
Acad. Year

2023-2024

Project No.

C141

B
ehavior

Im
itation

for
M

anipulator
C

ontroland
G

rasping

w
ith

D
eep

R
einforcem

entL
earning

Behavior Imitation for
Manipulator Control and

Grasping with Deep
Reinforcement Learning

Liu Qiyuan

School of Mechanical & Aerospace Engineering

Nanyang Technological University, Singapore

Year 2023/24

ar
X

iv
:2

40
5.

01
28

4v
1

 [
cs

.R
O

]
 2

 M
ay

 2
02

4

BEHAVIOR IMITATION FOR MANIPULATOR CONTROL AND GRASPING

WITH DEEP REINFORCEMENT LEARNING

SUBMITTED BY

LIU QIYUAN

(U2020275D)

SCHOOL OF MECHANICAL & AEROSPACE ENGINEERING

A final-year project report presented to

Nanyang Technological University, Singapore

in partial fulfilment of the requirements for the degree of

Bachelor of Engineering (Mechanical Engineering)

Nanyang Technological University, Singapore

Year 2023/24

Abstract

The existing Motion Imitation models typically require expert data obtained through MoCap

devices, but the vast amount of training data needed is difficult to acquire, necessitating

substantial investments of financial resources, manpower, and time. This project combines 3D

human pose estimation with reinforcement learning, proposing a novel model that simplifies

Motion Imitation into a prediction problem of joint angle values in reinforcement learning.

This significantly reduces the reliance on vast amounts of training data, enabling the agent

to learn an imitation policy from just a few seconds of video and exhibit strong generalization

capabilities. It can quickly apply the learned policy to imitate human arm motions in unfamiliar

videos. The model first extracts skeletal motions of human arms from a given video using 3D

human pose estimation. These extracted arm motions are then morphologically retargeted onto

a robotic manipulator. Subsequently, the retargeted motions are used to generate reference

motions. Finally, these reference motions are used to formulate a reinforcement learning

problem, enabling the agent to learn policy for imitating human arm motions. This project

excels at imitation tasks and demonstrates robust transferability, accurately imitating human

arm motions from other unfamiliar videos. This project provides a lightweight, convenient,

efficient, and accurate Motion Imitation model. While simplifying the complex process of

Motion Imitation, it achieves notably outstanding performance.

Keywords: Motion Imitation, Imitation Learning, Deep Reinforcement Learning, 3D

Human Pose Estimation, Motion Retargeting, Inverse Kenimatics, PyBullet Simulation.

i

Graphical Abstract

Figure 0-1: Graphical Abstract

ii

Acknowledgement

I would like to express my heartfelt gratitude to Nanyang Technological University, Singapore

(NTU) for providing me with a platform rich in resources and opportunities, enabling me to

contribute to the forefront of technology.

I also would like to extend my sincere thanks to my Supervisors, Prof. Wen Bihan and Prof.

Lyu Chen, for their timely and effective guidance, setting a fine example of scientific research

for me to follow.

In addition, I am grateful to the friends I have met at university who share my aspirations.

Thank you all for your dedication and companionship, which have made my university life a

wonderful journey.

I extend my deepest appreciation to my parents back in China. As my unwavering support

system, they have been there for me every step of the way, providing me with constant

motivation over the past four years.

Lastly, special thanks to Ms. Zhan Jie. I would like to quote the only line from Shakespeare’s

sonnets that I know: “Love alters not with his brief and weeks. But bears it out even to the

edge of doom.”

Everyone I’ve mentioned has helped me improve, grow, and become a better person. Thank

you all for filling me with pride and inspiring me to continue pursuing excellence in all I do.

iii

Table of Contents

Abstract i

Graphical Abstract ii

Acknowledgement iii

Lists of Figures vi

Lists of Tables vii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Objective . 2

1.3 Scope . 2

2 Literature Review 3

2.1 3D Pose Estimation . 3

2.2 Motion Retargeting . 5

2.3 Reinforcement Learning . 6

2.4 Motion Imitation . 7

2.5 PyBullet Simulation Environment . 9

3 Methodology 10

3.1 Motion Imitation Overview . 10

3.2 Extract Raw Arm Motion . 11

3.3 Retarget Reference Motion . 13

3.4 Generate Reference Motion . 15

3.5 Formulate Reinforcement Learning Problem 17

3.6 Motion Imitation . 21

3.7 Build PyBullet Simulation Environment . 21

iv

Table of Contents

4 Experiments 22

4.1 Experiments Objective . 22

4.2 Experiments Setup . 22

4.3 Implementation Details . 24

5 Results and Discussions 27

5.1 Policy Learning . 27

5.2 Policy Evaluation . 28

5.3 Discussion and Future Work . 32

6 Conclusion 34

6.1 Project Summary . 34

6.2 Potential Contribution . 34

References 35

A Appendix A-1

A.1 Hyperparameters used in Motion Imitation Model A-1

A.2 KUKA LBR iiwa 7 R800 . A-1

A.3 Episodic Differences Curves and Result . A-2

v

Lists of Figures

0-1 Graphical Abstract . ii

2-1 Strided Transformer Network for Human Pose Estimation [6] 4

2-2 Retargeting human arm morphology to robotic manipulators 5

2-3 Deep Reinforcement Learning Schematic Process 6

2-4 Framework and result of Motion Imitation [3] 8

3-1 Overview of Motion Imitation project flow . 10

3-2 Raw human motion extraction process . 11

3-3 The extracted arm motion from original skeletal structure 12

3-4 Align human arm morphology to that of robotic manipulator 13

3-5 Base matching & link rescaling process . 14

3-6 Final Reference Motion Generated in PyBullet 16

3-7 Motion Imitation task formulated as a reinforcement learning problem 21

4-1 PyBullet simulation environment, reference(shadow), robot(color) 24

5-1 Average reward (5 runs) of the policy learning process 27

5-2 Visualization of typical motions evaluated . 28

5-3 The deviations of the learned policy corresponding to evaluation metrics 29

5-4 Joint angle differences between the reference and robot motions (video.CC) . . 30

5-5 Link position difference between the reference and robot motions (video.CC) . 30

5-6 The results of the motion imitation model . 32

A-1 kuka iiwa basic information . A-1

A-2 kuka iiwa detail specifications . A-2

A-3 Joint angle differences between the reference and robot motions (video.LR) . . A-2

A-4 Link position difference between the reference and robot motions (video.LR) . A-3

A-5 Joint angle differences between the reference and robot motions (video.UD) . . A-3

A-6 Link position difference between the reference and robot motions (video.UD) . A-3

vi

List of Tables

4-1 Dynamic parameters simulated in PyBullet kuka iiwa 24

4-2 PyBullet inverse kinematics null-space constraints 25

4-3 Policy network architecture and parameters 26

5-1 Evaluation videos reference alias and frame number 28

5-2 Evaluation results evaluated by metrics δsimilarity, δend−e f f , and δMPJPE 29

5-3 Summarise limitations and possible future works 33

A-1 Policy network architecture and parameters A-1

vii

Introduction

1.1 Background and Motivation

It is challenging for existing Motion Imitation models to obtain expert data, as there is a

need to collect a significant amount of expert demonstration data, which can be costly and

time-consuming [1]. To be more specific, the requirement for a large volume of expert data is

particularly challenging in high-dimensional environments with complex dynamics [2]. For

example, in learning agile robotic locomotion skills by imitating animals, the expert data is

obtained using Motion Capture (MoCap) devices on animals [3]. Although MoCap devices

can offer high-quality expert data, the MoCap process itself can be expensive, in terms of

both its initiating cost and the time invested in recording animal motion. How to simplify the

Motion Imitation process so that it can efficiently imitate motions using a small amount of

easily accessible data has become a research area worth exploring.

However, the integration of Deep Reinforcement Learning (DRL) for robotic manipulator

control policy learning with 3D Human Pose Estimation (3D HPE), provides a novel and

interdisciplinary approach for Motion Imitation, which simplifies the process of obtaining

expert data by utilizing recorded human arm videos.

Human Pose Estimation. Recent rapid developments in Computer Vision (CV) have led to

significant progress in 3D Human Pose Estimation (3D HPE) from monocular images and

videos. Techniques such as DeepMimic that combines data-driven behavior and physical

simulation using deep neural network for motion reconstruction [4], graph and temporal

convolutional networks for multi-person pose estimation [5], and strided transformer network

that exploiting temporal contexts to estimate 3D human pose from 2D key points motion [6],

have showcased the capability to accurately estimate 3D human poses. These techniques

provide a foundation for extracting accurate human arm motion data, which can serve as

expert’s demonstration data to guide the robotic manipulator’s motion imitation process.

