original Gromov-
Wasserstein loss LGW meaning the directed Gromov-
Wasserstein loss LDGW has maintained the motion informa-
tion and the spatial structure of the attention the model fo-
cuses on when computing attention consistency.

4.4. Multi-view Attention Visualization Analysis

To demonstrate the robustness of attention consistency
losses, we use a video on the validation set of Jester to vi-
sualize the attention of two different camera views from a
video of the action ”Pulling Hand In”, as shown in Figure
3, in the three settings, i.e., without the consistency losses
LGW and LDGW, with Gromov-Wasserstein loss LGW, and
with directed Gromov-Wasserstein loss LDGW. We ana-
lyze how similar the two attentions are from camera angle
β = −10◦ and β = 10◦ turning around the scene’s cen-
ter within four frames. As illustrated in Figure 3, with the
directed Gromov-Wasserstein loss LDGW, the model gives
attention to the action subject better than the others.

4.5. Comparison to State-of-the-art Methods

Kinetics-400 Table 2 presents the performance of our pro-
posed approach evaluated on Kinetics-400 compared to

Model Top-1 Top-5
TimeSformer-L [3] 62.40 81.00
SlowFast R101 [21] 63.10 87.60
MSNet R50 [34] 64.70 89.40
bLVNet R101 [19] 65.20 90.30
ViViT-L [1] 65.90 89.90
TSM RGB+Flow [38] 66.60 91.30
MViT-B-24 [18] 68.70 91.50
Swin-B [42] 69.60 92.70
Ours 70.74 92.18

Table 3. Comparison to state-of-the-art methods on
Something-Something V2 dataset [22]. The proposed
evaluation result is trained using directed Gromov-Wasserstein
loss LDGW .

prior state-of-the-art approaches. In this experiment, our
model uses the pretrained model on ImageNet-21K [14]
similar to the training protocol of Video Swin Transformer
[42]. We use the directed Gromov-Wasserstein loss LDGW
for training. As in Table 2, our result outperforms other
candidates with the Top-1 accuracy sitting at 83.49% and
the Top-5 accuracy at 96.17%.
Something-Something V2 Table 3 illustrates the compar-
isons to the state-of-the-art methods, including Convolution
and Transformer approaches, on Something-Something V2.
Similar to [42], the pretrained model on Kinetics-400 [32]
is used in this experiment. As shown in Table 3, our method
achieves state-of-the-art performance compared to the prior
approaches. The Top-1 accuracy of our method is 70.74%,
1.14% higher than Swin-B [42], our base model. The effec-
tiveness of the proposed multi-view attention consistency
has been proved in these experiments.

5. Conclusions

This paper presents a novel multi-view attention consis-
tency method using directed Gromov-Wasserstein discrep-
ancy for the action recognition explanation. The directed
Gromov-Wasserstein discrepancy not only computes the
similarity between attention volumes from different views
but also maintains the motion information and the structure
of the compared attentions. Moreover, using the Neural
Radiance Fields for implicit feature rendering has solved
the training problem on single-view datasets. The abla-
tion studies on the Jester dataset have shown the effective-
ness of our proposed approach. Particularly, the perfor-
mance of the action recognition model has been notably
improved by using our directed Gromov-Wasserstein loss.
Furthermore, the experimental results on the two large-scale
action recognition benchmarks, i.e., Something-Something
V2 and Kinetics-400, have confirmed the high accuracy per-
formance of our proposed method.
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Sra. Entropic metric alignment for correspondence prob-
lems. ACM Transactions on Graphics (ToG), 35(4):1–13,
2016. 5

[64] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-
phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric
relation network. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 318–334, 2018. 1

[65] Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed
Bennamoun, Gang Wang, and Jun Liu. Human action recog-
nition from various data modalities: A review. arXiv preprint
arXiv:2012.11866, 2020. 1

[66] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in neural
information processing systems, 30, 2017. 3

[67] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 3

[68] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
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