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Abstract

The Dirac exchange interaction is derived from recent quantum kinetic theory for collisionless

plasmas. For this purpose, the kinetic equation is written in the semiclassical and long wavelength

approximations. The validity of the model for real systems is worked out, in terms of temperature

and density parameters. Within the region of applicability, the correlation potential energy is

shown to be always smaller than the exchange contribution. From the moments of the quantum

kinetic equations, macroscopic, hydrodynamic equations are found, for an electron-ion plasma.

The Dirac exchange term is explicitly derived, in the case of a completely degenerate electron gas.

These results show, within quantum kinetic theory for charged particle systems, a new view of the

Dirac exchange interaction frequently used in density functional theory parametrization. Finally,

a simpler form of the quantum plasma exchange kinetic theory is also found.

PACS numbers:

Keywords: quantum plasmas; exchange interaction; Dirac potential.

∗ E-mail: fernando.haas@ufrgs.br. Orcid: 0000-0001-8480-6877

1

http://arxiv.org/abs/2405.01265v1


I. INTRODUCTION

Exchange effects have been recently included in quantum plasma kinetic theory [1, 2].

For this purpose, the complete antisymmetry of the N-particle density matrix was taken

into account, which is inline with the Fermi statistics of electrons, in accordance with the

Hartree-Fock approximation. For linear waves in completely degenerate plasmas [3], the

results are in exact agreement with older treatments following another methods [4]-[7].

There has been some discussion about the accordance between the new quantum plasma

kinetic theory and the density functional (DFT) modeling, as well as about the adequate

quantum hydrodynamics taking into account exchange effects [3]. Due to the analytical

and even computational complexity of phase-space models, the reduction of variables in

averaged, macroscopic theories is an attractive alternative, for both quantum and classical

plasma. Exchange (and correlation) effects have been considered e.g. in the recent review

[8] about quantum plasma hydrodynamics.

The purpose of the present work is to show the complete agreement between exchange

quantum kinetic plasma theory [1, 2] and the traditional Dirac exchange potential often

considered in DFT. This goes a step further than previous treatments where the exchange

(and correlation) potential was inserted ab initio in the Schrödinger equation [9].

The article is organized as follows. In Section II, we consider the semiclassical limit of the

new exchange kinetic theory. This allows considerable simplification of the central kinetic

equation. The validity conditions and the approximations made are described in detail.

Section III works out the resulting susceptibilities in electron-ion quantum plasmas, for

general electrostatic linear waves. With appropriate averaging methods, in Section IV the

general exchange fluid equations are derived. Section V shows that in the particular case of

a completely degenerate Fermi gas the equation of state is exactly compatible with the Dirac

exchange term. Section VI has the conclusions, also pointing the possible generalizations.

II. EXCHANGE KINETIC CONTRIBUTION IN THE SEMICLASSICAL LIMIT

Assuming the two-particle electron density matrix in the form of an antisymmetric prod-

uct of two one-particle density matrices, the Pauli principle becomes assured. Following

this approach, a kinetic equation for the one-particle Wigner function f = f(x,p, t) can be
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deduced [1, 2], neglecting spin polarization, quantum diffraction and correlation effects, in

the long wavelength approximation, reading

∂

∂t
f (x,p, t) +

p

m
· ∇f(x,p, t) + e∇φ(x, t) ·

∂

∂p
f(x,p, t)

=
~

2

∂

∂pi

∫

d3ρ d3q e−iρ·q ∂V (ρ)

∂ρi
f

(

x−
~ρ

2
,p+

q

2
, t

)

f

(

x−
~ρ

2
,p−

q

2
, t

)

(1)

−
i~2

8

∂

∂pi

∂

∂pj

∫

d3ρ d3q e−iρ·q ∂V (ρ)

∂ρi

[

f

(

x−
~ρ

2
,p−

q

2
, t

)

(←−
∂

∂xj
−

−→
∂

∂xj

)

f

(

x−
~ρ

2
,p+

q

2
, t

)

]

.

Here φ = φ(x, t) is the scalar potential and V = V (x) = e2/(4πε0|x|) is the electron-electron

Coulomb potential. The summation convention holds and the remaining symbols have their

usual meaning while the arrows in some partial derivatives indicate the sense of operation.

By construction Eq. (1) takes into account the bare exchange effects, represented by the

terms on the right hand side, and can be termed the exchange kinetic equation, which is our

starting point. Details are discussed in [1, 2].

