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Abstract

Non-autoregressive (NAR) language models
are known for their low latency in neural ma-
chine translation (NMT). However, a perfor-
mance gap exists between NAR and autoregres-
sive models due to the large decoding space
and difficulty in capturing dependency between
target words accurately. Compounding this,
preparing appropriate training data for NAR
models is a non-trivial task, often exacerbating
exposure bias. To address these challenges, we
apply reinforcement learning (RL) to Leven-
shtein Transformer, a representative edit-based
NAR model, demonstrating that RL with self-
generated data can enhance the performance
of edit-based NAR models. We explore two
RL approaches: stepwise reward maximization
and episodic reward maximization. We dis-
cuss the respective pros and cons of these two
approaches and empirically verify them. More-
over, we experimentally investigate the impact
of temperature setting on performance, con-
firming the importance of proper temperature
setting for NAR models’ training.

1 Introduction

Non-autoregressive (NAR) language models (Gu
et al., 2018) generate translations in parallel, en-
abling faster inference and having the potential for
real-time translation applications. However, de-
spite their computational efficiency, NAR models
have been observed to underperform autoregressive
(AR) models due to the challenges posed by the
large decoding space and difficulty in capturing
dependency between target words accurately (Gu
et al., 2018). To bridge the performance gap,
many NAR architectures and training methods
have been proposed, including edit-based mod-
els like Insertion Transformer (Stern et al., 2019)
and Levenshtein Transformer (Gu et al., 2019).
Prior research has also explored knowledge distilla-
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tion (Ghazvininejad et al., 2019), which is effective
but introduces additional complexity.

Unlike AR models, preparing teacher data and
designing appropriate training objectives have
always been challenging for NAR models (Li
et al., 2023). Teacher forcing with inappropriate
teacher data may exacerbate the exposure bias prob-
lem (Ranzato et al., 2016), affecting model perfor-
mance. Reinforcement learning (RL) is known
for its ability to tackle the exposure bias (Ranzato
et al., 2016) and alleviate the object mismatch is-
sue (Ding and Soricut, 2017). Despite its impor-
tance, explorations of RL for NAR are still scarce.
Shao et al. (2021) proposed a method for reducing
the estimation variance. However, this method is
only applicable to NAR models with a fixed output
length, which is unsuitable for edit-based models.

In this paper, we empirically analyze conditions
for performance improvement in applying RL to
edit-based NAR models in neural machine transla-
tion (NMT). Specifically, we focus on Levenshtein
Transformer (LevT) (Gu et al., 2019), a promi-
nent edit-based NAR architecture that has shown
promise in reducing decoding latency and flexible
length adjustment. We demonstrate that RL with
self-generated data significantly improves LevT’s
performance. Importantly, our methods are orthog-
onal to existing research on NAR architectures,
indicating potential for widespread applicability.
We explore two RL approaches: stepwise reward
maximization, which computes rewards after each
edit operation, and episodic reward maximization,
which only computes rewards after all generations
are completed. We analyze these two approaches’
respective advantages and disadvantages and em-
pirically verify them. Furthermore, through a series
of experiments, we investigate the impact of tem-
perature settings on softmax sampling, aiming to
identify the optimal temperature that strikes a bal-
ance between exploration and exploitation during
the RL training process.
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2 Background

Reinforcement Learning Reinforcement learn-
ing has been widely applied to improve the per-
formance of AR NMT models (Ranzato et al.,
2016; Bahdanau et al., 2016; Wu et al., 2016) be-
cause its ability to train models to optimize non-
differentiable score functions and tackle the expo-
sure bias problem (Ranzato et al., 2016). In prac-
tice, REINFORCE (Williams, 1992) with a base-
line is commonly used for estimating the policy
gradient, which can be computed as follows:

▽θL(θ) ≈ −(r(y)− b(s))▽θ logπθ(y|s), (1)

where r is the reward function, b is the baseline, y
is a sample from policy πθ and state s.

Softmax with Temperature In the domain
of RL, we need to consider the exploration-
exploitation trade-off (Sutton and Barto, 2018),
where temperature τ is an important parameter.
τ is used to control the softness of the softmax
distribution,

pi =
exp(yi/τ)∑
i exp(yi/τ)

. (2)

A larger τ leads to a more uniform distribution,
promoting exploration, while a smaller τ creates a
more peaky distribution, emphasizing exploitation.

Kiegeland and Kreutzer (2021) shows that train-
ing with an increased temperature can mitigate the
peakiness effect due to RL (Choshen et al., 2020),
indicating that a suitable temperature is significant
for RL training in NMT.