1

Introduction

DRL for Robotics Control. Moreover, the field of Deep Reinforcement Learning (DRL) has

seen astonishing growth, especially in the context of robotics intelligence control. DRL models

such as Deep Q-Network (DQN) [7], Twin Delayed Deep Deterministic Policy Gradient (TD3)

[8], and Proximal Policy Optimization (PPO) [9], have demonstrated efficiency and accuracy

in learning complex control policies and decision-making tasks. Additionally, the application

of deep reinforcement learning in diverse domains underlines the potential for controlling

robotic manipulators. [10]

1.2 Objective

The objective of this project is to develop a novel Motion Imitation model that builds upon the

progress in 3D Human Pose Estimation and Deep Reinforcement Learning, enabling robotic

manipulators to effectively imitate human arm motion using One-Shot from any valid input

videos. To be more specific, the results from 3D human pose estimation will be leveraged to

guide a deep reinforcement learning agent in obtaining a control policy that allows the robotic

manipulator to imitate the demonstrated human arm motion. Eventually, the results of motion

imitation will be showcased in a simulation environment. Furthermore, this project may benefit

the development of imitation learning, robotic manipulation, and human-robot interaction,

shedding light on the broader implications and applications of such innovative work.

1.3 Scope

The scope of this project involves applying a Strided Transformer Network [6] to reconstruct

3D human skeleton motion estimation based on the demonstrated video. The raw motion

results obtained are subsequently processed and translated into expert data using Motion

Retargeting & Inverse Kinematics. This expert data is then input into a Proximal Policy

Optimization [11] agent with a reward function specifically designed for Motion Imitation [3],

guiding the learning process to acquire a control policy that enables the robotic manipulator

to effectively imitate human arm motion from input video. Finally, a PyBullet simulation

environment is constructed to demonstrate the results of imitation.

2

Literature Review

2.1 3D Pose Estimation

3D pose estimation refers to the process of estimating the 3D position and orientation of an

object, animal, or human body from the given images or videos. It is a complex problem in

the field of Computer Vision, involving the estimation of the spatial, or potentially, temporal

configuration of the target. Various approaches have been proposed to address this challenge,

including DeepPose utilizing Convolutional Neural Network (CNN) to learn human pose

representations directly from images [12], OpenPose integrating a multi-stage Convolutional

Neural Network with geometrical transformation to detect and localize key points of human

body in images or videos [13], and Strided Transformer exploiting temporal context of human

motion in a strided manner [6]. In the context of Motion Imitation, compared with MoCap

devices, 3D pose estimation provides a rather convenient and flexible method to obtain expert

motion data. Although MoCap devices offer high-accuracy motion data, they can be expensive

and require a controlled environment. In contrast, 3D human pose estimation is more flexible,

especially for the complex imitation task where a large volume of expert data is required.

DeepPose. & OpenPose. Both DeepPose and OpenPose are CNN-based approaches, which

significantly benefit the development in the field of 3D pose estimation. DeepPose architecture

consists of multiple layers of convolutional and recurrent neural networks, followed by fully

connected layers. The network parameter is trained on large datasets of labeled human motion

data, where each label includes the key point 3D coordinate information. Depending on

the specific application, DeepPose may leverage additional information such as temporal

dependencies in video sequences or context from surrounding frames to improve estimation

accuracy [12]. Similar to DeepPose, OpenPose is an updated version with multi-state CNN

suitable for the estimation of multi-person motion. Moreover, OpenPose incorporates depth

information from stereo images or videos, further improving the accuracy of estimated motion

[13].

3

Literature Review

Strided Transformer. Strided Transformer Network is originally applied in Natural Language

Processing tasks. However, recent advancements have introduced transformer-based models

that can effectively exploit spatial and temporal context to lift 2D estimated motion to 3D

[14]. Integrating with transformer layers, the model can extract both local and global spatial

and temporal relationships between key points, which result in improved estimation accuracy

[6]. Compared with DeepPose & OpenPose, the transformer architecture allows for extracting

global information, which infers the model can potentially understand the relationship between

the motion of body parts and whole, resulting in more accurate estimation [15]. Moreover,

depending on the specific implementation, the transformer can be more computationally

efficient than conventional CNN-based models [16].

Figure 2-1: Strided Transformer Network for Human Pose Estimation [6]

For example, as shown in Figure 2-1 Li et al. utilized a strided transformer network trained

a motion estimation model to extract 3D human motion [6], emphasizing the possibility of

using the extracted motion as expert data to train a motion imitating robotic manipulator

control policy. To be more specific, Figure 2-1 showcases a Strided Transformer model,

where the output motion after minor modification is applicable as reference motion to robotic

manipulator motion imitation tasks.

4

Literature Review

2.2 Motion Retargeting

Motion Retargeting refers to a technique commonly applied in animation or robotics to transfer

the same motion between characters. The fundamental idea behind motion retargeting is to

utilize motion data obtained from one source, such as MoCap or 3D Pose Estimation, and

adapt it to fit different morphology. This adaptation involves adjusting the motion to match

proportions, skeletal structure, and range of motion while maintaining the original kinematics,

dynamics, and style of motion [17]. In the context of the Motion Imitation task, the motion

retargeting process adapts human arm morphology to fit that of robotic manipulators.

Motion retargeting can be achieved through various methods, including traditional geometrical

transformation, inverse kinematics [18], and modern data-driven deep learning techniques [19].

Traditional methods address motion retargeting problems by solving a series of inverse forward

kinematic equations that describe the relationships between connected segments of a skeletal

structure. The solved relationships are transferred to another skeletal structure with geometrical

transform and forward kinematics. In contrast, modern techniques involve recurrent neural

networks and generative adversarial networks, which are data-driven approaches that require a

large volume of labeled training data for training to achieve desired accuracy.

Figure 2-2: Retargeting human arm morphology to robotic manipulators

In the context of Motion Imitation, the knowledge, i.e., dynamics, skeletal structure, and

feasible workspace, of robotic manipulators is known. Therefore, as shown in Figure 2-2, with

the known knowledge, traditional methods are more efficient for retargeting expert arm motion

to that of robotic manipulators.

5

Literature Review

2.3 Reinforcement Learning

Reinforcement Learning (RL) is an interactive intelligent agent, as shown in Figure 2-3 where

it learns a policy to make decisions by interacting with an environment and receiving feedback

in terms of observation and reward [20]. Integrated with deep neural networks (DNN), Deep

Reinforcement Learning (DRL) enables agents to learn a more sophisticated control policy

in a more dynamic environment, achieving human-level control in various domains [21]. For

the tasks of Motion Imitation, a DRL problem can be formulated to train a control policy that

imitates target expert motion.

Figure 2-3: Deep Reinforcement Learning Schematic Process

DQN. Deep Q-Network combines DNN and Q-learning [7] and has been widely applied in

various domains. Although DQN has successfully solved complex problems, its non-linearity

and discrete nature led to the challenge of control tasks in continuous action space.

TD3. Twin Delayed Deep Deterministic Policy Gradient [8] successfully resolved DQN’s

non-linearity and discrete nature. It has been widely applied in various fields owing to its

success in addressing continuous control tasks, making it suitable for control tasks in various

domains, particularly for robotic manipulator control. However, TD3 performance can be

sensitive to hyperparameters, requiring a crucial hyperparameter tuning process for achieving

the desired performance. Moreover, similar to other Q-Learning-based models, TD3 suffers

from overestimation bias, which can lead to sub-optimal policies.

6

Literature Review

PPO. Proximal Policy Optimization has been increasingly applied to control robotic

manipulators PPO has been benchmarked on typical tasks and shown superior performance.[9].

Compared to TD3, PPO directly optimizes the policy through a clipped objective function,

without explicitly estimating the value function, which avoids the overestimation issue of

TD3. Moreover, PPO is more stable in training without the requirement to carefully tune

hyperparameters, especially in complex environments.

Based on the relevant literature of the aforementioned trending DRL algorithms, PPO has

demonstrated superior adaptability in complex environments, making it well-suited for

addressing the challenges posed by complex and dynamic environments in imitation of the

human expert pose. Furthermore, PPO has been shown to perform better in solving continuous

action space control tasks of robotic manipulators, making it an even more favorable choice

for imitating human pose.

2.4 Motion Imitation

Imitation learning refers to the process in which an agent learns a control policy by imitating

expert demonstrations. Imitation learning integrated with DRL (Deep Imitation Learning)

shows a promising future for autonomous robot manipulation. It does not rely on hard-coded

control policy, instead, allowing robots to learn complex manipulation tasks from the expert

demonstration. The emergence of various imitation learning approaches in controlling robotic

manipulators, compared to hard-coded ones, granted it enough flexibility to explore potential

trajectories while fulfilling the task of imitating specified expert demonstration [22]. This

showcased its potential to address the limitations of traditional intelligence control approaches

and enable robotic manipulators to achieve more complex manipulations.

BC. Behavior Clone is an imitation learning approach where robots learn policies without

any trials by imitating expert demonstration, but it learns a direct mapping from the expert

demonstration to the action performed by the robot [23]. However, learning end-to-end direct

mapping means it is highly sensitive to errors in expert demonstrations, and it also means BC

will suffer from compounding errors and lack to explore and learn from its interactions with

the environment, hindering the robot’s capability to discover potentially superior policies.