To have the exchange kinetic equation in a semiclassical approximation, we have to

make a formal series expansion in powers of ~. In the long wavelength approximation, the

calculation (shown in the Appendix) gives the semiclassical exchange kinetic equation

∂

∂t
f (x,p, t) +

p

m
· ∇f(x,p, t) + e∇φ(x, t) ·

∂

∂p
f(x,p, t)

=
e2~2

2ε0

∂

∂pi

∂

∂xj

∫

d3q

q2

(

δij −
2qiqj
q2

)

f(x,p+ q, t)f(x,p− q, t) , (2)

which is considerably simpler than Eq. (1). The last integral on the right hand side of Eq.

(1) is of higher order and does not contribute in the semiclassical approximation.

The formal series expansion in powers of ~ implicitly implies a power series on a dimen-

sionless quantity ~/(mv0 l0) ≪ 1, where v0 is a natural velocity scale and l0 is a natural

length scale. The same approximation justifies the neglect of quantum diffraction, also

known as quantum recoil, which was already assumed for the derivation [1, 2] of the basic

kinetic equation (1). The semiclassical approximation keeps the first order exchange effects.

It is a welcome avenue, to analyze the implications of such approximation.

Since exchange effects are more stringent for dense plasmas, we focus on degenerate

plasmas. For a degenerate plasma, a natural velocity scale is the Fermi velocity vF , so that

v0 = vF . On the other hand, a characteristic length l0 could be given by the electron Thomas-

Fermi length λF = vF/ωp for stationary structures [10], where ωp is the plasma frequency, or
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by λ = 2π/k for linear wave propagation with wavenumber k. For the sake of definiteness,

setting l0 = λF and taking into account vF = ~(3π2n0)
1/3/m, ωp = [n0e

2/(mε0)]
1/2, where

n0 is the equilibrium electrons number density, m is the electron mass, e is the elementary

charge and ε0 is the vacuum permittivity, the semiclassical approximation traduces into

a0 n
1/3
0 ≫ 4π/(3π2)4/3 = 0.14, where a0 = 4πε0~

2/(me2) is the Bohr radius. Hence, for

stationary structures in degenerate plasma the semiclassical approximation applies for n0 ≫

1.7× 1028m−3, a condition on the number density only.

The remaining validity conditions are as follows. Neglect of correlations imply that the

average Coulomb energy EC = e2n
1/3
0 /(4πε0) is much smaller than the average kinetic energy,

which is the Fermi energy EF = mv2F/2 in an order of magnitude estimate. Defining the

coupling parameter gc = EC/EF we then find the necessary condition

gc =
EC

EF

=
2

(3π2)2/3a0 n
1/3
0

≪ 1 , (3)

which at the end is again a function of the number density only. Equation (3) implies

n0 ≫ 6.1×1028m−3, which is very similar to the semiclassical condition. Moreover, it is often

overlooked that the application of a non-relativistic model is possible only when relativistic

effects are negligible. To avoid a relativistic mass increase, one needs at least vF/c ≪ 1,

where c is the speed of light. This amounts to n0λ
3
C ≪ 1/(3π2), where λC = ~/(mc)

is the Compton length. Therefore, n0 ≪ 5.9 × 1035m−3, excluding very dense plasmas

deserving a relativistic treatment. Finally, the degeneracy condition is T ≪ TF , where T

is the thermodynamic temperature, TF = EF/κB is the Fermi temperature and κB is the

Boltzmann condition. All in all, the region for which the present modeling is applicable is

shown in the filled area in the density-temperature diagram in Fig. 1, in a logarithmic scale.

On the other hand, concerning wave propagation and setting l0 = λ, from ~/(mvFλ)≪ 1

one gets λn
1/3
0 >> 1/(3π2)1/3 which means the wavelength should be much larger than the

mean inter-particle distance. Therefore the semiclassical approximation is equivalent to a

continuous media (fluid) assumption, a long wavelength condition in this case.

It is interesting to look into the neglect of correlations from the point of view of density-

functional theory. The DFT exchange-correlation potential VXC is given [11, 12] by

VXC = VX + VC = gD

(

n

n0

)1/3 [

1 +
0.034

a0n1/3
ln
(

1 + 18.37a0n
1/3
)

]

, (4)
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FIG. 1: Density-temperature diagram for which the present modeling is applicable, in a logarithmic

scale, where n0 is the equilibrium number density (measured in m−3) and T is the thermodynamic

temperature in K. The left vertical line indicates the minimal number density for which correla-

tion effects are negligible, also justifying the semiclassical approximation. The right vertical line

indicates the maximal number density to avoid relativistic effects. Degenerate plasmas are below

the straight line T = TF . The modeling is valid in the filled area.

where

VX = gD

(

n

n0

)1/3

, gD = 0.985
(3π2)2/3

4π

~
2ω2

p

mv2F
(5)

is the Dirac potential form of the exchange potential [13] and

VC = VX ×

[

0.034

a0n1/3
ln
(

1 + 18.37a0n
1/3
)

]

(6)

is the correlation potential. Evaluating at the equilibrium number density and using Eq.