RL for NAR Compared to AR methods, studies
of reinforcement learning for NAR remain unex-
plored. Shao et al. (2021) proposed a method to
reduce the estimation variance of REINFORCE by
fixing the predicted word at position t and sampling
words of other positions for n times. However, this
method is only applicable to models with a fixed
length, which is unsuitable for edit-based models.

Levenshtein Transformer Levenshtein Trans-
former (Gu et al., 2019) is an NAR model based
on three edit operations: delete tokens, insert place-
holders, and replace placeholders with new tokens.
It uses a supervised dual-policy learning algorithm
to minimize the Levenshtein distance (Levenshtein,
1965) for training and greedy sampling for decod-
ing. The decoding stops when two consecutive re-
finement iterations return the same output or a max-

Figure 1: The illustration of Levenshtein Transformer’s
decoding process (Gu et al., 2019). In each decoding
iteration, three edit operations are performed sequen-
tially: delete tokens, insert placeholders, and replace
placeholders with new tokens.

imum number of iterations (set to 10) is reached.
We illustrate the decoding process in Figure 1.

LevT’s dual-policy learning generates teacher
data by corrupting the ground truth and reconstruct-
ing it with its adversary policy. This mechanism
not only offers a unique approach to data genera-
tion but also underscores the inherent difficulty in
preparing teacher data. This introduces concerns
regarding the exposure bias, particularly whether
the training process can maintain consistency with
the text during decoding. To address this issue, we
employ RL approaches that use self-generated data
for training.

3 Approaches

In this section, we present our reinforcement learn-
ing approaches in detail. We train a Levenshtein
Transformer model as our baseline using the dual-
policy learning algorithm. Based on it, we intro-
duce two distinct RL approaches within the REIN-
FORCE framework: stepwise reward maximization
and episodic reward maximization. Moreover, we
present our methods for temperature control.

Stepwise Reward Maximization General RL
training methods for AR NMT models are all
episodic1, as it is difficult to calculate BLEU (Pa-
pineni et al., 2002) when the sentence is not fully
generated. In contrast, NAR models can calculate
BLEU on outputs at each decoding step. From the
perspective of estimating a more accurate gradient,
we propose stepwise reward maximization, which

1In this context, “episodic” denotes training based on en-
tirely generated sequences



Figure 2: The illustration of the two RL approaches. (A) is the stepwise reward maximization, which randomly
samples from a previous node for each edit operation and calculates BLEU and RL gradient after each edit operation
(except for the insert operation, since it is not easy to calculate BLEU after inserting placeholders). (B) is the
episodic reward maximization, where each sample is edited multiple times in a linear fashion, without branching
into different paths, and BLEU and RL gradient are calculated only after the completion of all edit operations. At
every orange node, we sample k times from this node (in this example, the sample size k is 2).

calculates reward for each edit operation2 using
score differences from one previous edit. Since
every step’s reward is calculated separately, this
approach should be easier to learn than episodic
approaches (Sutton and Barto, 2018). However,
it is also more prone to learning bias since the
editing process is inherently multi-step. This draw-
back should not be emphasized since maximizing
the reward for each step will likely maximize the
episodic reward in NAR models’ training.

We use a leave-one-out baseline (Luo, 2020) for
b(s) in Equation 1 instead of the greedy baseline
proposed in SCST (Rennie et al., 2017) because
the greedy decoding is too strong in LevT, which
makes gaining positive rewards in SCST difficult
and may reduce learning efficiency. For each edit,
we sample k actions from the policy at this point.
Then, we calculate the baseline as follows:

bi(s) =
1

k − 1

∑
j ̸=i

r(yj), (3)

where yj is the jth sample from the current policy.
The final RL gradient estimation becomes

▽θL(θ) ≈ −(r(yi)− bi(s))▽θ logπθ(yi|s). (4)

In a straightforward implementation, one might
consider applying sampling again to all k samples

2In practice, since it is not easy to calculate BLEU after
inserting placeholders, we consider placeholder insertion and
token replacement as one edit operation.

from the last edit. However, this will cause a com-
bination explosion when the number of edit opera-
tions increases. Practically, we randomly choose a
sample from the previous edit to perform the sub-
sequent operations. We show an illustration of the
sampling process in (A) of Figure 2 and pseudo
code of our algorithm in Appendix A.

Episodic Reward Maximization We also intro-
duce episodic reward maximization, which calcu-
lates rewards only once for each sample and gives
all actions the same weight. It is a more traditional
way to train NMT models in RL. It allows unbiased
learning but may not be efficient.