7

Literature Review

IRL. Inverse Reinforcement Learning is a technique for learning and comprehending the

underlying reward function from expert demonstrations, enabling the agent to learn from

the behavior of expert demonstrations instead of explicit reward signals [24]. IRL has been

applied to various domains to transfer task knowledge from an expert to a robot in a dynamic

environment and acquire the ability to imitate expert demonstration [25]. However, IRL

may suffer from computational drawbacks, particularly when applied in complex tasks, as

it requires solving a Markov Decision Problem to obtain the reward function, which can be

computationally expensive. Therefore, it may fail to learn a reasonable behavior in certain

complex environments.

GAIL. Generative Adversarial Imitation Learning combines generative adversarial networks

with deep reinforcement learning to learn to generate policy that closely imitates expert

demonstration [26]. It is applied to various domains and has shown its outstanding capability

of learning human-like behaviors in robotic manipulator control. However, GAIL may fail to

generate a reasonable imitation policy when the available demonstrations are limited or not

representative. Therefore, it requires a large volume of expert demonstrations covering enough

sample cases.

Motion Imitation.

Figure 2-4: Framework and result of Motion Imitation [3]

Besides the aforementioned trending imitation learning approaches, direct Motion Imitation

by formulating a regular DRL problem (schematic illustration shown in Figure 2-5) can

be an effective technique to train the intelligent agent, obtaining a control policy that can

imitate expert demonstration data [3]. This method can be decomposed into the following steps.

8

Literature Review

Key-Point Retargeting. To effectively obtain expert data, Motion Imitation utilized a MoCap

device on an animal to record the key points’ trajectories. These key points on animals

should be defined such that they can represent specific anatomical landmarks and motion

characteristics [27]. In motion imitating, the key points are defined as respective joints to

capture the complete motion of the animal expert.

Motion Retargeting. When using the motion data captured from animals, there is a common

problem that the subject’s morphology in terms of proportions and skeletal structure tends

to differ from that of the robot. In such cases, Inverse-Kinematics is applied to mitigate this

discrepancy [18].

Motion Imitation. The task of imitation can be formulated as a typical DRL problem. The

objective is to learn a control policy that enables the agent to minimize the discrepancy

between the robotic manipulator’s motion and reference motion. This discrepancy is reflected

by a specifically designed reward function that encourages the policy to imitate target reference

motion. Training through trials and error, the agent eventually converges to an optimal policy

that completes the Motion Imitation.

2.5 PyBullet Simulation Environment

The simulation environments refer to a virtual space where simulations are conducted to

reflect real-world system behaviors, without the need to directly interact with or affect the real

system. Moreover, a simulation environment offers a controlled and cost-effective approach

to explore and understand the behavior of a complex system without the risks or expenses

associated with real-world experimentation.

PyBullet is an open-source physical simulator widely used for simulating robotic systems,

particularly in the context of Deep Reinforcement Learning. It provides accurate physics

simulation, allowing robotic manipulators to interact with the environment realistically which

benefits model deployment. Moreover, PyBullet is designed for efficiency, allowing for fast

simulation of complex robotic manipulator control systems. Most importantly, PyBullet is

compatible with various operating systems, reducing the complexity for reproduction [28].

9

Methodology

3.1 Motion Imitation Overview

Figure 3-1: Overview of Motion Imitation project flow

The objective of this project is to provide a model that enables robotic manipulators to imitate

human arm motion from any human full-body motion videos. As shown by the overview of

Motion Imitation project flow in Figure 3-1, the process consists of three main stages: raw

motion extraction, motion retargeting, and motion imitating. In the first stage, the model

receives as input a full-body human motion video and extracts the 3D raw arm motion from

it, with a combined network of yolov3 [29], HRNet [30], and strided transformer network

[6]. Subsequently, in the middle stage, the extracted raw arm motion is retargeted to match

the robotic manipulator’s morphology with geometric transformation and inverse kinematics,

providing comprehensive reference motion to the robotic manipulator. Finally, in the last stage,

the retargeted reference motion is used to formulate a DRL motion imitation problem, where

the control policy is trained to imitate reference motion. To enhance the robustness and the

generalization ability of the model, the control policy does not generate a series of trajectory.

Instead, it focuses on reproducing joint position and end effector position at current timestep.

10

Methodology

3.2 Extract Raw Arm Motion

The raw arm motion extraction process adopts the model proposed by Li et. al. [6]. The overall

process is organized into two main steps: the first step attaches key points that represent human

motion frame by frame in a 2D manner and generates the corresponding 2D coordinates of

those key points on each frame. Subsequently, in the second step, a strided transformer is

introduced to lift the 2D key point coordinates into 3D, and generates the final estimated 3D

data of human motion. The two steps of the overall process are described in Figure 3-2.

Figure 3-2: Raw human motion extraction process

Estimate 2D Motion. This step combined a yolov3 and an HRNet detection model, pretrained

to adapt to the requirement of attaching key points to each frame of the input video and

generate corresponding coordinates in 2D space. It is worth noting that the selection of

locations where key points are attached is crucial. The key points are selected such that they

can completely define a human body motion without any ambiguity. Therefore, these key

points are defined at the joints, limb extremities, and center of mass of the body, which gives

17 representative key points. In summary, this step takes as input the human motion video and

produces as output the motion of 17 key points in terms of coordinates of each point at every

frame.

Elevate 2D motion to 3D. This step introduces strided transformer network to lift the 2D

motion obtained in the previous step to 3D space. In previous steps, the 17 key points are

simply attached to a corresponding target location on every frame, which means the output

coordinates are pixel-wise coordinates. However, this lifting step requires reconstructing

11

Methodology

the entire skeletal structure in a 3D space, where the coordinates are defined in a cartesian

coordinate system. Therefore, the transformer network is trained with Human3.6M [31], a

benchmark dataset for human pose estimation, in order to elevate 2D coordinates in pixel-wise

context to 3D coordinates in a cartesian coordinates system. The extracted raw motion is

grounded with respect to the lowest among all 17 key points to improve the stability of the

extracted motion. The reconstruction result is visualized in Figure 3-2 on the right, which

presents a satisfactory correspondence to the original 2D pixel-wise key points on the left.

Extract 3D Arm Motion. As the training dataset, Human3.6M, contains all 17 key points

coordinate information for each labeled data, the resulting reconstructed 3D human motion

shares the same skeletal structure that contains all 17 key points. However, for the Motion

Imitation task of this project, only 4 interested points, as demonstrated in Figure 2-2, are

needed to represent the arm motion to be imitated. These points are selected as they are highly

associated with the base and joints of the robotic manipulator and can fully represent human

arm motion.

Figure 3-3: The extracted arm motion from original skeletal structure

Figure 3-3 shows the extracted arm motion from the elevated skeletal structure. The extracted

arm motion fixes the shoulder joint as the base coordinate, and the succeeding two key

points’ motion fully characterizes the original arm motion. Although the extraction process

transformed the 4 interested key points from a global skeletal cartesian coordinate system

to a newly defined local arm cartesian coordinate system, the relative kinematic and its

corresponding dynamic share the same relationship but are scaled to a different scale.

However, so long as the style of motion, i.e. the relative kinematic and dynamic relationship, is

maintained the same, the scaling issue can be easily addressed in the motion retargeting process.

12

Methodology

3.3 Retarget Reference Motion

Although the raw motion data that characterizes the human arm motion is extracted from the

input expert demonstration video, it is infeasible to directly apply the obtained raw data to

Motion Imitation as reference motion. The reason is that the raw arm motion morphology

in terms of proportion, orientation, skeletal structure, and kinematics relationship, does not

match that of robotic manipulators. Therefore, pre-processing is needed to retarget human

arm morphology to match that of the robotic manipulators. The overall method to complete

the retargeting process is shown in Figure 3-4. To sum up, the motion retargeting process is

a preprocessing that takes raw human arm reference motion as input and generates Motion

Imitation reference motion.

Figure 3-4: Align human arm morphology to that of robotic manipulator

Before the motion retargeting process, it is essential to understand the raw reference motion,

especially for understanding how raw reference relates to human arm motion in video input

and reference motion of robotics manipulators. Because the transformations performed in the

motion retargeting process essentially determine a mapping relationship to map a human arm

structure to a robotic manipulator. The 4 interested key points are selected in corresponding

to the robotic manipulator’s joint assembly as shown in Figure 3-4, suggesting that the

human arm and robotic manipulator share similar skeletal structures. Therefore, the motion

retargeting process of this project fully utilizes this significant correspondence, attempting

to match the human arm joint and robotic manipulator joint assembly respectively. Once

all desired joints and joint assemblies are properly matched, Inverse Kinematics is applied

such that it takes all matching pairs of joints as constraints to solve a feasible trajectory

13

Methodology

that guarantees the exact positional equivalency between the reference motion endpoint

and end-effector, but at the same time maximize the similarity between human arm motion

and reference motion. It is worth noting that, inverse kinematics is introduced to solve

a feasible trajectory with the robotic manipulator’s workspace, in case some human arm

motions are too complex for the robotic manipulator to imitate, where the complex motion

typically refers to those motions outside the robotic manipulator workspace even after motion

retargeting process as the range of human joint is much larger than that of robotic manipulators.