(3), one has
VC

VX

= 0.16 gc ln

(

1 +
3.84

gc

)

, (7)

shown in Fig. 2. As expected, the relative importance of the correlation effects (similar

to collisionall effects) goes to zero as the coupling parameter gc ≪ 1. On the opposite

limit, when gc ≫ 1 one has VC/VX = 0.63, which is a considerable value but still such that

VC < VX , which is thus always true at least from the point of view of the effective DFT

exchange-correlation potential.
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FIG. 2: Ratio between effective correlation and exchange potentials as a function of the coupling

parameter gc, from Eq. (7). The horizontal straight line shows the limiting value VC/VX = 0.63

as gC ≫ 1.

III. SUSCEPTIBILITIES IN AN ELECTRON-ION PLASMA

In an electron-ion plasma we have to consider the ions probability distribution function

fi = fi(x,p, t). It follows a classical Vlasov equation

∂

∂t
fi(x,p, t) +

p

M
· ∇fi(x,p, t)− e∇φ(x, t) ·

∂

∂p
fi(x,p, t) = 0 , (8)

due to a presumably larger ion mass M ≫ m. For simplicity ions have been assumed to be

single ionized. To close the system we have Poisson’s equation

∇2φ =
e

ε0

(
∫

d3p f(x,p, t)−

∫

d3p fi(x,p, t)

)

. (9)

For small amplitude waves it is assumed plane wave perturbations as

f = f0(p) + δf(p) exp[i(k · x− ωt)] , fi = f0(i)(p) + δfi(p) exp[i(k · x− ωt)] ,

φ = δφ exp[i(k · x− ωt)] , (10)

where δ denotes first order quantities. Linearizing yields the dispersion relation

1 + χe + χi = 0 , (11)

6



where the electron-ion susceptibilities χe,i are

χe =
e

ε0k2

∫

d3p
δf

δφ
, χi = −

e

ε0k2

∫

d3p
δfi
δφ

. (12)

Linearizing the ions kinetic equation (8) and assuming a cold ions equilibrium fi(0) =

n0 δ(p) we get χi = −ω
2
pi/ω

2, where ωpi = [n0e
2/(Mε0)]

1/2. For electrons we linearize the

exchange kinetic equation (2) to get
(

−ω +
k · p

m

)

δf(p) + e δφk ·
∂f0(p)

∂p
(13)

=
e2~2

2ε0

∂

∂pi

∫

d3q

q2

(

ki − 2k · q
qi
q2

)

(

f0(p+ q) δf(p− q) + f0(p− q) δf(p+ q)
)

.

At this point we remember that under the semiclassical condition the entire right-hand

side of Eq. (13) is itself a correction. Hence it is legitimate to insert the classical expression

δf(p) =
e δφk · ∂f0(p)/∂p

ω − k · p/m
(14)

into the exchange term of Eq. (13). In this way the electrons susceptibility decomposes into

classical χC
e and exchange χX

e contributions such that χe = χC
e + χX

e , where

χC
e =

e2

ε0k2

∫

d3p
k · ∂f0(p)/∂p

ω − k · p/m
, (15)

χX
e = −

1

2

(

e2~

ε0k

)2 ∫
d3p

ω − k · p/m

∂

∂pi

∫

d3q

q2
×

×

(

ki − 2k · q
qi
q2

)(

f0(+)k · ∂f0(−)/∂p

ω − k · (p− q)/m
+

f0(−)k · ∂f0(+)/∂p

ω − k · (p+ q)/m

)

, (16)

in terms of the shorthand f0(±) = f0(p± q).