We use the leave-one-out baseline for the
episodic reward as well as the stepwise reward. We
sample k samples from the initial input. Each sam-
ple will be edited multiple times without a branch.
After the final edit, we calculate the rewards and
baselines. We show an illustration of the sampling
process in (B) of Figure 2 and pseudo code of our
algorithm in Appendix B.

Temperature Control Applying RL to NAR dif-
fers significantly from AR because there could be
various types of actions rather than just predicting
the next token, like deletion and insertion. Due to
this difficulty, NAR may need more fine-grained
temperature control during training. To investigate
the impact of exploration and exploitation in the
training process, we explore five different settings
of the temperature. Due to the large decoding space



of Levenshtein Transformer, default temperature 1
may result in poor rewards, and too small temper-
ature may result in peaky distribution, which are
both harmful to learning. We use three constant
temperature settings set to 0.1, 0.5, and 1 to verify
the effect of temperature magnitude.

An annealing schedule is known for balancing
the trade-off between model accuracy and variance
during training (Jang et al., 2016). There are two
ways of thinking here. First, to reduce the exposure
bias, we want to get close to the decoding scenario,
which is greedy decoding in our experiments. Thus,
we can apply a regular annealing schedule to grad-
ually reduce the temperature from 1 to 0.1 during
training. The temperature function can be written
as follows:

τi+1 = max(τi ∗ exp(−
log(τ0/τT )

T
), τT ), (5)

where T is the number of total training steps, and
τ0 and τT are the initial and the target temperatures.

Second, using high temperatures in the early
stages of training may lead to poor rewards and
result in low learning efficiency. We can apply an
inverted annealing schedule to gradually increase
the temperature from 0.1 to 1, guaranteeing stable
training in the early stages and gradually increasing
the exploration space for efficient training. The
temperature function can be written as follows:

τi+1 = min(τi/exp(−
log(τT /τ0)

T
), τT ). (6)

In each decoding iteration, multiple edit oper-
ations occur, and each operation has a different
decoding space size. It may be beneficial to opti-
mize this by using varying temperatures for each
operation in every iteration. This is a complicated
research question and we leave this exploration to
future work.

4 Experiments

4.1 Experimental Setup
Data & Evaluation We use WMT’14 English-
German (EN-DE) (Bojar et al., 2014) and
WAT’17 English-Japanese (EN-JA) Small-NMT
datasets (Nakazawa et al., 2017) for experiments.
We use BPE token-based BLEU scores for evalua-
tions. Data preprocessing follows Gu et al. (2019).

Baseline We use Levenshtein Transformer as our
baseline. Following Gu et al. (2019), we trained
a LevT with 300K steps and a max batch size of

65,536 tokens per step. However, like Reid et al.
(2023), we cannot reproduce the results of Gu et al.
(2019). We use our results in this paper.

RL According to Gu et al. (2019), most decod-
ings are gotten in 1-4 iterations, and the average
number of decoding iterations is 2.43. To mini-
mize the gap between the training and decoding
states, we start with a null string and conduct 3
iterations (8 edits) for each sample during RL train-
ing. We set the total training steps T to 50,000,
with a max batch size of 4,096 tokens per step. To
prevent the out-of-memory issue, we limit the de-
coding space of placeholder insertion from 256 to
64. The sample size k of the baseline is set to 5.
Our implementation is based on Fairseq3.

Computational Cost The pre-training phase of
LevT on a GCP VM instance with A100x4 GPUs
requires roughly 3 days, while the subsequent RL
fine-tuning process takes approximately 1 day to
complete.

4.2 Results

We show the BLEU scores of our approaches in
Table 1. The episodic reward model4 showed no-
table improvement over the baseline. The score
is even close to the distillation model, which re-
quires a heavy pre-training5 of AR models. How-
ever, the stepwise reward model showed only lim-
ited improvement. To explain this, we focus on
the advantage, r(y) − b(s), included in the pol-
icy gradient (Equation 1), as a larger value of the
advantage can increase the policy gradient’s mag-
nitude. A higher standard deviation (SD) of the
advantages indicates larger fluctuations in policy
gradients. Table 2 shows the SDs of the advan-
tages of the stepwise reward model, with notably
higher values in the early stages of edit operations
compared to later stages. This suggests that the
stepwise reward model disproportionately focuses
on early operations, potentially leading to uneven
learning and reduced performance. In contrast, the
episodic reward model applies the same rewards
and advantages across all operations, facilitating
more uniform learning and improved performance.

3https://github.com/facebookresearch/fairseq
4The term “episode/stepwise reward model” specifically

refers to the model trained using the “episode/stepwise reward
maximization” approach.