Figure 3-5: Base matching & link rescaling process

Base Matching. The extracted raw reference motion data is defined at the previous cartesian

coordinate system, which means none of the 4 interested points provide a fixed origin.

In this case, the difficulty of the motion retargeting process is significantly increased.

However, compared to general robotic manipulators, they are commonly fixed in operational

environments, which gives a fixed base origin. Therefore, a fixed base origin for raw

reference motion is required to build the correspondence. Select p1 as fixed key point and

the rests pi = (xi,yi,zi), i ∈ {0,1,2,3} are transformed to a temporary frame ftemporaty where

p1 is temporarily fixed origin by pi − p1. After obtaining the temporarily fixed origin, a

transformation R is applied to p0 to rotate −−→p1 p0base = R · p0 vertically to match the vertical

robotic manipulator base. The resulting intermediate raw reference motion is shown in the

middle part of Figure 3-5

R =


cos2(θ

2)+ sin2(θ

2) 2(sin(θ

2) · sin(θ

2)) 2(sin(θ

2) · cos(θ

2))

2(sin(θ

2) · sin(θ

2)) cos2(θ

2)+ sin2(θ

2) 2(sin(θ

2) · cos(θ

2))

2(sin(θ

2) · cos(θ

2)) 2(sin(θ

2) · sin(θ

2)) cos2(θ

2)+ sin2(θ

2)

 (1)

14

Methodology

Link Rescaling. Rescaling the link is to further correspond the raw reference motion and

robotic manipulator. The scales used are taken from KUKA LBR iiwa 7 R800 datasheet

as shown in Appendix A-1, where the robotic manipulator model is exactly the same one

simulated in PyBullet environment. Connecting adjacent key points pi and pi+1 forms three

links −−−→pi pi+1. Rescaling process calculates the unit vector −̂−−→pi pi+1 =
−−−−→pi pi+1
∥−−−−→pi pi+1∥

resulting in four

unit link vector −̂−−→pi pi+1, i ∈ {0,1,2}. The unit link vectors are scaled with scaling factor ki,

i ∈ {0,1,2,3} where ki is obtained from Appendix A-1, and the results of rescaling process are

reflected in the last part of Figure 3-5.

3.4 Generate Reference Motion

Define Reference Motion. After base matching and link rescaling, the morphology

of reference motion is fully retargeted to that of robotic manipulators. Therefore, the

correspondence is established between the robotic manipulator and the reference motion

to be imitated. However, the retargeted motion does not guarantee within the feasible

workspace of the robotic manipulator. To address this issue, inverse kinematics is introduced

to solve a feasible reference motion for a robotic manipulator under the constraints that

minimize the discrepancy between retargeted motion and reference motion to be solved. The

source retargeted motion in terms of joint cartesian coordinate at each frame is denoted by

xi(t), i ∈ {0,1,2,3} and the robotic manipulator reference motion xi(qj,t), j ∈ {0,1,2,3,4,5}

is determined by qj,t indicating each joint j angular position q at each frame t. Therefore, the

final output reference motion is represented by joint angular position qj,t.

Solve Reference Motion. With the aforementioned clear definition of reference motion,

inverse kinematics can be solved as an optimization problem. The objective function Θ of

this optimization problem iteratively solves for feasible joint angular positions qj,t that follow

the end-effector trajectory and source retargeted reference motion xi(t).

Θ = argmin
qj,t

(
∑

i
∑
t
∥xi(t)−xi(qj,t)∥2 +∑

j
∑
t
(qj,t −qj,t,ref)

T · (qj,t −qj,t,ref)
)

(2)

As qj,t ∈ [lowerbound,upperbound], this joint range limit guaranteed the optimization results,

i.e. the reference motion, within the feasible workspace.

15

Methodology

Interpolating & Smoothing. The resulting reference motion may not meet the required

quantity to train a control policy. To address this issue, Cubic Spline is introduced to interpolate

qj,t to the desired volume. The Euclidian distance is calculated for each successive data

L2 = ∥qj,t+1 − qj,t∥. For each interval where L2 > 0.1, around L2
0.01 data is interpolated to

increase the data volume and reduce the gap between two reference motions. Each interpolated

point Si(q j,t) is obtained by solving a cubic polynomial equation subjected to interpolation

Si(qi
j,t), continuity Si(qi

j,t) = Si−1(qi
j,t), and boundary condition S′′(q0

j,t&qn
j,t) = 0 that gives ai,

bi, ci, and di.

Si(q j,t) = ai +bi(q j,t −qi
j,t)+ ci(q j,t −qi

j,t)
2 +di(q j,t −qi

j,t)
3

s.t. Si(qi
j,t) = Si(q j,t), Si(qi

j,t) = Si−1(qi
j,t), S′′(q0

j,t&qn
j,t) = 0

(3)

Most importantly, the reference motion is potentially subjected to sudden changes resulting in

undesirable twitching motion. Therefore, with the prior knowledge of entire reference motion

data qj,t, Locally Weighted Scatterplot Smoothing (LOWESS) is applied to the entire dataset

to smooth the overall trend while preserving local features.

q̂i =
∑

n
j=1 wi jqi

∑
n
j=1 wi j

,where wi j =

 (1−
∣∣∣q j−qi

d

∣∣∣3)3 , if |q j −qi|< d

0 ,otherwise
(4)

q̂i is the i−th smoothed reference data for each joint j at frame t. wi j is the weight of sample

j w.r.t. sample i. d = 0.05 is the bandwidth of the local window. Eventually, the resulting

reference motion generated in PyBullet is shown in Figure 3-6.

Figure 3-6: Final Reference Motion Generated in PyBullet

16

Methodology

3.5 Formulate Reinforcement Learning Problem

Motion Imitation can be explicitly defined as the process through which a robotic manipulator

control policy is acquired, such that the control policy generates an action that imitates target

reference motion. Therefore, the described process is naturally formulated as a Reinforcement

Learning problem, where the objective is to obtain a policy π that maximizes the designated

expected return [32].

Feasibility Analysis. The reference motion is essentially a trajectory defined in the time

domain that consists of six joint’s j angular position qref
j,t and absolute cartesian location xref

j,t

at each timestep t. In the meanwhile, the actual motion performed by the robotic manipulator

is represented in a similar format, qrbt
j,t and xrbt

j,t . For each timestep t, the reference motion

is defined independently from the other timestep. For a robotic manipulator, the motion at

t + 1 completely depends on the action at executed in timestep t. Suppose each state St is

characterized or inferred by qj,t and xj,t, future states St+1 completely depends on action at

executed by current states St . Therefore, motion imitation is a Markov Decision Process,

i.e. P(St+1|(St ,at),(St−1,at−1), . . . ,(S0,a0)) = P(St+1|(St ,at)). This proved that formulating

motion imitation as a Reinforcement Learning problem is feasible.

Problem Formulation. The robotic manipulator control agent (the agent), at each

timestep t, receives state observation st from the environment and samples a continuous

action at ∼ π(at|st) from its policy π . This sampled action at consists of six joints’

angular displacement qrbt
j,t . The agent applies this action at, resulting in a new state

observation st+1 and a scaler reward signal rt . Repeated interactions yields a trajectory

τ = {. . .(st,at,st+1),(st+1,at+1,st+2), . . .} stored in experience replay buffer for updating the

policy π . The agent aims to learn a control policy that maximizes the expected return with

discount γ .

J(π) = Eτ∼prob(τ|π)

[
T−1

∑
t=0

γ
trt

]
, where

prob(τ|π) = prob(s0)
T−1

∏
t=0

prob(st+1|st,at)π(at|st)

(5)

prob(τ|π) is the likelihood of a certain trajectory τ generated under policy π . prob(s0) is the

probability of initial state observation being s0.

17

Methodology

Reward Design. Motion Imitation reward rt is a scalar signal provided by the environment

to the agent, which indicates the performance of the agent’s action at at a particular timestep

t. Reward serves as a guide to the policy learning process by providing feedback on actions

applied. Therefore, it is of great significance that design a reward suitable for the motion

imitation task. Motion Imitation reward designed similar to Peng et. al. [33].

rt = wprp
t +wvrv

t +were
t , where

wp =−1.0, wv =−0.1, we =−100.0
(6)

The reward per timestep consists of three components, joints position reward rp
t , joints velocity

reward rv
t , and end-effector position reward re

t , emphasizing imitation of reference motion

in different domains. Each of the three rewards corresponds to a specific weight w, which

indicates the level of influence of each reward on the final composite reward. All weights are

negative meaning that at each timestep t. To maximize the overall expected return, it encourages

the agent to sample an action at as close to the reference as possible.

rp
t = ∑

j
coe f f j · ∥qref

jt −qrbt
jt ∥ (7)

The joint position reward rp
t (7) reflects the absolute difference of joint positions. The coe f f j

indicates the importance level of each joint. As the most direct guidance of motion imitation,

the corresponding weight wp is set to wp =−1 indicating the ground level of influence.

rv
t = ∑

j
coe f f j · ∥vref

jt −vrbt
jt ∥ (8)

The velocity reward (8), is the difference of two successive joint positions in unit time vjt =
qj,t−qj,t−1
unitTime . Imitating this velocity gradient enables the agent to acquire prior knowledge of

the next action at+1 based on current action at. As imitating velocity gradient is not a hard

requirement but only to provide a tendency, the corresponding weight is set to wv =−0.1.

re
t = ∥xref

t −xrbt
j,t ∥ (9)

The most important requirement of motion imitation is to accurately track the end-effector

position. Therefore, the corresponding weight is set to we =−100 to reflect this importance.

18

Methodology

Environment Design. With the explicitly defined reward signal, the motion imitation task

is completely formulated into a reinforcement learning problem. Although the problem is

successfully formulated, the model without action and state space is yet to be completed. The

action and state space should be constructed such that it serves the reward function to provide

essential information to compute the reward signal. The desired action at for motion imitation

task is six joint angular positions, at = qj,t, where j ∈ {0,1,2,3,4,5}. However, the model

does not directly output the exact desired action, instead, it outputs a six-dimensional action

space following a multivariate normal distribution.

at ∼ N6(µ,σ) , where µ ∈ [−π,π] (10)

Sampling the exact joint angular position from a normal distribution guarantees the exploration

of optimal imitating policy. The model outputs six mean values µ controlling overall sample

tendency and the standard deviation σ is shrinking over time to increase the sampling precision.

But the randomness brought by multivariate normal distribution causes the action to oscillate,

i.e. the randomness breaks the smoothness. Therefore, the final output is smoothed using

exponential smoothing, where the smoothing parameter β = 0.03. This β put little emphasis

on the most recent action, given that the joint angle difference between reference motion is also

negligible.

ât+1 = βat +(1−β)ât (11)

The state space st should be constructed such that it contains all normalized necessary

observations of the motion imitation task. Although we have the reference motion made

available prior to the agent training & testing, to ensure consistency, the joint angular positions

of both reference qref
j,t and robot qrbt

j,t are retrieved from PyBullet simulation environment

directly. With the observed joint angular positions, the position qdiff = qref − qrbt and

velocity difference ωdiff = (qj,t −qj,t−1)
re f − (qj,t −qj,t−1)

rbt are computed to provide more

comprehensive explanation to the observed information. Finally, end-effector Euclidian

positions of both reference and robot are obtained to compute end-effector positional difference

xdiff = xref
t −xrbt

t .

st = {qref
j,t , qdiff, ω

diff, xdiff} (12)

The agent receives an observation state st at each timestep, enabling the agent to understand

the immediate consequence of the action taken.

19

Methodology

Experience Sampling. Interactions of every timestep are normalized and then stored

in the experience replay buffer (the buffer). Especially for rewards, they are discounted

Rt = ∑
T
i=t γ i−t · ri with gamma = 0.99 focusing more on the recent rewards. When performing

policy updates, a re-sampling process from the buffer de-correlates the consecutive samples

from continuous trajectories generated by policy π hence improving the efficiency of data.

Rt =
T

∑
i=t

γ
i−t · ri (13)

Objective Function. The overall objective function consists of three parts, the clipped

surrogate loss (Surr Loss), negative mean squared error loss (MSE Loss), and entropy loss

[11]. Surr Loss reflects the policy’s quality in motion imitation tasks, MSE Loss evaluates

state values improving state value estimation accuracy, and entropy loss encourages the

policy’s exploration. Maximizing this objective function is the primary goal of the formulated

reinforcement learning problem.

J(θ) = Lpolicy,clip(θ)+wv,MSE ·Lvalue,MSE(v,R)+wentropy ·H(πθ) (14)

Surr Loss (15) is derived from current πθ (at|st) and previous πθ−1(at|st) policy. It evaluates

the level of policy improvements. The ratio between the probability of actions performed by

the current policy and that of the previous policy πθ−1(at |st)
πθ (at |st)

reflects the improvements, either

positive or negative, of the πθ over πθ−1. The advantage Aπθ−1(st ,at) brought by the current

policy compared to the previous policy serves as the weight of Surr Loss. The overall Surr Loss
πθ−1(at |st)
πθ (at |st)

·Aπθ−1(st ,at) is clipped by ε = 0.2 to limit the speed of policy update.

Lpolicy,clip(θ) = Et

[
min

(
πθ−1(at |st)

πθ (at |st)
Aπθ−1(st ,at),clip(ε,1− ε)

)]
(15)

MSE Loss (16) computes the mean squared error between state values vt and discounted

rewards Rt , where state values are predicted values of states and discounted rewards are actual

values of states. The smaller MSE Loss leads to more accurate state evaluation, further

improving policy updates. Therefore, to align with the goal of maximizing the objective

function, the negative MSE Loss weight wv,MSE = −0.5 is applied to the overall objective

function.

Lvalue,MSE(v,R) =
1
n

n

∑
t=1

(vt −Rt)
2 (16)

20

Methodology

Entropy Loss (17) evaluates the entropy of the policy πθ distribution at a specific state st . It

refers to the uncertainty or randomness of the policy’s action probabilities. A higher entropy

loss implies that the policy is more exploratory, improving the agent’s ability to explore the

environment comprehensively and thus converging to a better policy. For continuous action

space under normal distribution at ∼ N6(µ,σ), the entropy loss is equivalent to the entropy

of this normal distribution. However, unlimited exploration causes slower convergence and

brings instability. Therefore, the weight wentropy = 0.01 corresponding to entropy loss tends to

be small.

H(πθ) =
1
2

log(2πθ eσ
2) (17)

3.6 Motion Imitation

The Motion Imitation is fully formulated as reinforcement learning problem and the complete

process is shown in Figure 3-7. Through the repeated interaction between the agent and the

environment, the policy is updated iteration by iteration until converges to near optimal.

Figure 3-7: Motion Imitation task formulated as a reinforcement learning problem

3.7 Build PyBullet Simulation Environment

PyBullet provides an excellent physics simulation environment for Motion Imitation.

The aforementioned reinforcement learning problem is constructed in PyBullet simulation

environment with the provided API. Physical properties related to the robotic manipulator such

as kinematic, dynamic, and inertia are simulated to match that of the real-world scenarios.

However, for reference motion, all relevant kinematic, dynamic, and inertia properties are

disabled, making the reference motion an empty shell for visualization purposes.

21

Experiments

4.1 Experiments Objective

The main objective of this experiment is to acquire the motion imitation control policy (the

policy) from an input reference video, and generalize the policy to imitate unseen arm motion

from any inference videos hence evaluating the policy performance. The learned motion

imitation policy is then evaluated by different metrics on inference videos to reflect the policy

performance.

4.2 Experiments Setup

Input Videos Requirements. For the policy learning process, a wide variety of reference

motions should be provided, allowing the agent to adapt to imitation across different positions

and orientations. Hence the reference video should contain as complex and diverse arm

motion as possible that enables the agent to accumulate relevant experience during the training

process, and the accumulated experience can greatly benefit the generalization ability to

unseen cases. On the other hand, inferencing the learned policy does not require complex

video inputs, however, it is preferred with meaningful smooth arm motion. As the objective of

motion imitation is to imitate human arm motion and replicate the respective function of each

motion, the input videos should focus more on arm motion rather than whole-body movements.

However, existing human pose datasets such as Human3.6M [34] and Human-eva [35] are

for human pose estimation, which emphasizes more on whole-body movements. In contrast,

arm motions in ballet dance videos are smooth but complex enough to cover different types of

arm motion such as lifting, circulating, waving, etc., therefore, they are selected as sourcec of

expert reference motion. Additionally, these motions are frequently performed by production

line operators, thereby benefiting the practical implementation of substituting human operators

with robotic manipulators using recorded videos of these operators.

22

Experiments

Environments & Hardwares. Motion imitation processes are simulated in PyBullet [28]

environments using kuka iiwa robotic manipulator [36] in Appendix A.2. The expert reference

motion used in the training process is extracted from a ballet dance video and the reference

motion used in the evaluation are videos of daily common motion, production line human

operator, and warehouse pick and place. All experiments were conducted remotely in Conda

virtual env named “MoIm” on a virtual machine with Linux Ubuntu 20.04 LTS CUDA version

12.2 with GPU Nvidia RTX 4080Ti. Different hyperparameter settings were applied in the

experiments to optimize performance and enhance generalization abilities.