5To produce a distillation model, we need to train an au-
toregressive Transformer first, which needs additional 3 days
of training on our machine.

https://github.com/facebookresearch/fairseq


Model EN-DE EN-JA

LevT 24.03 31.76
LevT + distillation 26.49 -

LevT + RL (stepwise) 24.29 31.73
LevT + RL (episodic) 25.72 32.75

Table 1: The BLEU scores of our approaches and the
baseline. Temperatures are set to 1. Due to the limited
computational resources, we only trained the distillation
model for the EN-DE dataset using the ready-made
distillation dataset.

Iteration Edit Operation EN-DE EN-JA

1 Insert + Replace 9.99 8.59

2 Delete 2.05 1.35
Insert + Replace 3.28 2.48

3 Delete 1.67 1.29
Insert + Replace 3.04 1.60

Table 2: Stepwise reward model’s standard deviation
(SD) of the advantage in each edit operation. Insertion
and replacement share the same reward.

We only report scores of applying RL to the
model without distillation since we found that RL
significantly improved the model without distilla-
tion (max 1.69 points) compared to when distilla-
tion was applied (max 0.5 point). Moreover, when
confronted with distillation models, it raises ques-
tions such as which data we should use for RL
training, the original or the distillation one. We
leave these research questions to future work.

We show the BLEU scores of different tempera-
ture settings in Table 3. Model performance varies
significantly with temperature settings (max 1.01
points in EN-JA). Among constant setting models,
the model with a temperature of 0.5 performed best
in EN-DE, and the model with a temperature of
0.1 performed best in EN-JA, indicating that too
large temperature harms RL training. The two mod-
els using annealing schedules performed great in
both tasks, showing the effectiveness of the anneal-
ing algorithms for improving learning efficiency.
However, the annealing models did not always out-
perform the constant models, which suggests the
difficulty of seeking the optimal temperature setting
for NAR models’ RL training. Also, we found the
inverted annealing model (τ=0.1→1) begins drop-
ping performance after 10,000 steps training in
EN-JA, indicating that the speed of annealing will
significantly affect the model training quality.

Temperature EN-DE EN-JA

Constant (τ = 1) 25.72 32.75
Constant (τ = 0.5) 25.98 33.45
Constant (τ = 0.1) 25.76 33.60

Annealing (τ = 1 → 0.1) 25.83 33.76
Annealing (τ = 0.1 → 1) 25.90 33.43

Table 3: The BLEU scores of episodic reward models
using different temperature settings.

We also quickly surveyed the relationship be-
tween performance and the number of decoding
iterations in RL. The model performance dropped
when we reduced the number of iterations to 2 dur-
ing training and remained flat when we increased
it to 4, indicating that our setting is reasonable.

5 Conclusion and Future Work

This paper explored the application of reinforce-
ment learning to edit-based non-autoregressive neu-
ral machine translation. By incorporating RL into
the training process, we achieved a significant per-
formance improvement. By empirically comparing
stepwise and episodic reward maximization, we an-
alyzed the advantages and disadvantages of these
RL approaches. We plan to have a deeper explo-
ration of stepwise reward maximization and find
a way to alleviate training inequality for multiple
edit operations in the future.

Our investigation of temperature settings in NAR
softmax sampling provided insights into striking a
balance between exploration and exploitation dur-
ing training. Although our annealing methods per-
form well, they are not optimal and still depend
on manually adjusting the parameters such as total
training steps. In the future, we plan to develop
a self-adaption temperature control method using
various indicators like entropy and advantage SD.

The experiments in this paper focused on the
basics, and we plan to do more study for practical
applications in future work. As our methods are
orthogonal to existing research on NAR architec-
tures, our next step involves exploring the methods’
applicability across a broader spectrum, including
state-of-the-art models. Additionally, we plan to
investigate how to effectively apply RL to the dis-
tillation model, the impact of different baseline
designs on performance, and the impact of RL on
output diversity. Applying RL to NAR is a massive
and complex research question. We look forward
to more researchers joining this topic.
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A Pseudo code of stepwise reward maximization

We show pseudo code of stepwise reward maximization in Figure 3.

Figure 3: The pseudo code of stepwise reward maximization.

B Pseudo code of episodic reward maximization

We show pseudo code of episodic reward maximization in Figure 4.

Figure 4: The pseudo code of episodic reward maximization.


	Introduction
	Background
	Approaches
	Experiments
	Experimental Setup
	Results

	Conclusion and Future Work
	Pseudo code of stepwise reward maximization
	Pseudo code of episodic reward maximization