Evaluation Metrics. Similarity is evaluated by summing the difference of angular positions

qdiff
j,t = qref

j,t −qrbt
j,t .

δsimilarity =
n

∑
j=1

qdi f f
j,t (18)

End-Eff is evaluated by directly computing the Euclidean distance between reference xref and

robot xrbt end-effector position.

δend-eff = ∥xref
i −xrbt

i ∥2
l2 (19)

However, considering the small joint angular position difference may accumulate such that the

overall deviation is large. To address this issue, the mean per joint position error is introduced

to evaluate the average Euclidean distance between reference and robot motion [37].

δMPJPE =
1
N

N

∑
i=1

∥xref
j,t −xrbt

j,t ∥ (20)

δsimilarity directly evaluates the difference between output action (joint angular positions) to

reference motion, which is the most direct metric that indicates the extent of imitation. δend-eff

is a metric representing whether the robot end-effector can follow that of the reference. It is

the most important metric in the task of motion imitation failing which the end-effector no

longer replicates the desired reference trajectory, hence may lead to the failure of the task

to be imitated. δMPJPE addresses the accumulated error issue, which evaluates whether each

individual joints of the robot coincide with that of reference motion.

23

Experiments

4.3 Implementation Details

Simulation Environment The experiments including policy learning and policy evaluation

are done via PyBullet simulation environment with open-source kuka iiwa unified robotic

description format (urdf). The robot base position and orientation are set to [−0.25,0.0,0.6]

and [0,0,0,1], which places the kuka iiwa above the simulated plane facing the positive

x-axis. There are no specific reasons for this setup except for better visualization purposes.

Table 4-1 lists the dynamics detailed information of kuka iiwa in simulation, where µ refers

to the overall friction coefficient as well as damping effect and ε refers to restitution coefficient.

Index Mass (kg) Inertia (kg ·m2) µoverall damping ε

j0 0.5 4.0 -1 1e-3
j1 0.5 4.0 -1 1e-3
j2 0.5 3.0 -1 1e-3
j3 0.5 2.7 -1 1e-3
j4 0.5 1.7 -1 1e-3
j5 0.5 1.8 -1 1e-3
j6 0.5 0.3 -1 1e-3

Table 4-1: Dynamic parameters simulated in PyBullet kuka iiwa

However, reference kuka only serves as a visualization aid, therefore, all dynamics properties

related to reference kuka are disabled for convenience. Other than reference and robot

parameters, the global PyBullet simulation timestep is set to 1.
240. s and the gravitational

acceleration is set to (0,0,−9.8) m · s−2, where negative indicates pointing to negative z-axis.

Figure 4-1: PyBullet simulation environment, reference(shadow), robot(color)

24

Experiments

The final PyBullet simulation environment are shown in Figure 4-1. Both reference (shadow)

and robot (color) are levitated above the ground in case of collision with it. The reference

model only serves as a visualization purpose indicating what is the desired or target motion at

each timestep. The imitation policy controls only the robot model to imitate reference motion.

Acquire Reference. The reference motions are generated by solving inverse kinematics as a

constrained optimization problem as illustrated in the methodology section. PyBullet provides

an inverse kinematics iterative solver. Therefore, the constrained optimization problem is

solved by feeding the endpoint trajectory of the skeletal arm structure as the desired goal and

the rests key points positions as constraints. Table 4-2 lists the constraints adopted for the

experiments.

Index lower-limit (rad) upper-limit (rad) joint-range (rad) joint-damping rest-pose
j0 -2.96 +2.96 5.8 0.1 qre f

0
j1 -2.09 +2.09 4.0 0.1 qre f

1
j2 -2.96 +2.96 5.8 0.1 qre f

2
j3 -2.09 +2.09 4.0 0.1 qre f

3
j4 -2.96 +2.96 5.8 0.1 qre f

4
j5 -2.09 +2.09 4.0 0.1 qre f

5
j6 -3.05 +3.05 6.0 0.1 qre f

6

Table 4-2: PyBullet inverse kinematics null-space constraints

These constraints guarantee that the reference motions are generated within the feasible

workspace. Most importantly, by setting rest pose at reference motion positions, the inverse

kinematic (ik) solver provides the solution that is closest to reference motion at the meanwhile

satisfying all other constraints. However, how to acquire the reference motion prior to the

ik solution? So long as the input video is smooth, the positional difference between two

consecutive arm skeletal motions is negligible. Therefore, the reference motion needed at the

current timestep t can be approximated with the reference motion at the previous timestep

t −1. As for the initial reference motion, it is calculated by solving regular inverse kinematics

equations taking into account the Cartesian coordinate of each joint, without involving

PyBullet iterative ik solver.

25

Experiments

Policy Learning. The motion imitation policy is represented by proximal policy optimization

(ppo) network parameters and the network architecture is shown in table 4-3. Additionally, all

hyperparameters related to ppo imitation policy learning experiment are listed in Table A-1.

Components Layer Type Output Shape Parameters
Linear(21, 256) (, 256) 5376+256

Actor Tanh() (, 256) 0
Linear(256, 256) (, 256) 65536+256
Tanh() (, 256) 0
Linear(256, 6) (, 6) 1536+6
Tanh() (, 6) 0
Linear(21, 256) (, 256) 5376+256

Critic Tanh() (, 256) 0
Linear(256, 256) (, 256) 65536+256
Tanh() (, 256) 0
Linear(256, 1) (, 1) 1536+1

Table 4-3: Policy network architecture and parameters

Tanh function is selected as activation mainly for controlling kuka iiwa to perform both positive

and negative rotation, the activated output at ∈ [−1,1] is linearly remapped to at ∈ [−π,π].

Policy Evaluation. The obtained motion imitation policy (the policy) is evaluated with the

aforementioned metrics, i.e. δsimilarity, δend−e f f , and δMPJPE . At the same time, to evaluate

the generalization ability of the policy, reference motions used in the evaluation process

consist of arm motion packaging, eating, and random waving generated from inference

videos specifically reserved for evaluation (unseen data). Finally, the learning process itself

is reflected in an accumulated reward curve to indicate the performance of the policy learning

process.

26

Results and Discussions

5.1 Policy Learning

The policy learning process requires approximately 1.5 hours. Overall, this curve reflects

a typical process of policy learning, where the agent quickly comprehends the unfamiliar

environment at the beginning and then grasps general task objectives. Subsequently, it

gradually optimizes its policy until convergence.

Figure 5-1: Average reward (5 runs) of the policy learning process

However, there are three noticeable sharp increases or decreases as indicated by A, B, and C on

Figure 5-1. Before sharp increase A, as the weight of the end effector position reward we = 100,

the agent attempts to output actions that strictly imitate the end effector. At sharp increase A,

the agent attempts to output actions that imitate end effector position and joint angles, hence

it creates a sharp increase in reward. At sharp decrease B, the agent has shifted its attention

back to imitating the end effector position. However, at sharp increase C, the agent eventually

strikes a balance between imitating the end effector position and joint angles. Therefore, after

sharp increase C, the policy converges and has no further improvements.

27

Results and Discussions

5.2 Policy Evaluation

The learned policy is evaluated using three video inputs. The first one “packaging” mainly

focuses on random left and right motions, the second one “eating” mainly focuses on random

up and down motions, and the last one “waving” mainly focuses on circular or curved motions.

These three videos contain the common motions (left right, up down, curve) in daily arm

motions, implying the feasibility of replacing human workers with robotic manipulators in

special tasks. For convenience, Table 5-1 shows the evaluation videos along with their aliases.

video name motion evaluated video alias frames
packaging random left and right Video.LR 406
eating random up and down Video.UD 431
waving circular or curved Video.CC 737

Table 5-1: Evaluation videos reference alias and frame number

Figure 5-2 selected several typical motions evaluated including simple moving (i-ii) and

complex folding (iii-vi). As is obviously shown in Figure 5-2, the learned policy succeeded in

imitating both motions but it deviated from reference motion when imitating complex folding.

Detailed evaluation results are illustrated in the following discussions.

Figure 5-2: Visualization of typical motions evaluated

28

Results and Discussions

The evaluation results in terms of the aforementioned metrics are shown in Table 5-2. The

learned policy excelled in imitating horizontal left and right motions, which resulted in

approximately 0.09 m error in the following end effector and 0.056 m error in imitating each

joint’s position. However, the learned policy poorly behaved in imitating vertical up and down

motions, as it shows the largest error for all the metrics. Finally, the learned policy achieved

a rather satisfying result in imitating circular or curved motions, which gives 0.094 m error in

imitating each joint’s position. But circular motions as a composite of both horizontal and

vertical motions, the learned policy inherited poor behaviors in imitating vertical motions,

therefore resulting in a relatively large error in imitating the end effector position.

video ref motions δsimilarity(rad) δend−e f f (m) δMPJPE(m)
video.LR (2648, 6) -0.22087 0.09120 0.05664
video.UD (4898, 6) -0.28610 0.26427 0.16258
video.CC (4748, 6) 0.16300 0.19572 0.09400

Table 5-2: Evaluation results evaluated by metrics δsimilarity, δend−e f f , and δMPJPE

Figure 5-3: The deviations of the learned policy corresponding to evaluation metrics

29

Results and Discussions

As shown in Figure 5-3, the motion imitation model has acquired a policy capable of replicating

reference motion generally. However, Figure 5-3 also illustrates the corresponding evaluation

metric results, indicating notable deviations in vertical and circular motions highlighted by

red circles. These deviations commonly occur during the transition between points as time

progresses. This phenomenon arises because the 3D HPE used in the skeletal motion extraction

process is not sensitive to vertical arm motions. Consequently, only sharp changes in human

motion lead to noticeable vertical skeletal motions. Such sharp changes cause delays in policy

reactions, particularly when the vertical reference motions involve relatively high speeds.

Therefore, the vertical movement process deviates from the reference motions.

Figure 5-4: Joint angle differences between the reference and robot motions (video.CC)

Figure 5-5: Link position difference between the reference and robot motions (video.CC)

30

Results and Discussions

Figure 5-4 illustrates the differences in joint angles, while Figure 5-5 illustrates the differences

in link positions in comparison to the reference motions. All differences reflected in the figures

are recorded in one episode of imitation, i.e. complete imitation of all reference motions.

Reference motions used are from video.CC as it contains both horizontal and vertical motions

hence more representative. The “one episode differences curve” of video.LR and video.UD

can be found in Appendix A.3.

Episodic Angle Differences. The episodic joint angle difference obviously follows a periodic

fluctuation trend. This periodic behavior arises from the policy learning process. In the process

of policy learning, actions that result in significant deviations are discouraged. Moreover, the

agent attempts to produce the opposite actions in the next output to seek higher rewards. While

effective initially, this behavior leads to a cycle of alternating actions until even the opposite

actions are no longer encouraged, thereby giving rise to periodic fluctuations. This periodical

compensation doesn’t solely occur within the angles of one joint. Instead, the angles of various

joints compensate each other to optimize overall imitation. This is well demonstrated in Figure

5-4, where when certain joint angles deviate, the angles of other joints strive to compensate,

resulting in out-of-phase periodic fluctuations. This compensation behavior finally results in

lower δsimilarity.

Episodic Link Differences. The episodic link position difference also shows a fluctuation

without any period trend. The intensity of fluctuation increases as the link position moves

from inner (dark blue, first link) to outer (orange, end effector) as the accumulated position

errors are eventually reflected at the most outer link, i.e. end effector. However, Figure 5-5

perfectly align with the aforementioned behavior in Figure 5-3: large deviations occur in

the transition from one point to another. Each peak resents a deviation, but regardless of

their magnitude, these deviations dissipate after several timesteps as the reference motion

and the end effector of the robot converge. I.e., while the policy may not match the

speed of the moving end effector trajectory, it eventually manages to imitate the trajectory

itself. Although each peak leads to an increase in δMPJPE , the averaged value is still

within a satisfactory range. Moreover, even though δend−e f f is relatively large in video.UD

and video.CC evaluations, it might be the end effector is in the transition of two steady motions.

31

Results and Discussions

5.3 Discussion and Future Work

Discussions of Existing Model. The present motion imitation model provides only a baseline

of imitating human arm motions from given videos. Overall, the motion imitation model (the

model) is able to learn a desired imitating control policy that can successfully imitate the

target motions. Given the fact that the model only takes a few seconds of video as input yet

produces a motion-imitating policy capable of generalizing well to other arm motions from

unseen videos, it simplifies the expert data-obtaining process and excels in the task of imitation.

Figure 5-6: The results of the motion imitation model

Figure 5-6illustrates the performance of the Motion Imitation model. Overall, the model is

capable of learning an excellent policy to imitate reference motions. However, the policy

exhibits a slight delay in responding to rapid changes in the reference motions, resulting in

delayed imitation of fast movements. Despite this delay in imitation, the policy learned by the

model is still able to replicate trajectories. This delay may partially affect the real-time nature

of the motions and reduce evaluation metric scores, but overall, the model can still successfully

imitate reference motions.

32

Results and Discussions

Limitations and Future Works. However, the limitations are also obvious. Although the

model learns an imitating policy based on a short video, the quality of the policy indeed heavily

depends on the input videos. Therefore, effort is still required to find or self-recording a suitable

input video. In the process of motion extractions, a better 3D HPE model leads to more accurate

extracted motion, hence influencing on overall motion imitation process. Moreover, in motion

retargeting, an alternative way of solving inverse kinematics may be able to generate better

reference motions further improving the imitation. Most importantly, the present model only

achieved basic motion imitation, more complex tasks such as imitating a series of motions while

grasping the objects placed near the trajectory. This can be done by designing task-specific

environments and rewards and formulating a more complex and challenging reinforcement

learning problem. Table 5-3 summarises potential limitations and possible future work for

convenience.

Limitations Possible Future Works
Training Video Better training video covering more complex motions.

3D HPE Improving 3D HPE accuracy.
Motion Retarget Alternative ways of solving ik and retargetings.

Reinforcement Learning Formulate more complex and challenging RL problem.

Table 5-3: Summarise limitations and possible future works

33

Conclusion

6.1 Project Summary

This project combines reinforcement learning with 3D human pose estimation, providing a

novel Motion Imitation model that excels at imitating the motions of any human arm in input

videos. Moreover, unlike traditional imitation learning which requires a large amount of expert

data for policy learning, the Motion Imitation model simplifies the complex motion imitation

process into a robotic manipulator joint angle prediction problem. This means that only a few

seconds of video covering complex arm motions are needed to generate a small amount of

expert data, which can then be used to learn the policy for motion imitation. Furthermore, the

policy produced by this model exhibits strong generalizability, allowing learned techniques

to be easily transferred to imitate arm motions generated from unfamiliar videos. The final

evaluation results demonstrate that the learned strategies of the model effectively mimic the

target actions, particularly in replicating the positions of each link and the end effector. In

summary, this project contributes a lightweight, convenient, user-friendly, and highly accurate

model to the field of Motion Imitation.

6.2 Potential Contribution

This model provides a novel approach to Motion Imitation, enabling relatively good results

with minimal expert data. Furthermore, it demonstrates relatively good accuracy in imitating

motions such as swaying left and right, swaying up and down, and curved motions, which

are common among production line workers. Therefore, the model has the potential to be

used to imitate their motions based on videos, further achieving the goal of replacing them.

Additionally, the model serves as a baseline, suggesting the possibility of designing more

complex reinforcement learning problems in the future. These problems could allow policies to

perform tasks such as grasping and placing objects based on the foundation of imitating human

arm movements.

34

References

[1] J. Chen, B. Yuan, and M. Tomizuka, “Model-free deep reinforcement learning for urban

autonomous driving,” in 2019 IEEE Intelligent Transportation Systems Conference

(ITSC), 2019, pp. 2765–2771. DOI: 10.1109/ITSC.2019.8917306.

[2] D. Garg, S. Chakraborty, C. Cundy, J. Song, M. Geist, and S. Ermon, IQ-learn: Inverse

soft-q learning for imitation, 2022. arXiv: 2106.12142 [cs.LG].

[3] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine, “Learning agile

robotic locomotion skills by imitating animals,” in Robotics: Science and Systems, Jul.

2020. DOI: 10.15607/RSS.2020.XVI.064.

[4] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic: Example-guided

deep reinforcement learning of physics-based character skills,” ACM Trans. Graph.,

vol. 37, no. 4, 143:1–143:14, Jul. 2018, ISSN: 0730-0301. DOI: 10.1145/3197517.

3201311. [Online]. Available: http://doi.acm.org/10.1145/3197517.3201311.

[5] Y. Cheng, B. Wang, B. Yang, and R. T. Tan, Graph and temporal convolutional networks

for 3d multi-person pose estimation in monocular videos, 2021. arXiv: 2012.11806

[cs.CV].

[6] W. Li, H. Liu, R. Ding, M. Liu, P. Wang, and W. Yang, “Exploiting temporal

contexts with strided transformer for 3d human pose estimation,” IEEE Transactions

on Multimedia, vol. 25, pp. 1282–1293, 2023.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, et al., Playing atari with deep reinforcement

learning, 2013. arXiv: 1312.5602 [cs.LG].

[8] S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error in

actor-critic methods, 2018. arXiv: 1802.09477 [cs.AI].

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy

optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

35

https://doi.org/10.1109/ITSC.2019.8917306
https://arxiv.org/abs/2106.12142
https://doi.org/10.15607/RSS.2020.XVI.064
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
https://arxiv.org/abs/2012.11806
https://arxiv.org/abs/2012.11806
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1707.06347

Conclusions

[10] H. Jiang, L. Zeng, G. Li, and Z. Ju, “Learning for a robot: Deep reinforcement learning,

imitation learning, transfer learning,” Sensors, vol. 21, p. 1278, 4 2021. DOI: 10.3390/

s21041278.

[11] J. Zhang, Z. Zhang, S. Han, and S. Lü, Proximal policy optimization via enhanced

exploration efficiency, 2020. arXiv: 2011.05525 [cs.LG].

[12] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural

networks,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition,

IEEE, Jun. 2014. DOI: 10.1109/cvpr.2014.214. [Online]. Available: http://dx.

doi.org/10.1109/CVPR.2014.214.

[13] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, Openpose: Realtime multi-

person 2d pose estimation using part affinity fields, 2019. arXiv: 1812.08008 [cs.CV].

[14] Z. Qiu, Q. Yang, J. Wang, and D. Fu, IVT: An end-to-end instance-guided video

transformer for 3d pose estimation, 2022. arXiv: 2208.03431 [cs.CV].

[15] C. Zheng, M. Mendieta, T. Yang, G. Qi, and C. Chen, “Feater: An efficient network

for human reconstruction via feature map-based transformer,” 2022. DOI: 10.48550/

arxiv.2205.15448.

[16] L. Yi, W. Gu, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative matching for 6d pose

estimation,” International Journal of Computer Vision, vol. 128, pp. 657–678, 3 2019.

DOI: 10.1007/s11263-019-01250-9.

[17] K. Aberman, R. Wu, D. Lischinski, B. Chen, and D. Cohen-Or, “Learning character-

agnostic motion for motion retargeting in 2d,” ACM Transactions on Graphics, vol. 38,

no. 4, pp. 1–14, Jul. 2019, ISSN: 1557-7368. DOI: 10 . 1145 / 3306346 . 3322999.

[Online]. Available: http://dx.doi.org/10.1145/3306346.3322999.

[18] M. Gleicher, “Retargetting motion to new characters,” in Proceedings of the 25th Annual

Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’98,

New York, NY, USA: Association for Computing Machinery, 1998, pp. 33–42, ISBN:

0897919998. DOI: 10.1145/280814.280820. [Online]. Available: https://doi.

org/10.1145/280814.280820.

[19] K. Aberman, P. Li, D. Lischinski, O. Sorkine-Hornung, D. Cohen–Or, and B. Chen,

“Skeleton-aware networks for deep motion retargeting,” Acm Transactions on Graphics,

vol. 39, 4 2020. DOI: 10.1145/3386569.3392462.

36

https://doi.org/10.3390/s21041278
https://doi.org/10.3390/s21041278
https://arxiv.org/abs/2011.05525
https://doi.org/10.1109/cvpr.2014.214
http://dx.doi.org/10.1109/CVPR.2014.214
http://dx.doi.org/10.1109/CVPR.2014.214
https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/2208.03431
https://doi.org/10.48550/arxiv.2205.15448
https://doi.org/10.48550/arxiv.2205.15448
https://doi.org/10.1007/s11263-019-01250-9
https://doi.org/10.1145/3306346.3322999
http://dx.doi.org/10.1145/3306346.3322999
https://doi.org/10.1145/280814.280820
https://doi.org/10.1145/280814.280820
https://doi.org/10.1145/280814.280820
https://doi.org/10.1145/3386569.3392462

Conclusions

[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore, Reinforcement learning: A survey,

1996. DOI: 10.1613/jair.301.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, et al., Human-level control through deep

reinforcement learning, 2015. DOI: 10.1038/nature14236.

[22] E. Jung and I.-C. Kim, Hybrid imitation learning framework for robotic manipulation

tasks, 2021. DOI: 10.3390/s21103409.

[23] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” arXiv

preprint arXiv:1805.01954, 2018.

[24] P. Abbeel and A. Y. Ng, Apprenticeship learning via inverse reinforcement learning,

2004. DOI: 10.1145/1015330.1015430.

[25] E. B. Hansen, R. E. Andersen, S. Madsen, and S. Bgh, Transferring human manipulation

knowledge to robots with inverse reinforcement learning, 2020. DOI: 10 . 1109 /

sii46433.2020.9025873.

[26] J. Ho and S. Ermon, Generative adversarial imitation learning, 2016. arXiv: 1606.

03476 [cs.LG].

[27] J. Zhao, X. Wang, B. Xie, and Z. Zhang, Human-robot kinematics mapping method

based on dynamic equivalent points, 2022. DOI: 10.1108/ir-02-2022-0056.

[28] E. Coumans, Pybullet, a python module for physics simulation for games, robotics and

machine learning, https://pybullet.org, 2019.

[29] J. Redmon and A. Farhadi, Yolov3: An incremental improvement, 2018. arXiv: 1804.

02767 [cs.CV].

[30] J. Wang, K. Sun, T. Cheng, et al., Deep high-resolution representation learning for visual

recognition, 2020. arXiv: 1908.07919 [cs.CV].

[31] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m: Large scale

datasets and predictive methods for 3d human sensing in natural environments,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7,

pp. 1325–1339, 2014.

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT press,

2018.

37

https://doi.org/10.1613/jair.301
https://doi.org/10.1038/nature14236
https://doi.org/10.3390/s21103409
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1109/sii46433.2020.9025873
https://doi.org/10.1109/sii46433.2020.9025873
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1606.03476
https://doi.org/10.1108/ir-02-2022-0056
https://pybullet.org
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1908.07919

Conclusions

[33] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic: Example-guided

deep reinforcement learning of physics-based character skills,” ACM Trans. Graph.,

vol. 37, no. 4, 2018, ISSN: 0730-0301. DOI: 10.1145/3197517.3201311. [Online].

Available: https://doi.org/10.1145/3197517.3201311.

[34] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale

datasets and predictive methods for 3d human sensing in natural environments,” IEEE

transactions on pattern analysis and machine intelligence, vol. 36, no. 7, pp. 1325–1339,

2013.

[35] L. Sigal, A. O. Balan, and M. J. Black, “Humaneva: Synchronized video and motion

capture dataset and baseline algorithm for evaluation of articulated human motion,”

in 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2010,

pp. 433–440.

[36] K. Robotics, KUKA iiwa 7 R800: Lightweight robot for sensitive automation, https://

www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-

iiwa/lbr-iiwa-7-r800, 2024.

[37] H. Fang, Y. Xu, W. Wang, X. Liu, and S.-C. Zhu, Learning pose grammar to encode

human body configuration for 3d pose estimation, 2018. arXiv: 1710.06513 [cs.CV].

38

https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa/lbr-iiwa-7-r800
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa/lbr-iiwa-7-r800
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa/lbr-iiwa-7-r800
https://arxiv.org/abs/1710.06513

Appendix

A.1 Hyperparameters used in Motion Imitation Model

hyperparameters Descriptions Values
E training epochs 30
Tmax-episode max episode length 1e3
Tmax max training steps 2e6
εclip epsilon clipping 0.2
γ discount factor 0.99
β entropy loss weight 0.01
αactor actor learning rate 0.0003
αcritic critic learning rate 0.001
σ action standard deviation 0.6
σdecay action std decay rate 0.05
σmin min action std 0.1

Table A-1: Policy network architecture and parameters

A.2 KUKA LBR iiwa 7 R800

Figure A-1: kuka iiwa basic information

A-1

Appendix

Figure A-2: kuka iiwa detail specifications

A.3 Episodic Differences Curves and Result

Figure A-3: Joint angle differences between the reference and robot motions (video.LR)

A-2

Appendix

Figure A-4: Link position difference between the reference and robot motions (video.LR)

Figure A-5: Joint angle differences between the reference and robot motions (video.UD)

Figure A-6: Link position difference between the reference and robot motions (video.UD)

A-3

	Abstract
	Graphical Abstract
	Acknowledgement
	Lists of Figures
	Lists of Tables
	Introduction
	Background and Motivation
	Objective
	Scope

	Literature Review
	3D Pose Estimation
	Motion Retargeting
	Reinforcement Learning
	Motion Imitation
	PyBullet Simulation Environment

	Methodology
	Motion Imitation Overview
	Extract Raw Arm Motion
	Retarget Reference Motion
	Generate Reference Motion
	Formulate Reinforcement Learning Problem
	Motion Imitation
	Build PyBullet Simulation Environment

	Experiments
	Experiments Objective
	Experiments Setup
	Implementation Details

	Results and Discussions
	Policy Learning
	Policy Evaluation
	Discussion and Future Work

	Conclusion
	Project Summary
	Potential Contribution

	References
	Appendix
	Hyperparameters used in Motion Imitation Model
	KUKA LBR iiwa 7 R800
	Episodic Differences Curves and Result