It is instructive to keep the full kinetic equation (1) and perform again the previous

operations, to find the same χC
e as in Eq. (15) and

χX
e = −

2 ~ e4

ε20k
2

∫

d3p

ω − k · p/m

∂

∂pi

∫

d3q (qi + ~ki/4)

|q+ ~k/4|2
×

×

(

f0(+)k · ∂f0(−)/∂p

ω − k · (p− q)/m
+

f0(−)k · ∂f0(+)/∂p

ω − k · (p+ q)/m

)

(17)

instead of Eq. (16). However, expanding taking into account the long wavelength condition

~k ≪ mv0 as discussed in Section II it is easy to regain Eq. (16) from Eq. (17), as verified

from parity properties. In particular it is immediate to verify that these parity properties

show that the first non-zero contribution is proportional to ~
2.
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IV. FLUID EQUATIONS

Macroscopic equations can be derived from the moments of the simplified exchange kinetic

equation (2). In this way it is even possible to derive an exchange potential VX from first

principles. In the case of completely degenerate electrons it turns out that VX is the Dirac

exchange interaction potential, as will be shown next.

As usual [14] the number density n = n(x, t), the velocity field u = u(x, t) and the

pressure dyad P = P(x, t) are defined in terms of the moments

n =

∫

d3p f , (18)

mnu =

∫

d3pp f , (19)

P =
1

m

∫

d3pp⊗ p f −mnu⊗ u . (20)

Higher order moments could be easily implemented as well.

From Eq. (2) and with appropriate boundary conditions in momentum space we find the

continuity equation
∂n

∂t
+∇ · (nu) = 0 , (21)

and the momentum balance equation

m

(

∂

∂t
+ u · ∇

)

ui = −
1

n

∂Pij

∂xj
+ e

∂φ

∂xi
(22)

−
e2~2

2 ε0n

∂

∂xj

∫

d3p d3q

q2

(

δij −
2 qiqj
q2

)

(

f(x,p+ q)f(x,p− q)
)

,

expressed in component-wise manner, where the explicit time-dependence was omitted in f ,

for brevity. The momentum balance equation is valid for any local f(x,p).

Equation (22) can be written as

m

(

∂

∂t
+ u · ∇

)

u = −
∇ ·P

n
−
∇ ·PX

n
+ e∇φ , (23)

in terms of the exchange pressure dyad PX defined by

PX
ij =

e2~2

2 ε0

∫

d3p d3q

q2

(

δij −
2 qiqj
q2

)

(

f(x,p+ q)f(x,p− q)
)

, (24)

in component-wise manner. The simplicity of Eq. (23) in comparison with Eq. (7) of Ref.

[14] comes from starting from Eq. (2) instead of the full exchange kinetic equation (1),
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which involves no loss of generality as long as the validity conditions discussed in Section II

remain valid.

For isotropic in momentum distributions, namely if f = f(x, p), p = |p|, it follows that

Pij = p δij and PX
ij = pXδij , where p is the scalar pressure p = (1/3)TrPij (Tr denotes the

trace) and where pX is the exchange scalar pressure,

pX =
1

3
TrPX

ij =
e2~2

6 ε0

∫

d3p d3q

q2

(

f(x,p+ q)f(x,p− q)
)

. (25)

Similarly, for ions one can define

ni =

∫

d3p fi , (26)

Mniui =

∫

d3pp fi , (27)

Pi =
1

M

∫

d3pp⊗ p fi −Mniui ⊗ ui . (28)

The moments of the Vlasov equation (8) yield

∂ni

∂t
+∇ · (niui) = 0 , (29)

M

(

∂

∂t
+ ui · ∇

)

ui = −
∇ ·Pi

ni
− e∇φ . (30)

Finally one has Poisson’s equation

∇2φ =
e

ε0
(n− ni) . (31)

To have closure of the system, one needs to express all pressure dyads in terms of lower

order moments. This can be achieved assuming a local equilibrium distribution function, as

shown in the next Section.

V. CLOSURE FOR COMPLETELY DEGENERATE ELECTRONS

For a completely degenerate electron gas, one has

f(x,p) = Aθ(p̃F − |p−mu|) , A =
3n

4πp̃3F
, (32)

where θ is the Heaviside step function of the indicated argument and where p̃F = ~ (3π2n)1/3

is the local Fermi momentum depending on the local number density n. Equation (32)

represents a local, velocity displaced zero temperature Fermi-Dirac distribution.
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In the reference frame of the electrons fluid, the quasi-equilibrium (32) is isotropic in

momentum space. It is immediate to evaluate the scalar pressure

p =
2

5
n0EF

(

n

n0

)5/3

, EF =
p2F
2m

, pF = ~ (3π2n0)
1/3 , (33)

which is the equation of state for the completely degenerate electron gas where EF , pF are

the Fermi energy and momentum, and n0 is the equilibrium number density.

The derivation of the equation of state for the exchange scalar pressure (25) involves the

evaluation of the volume intersection between two spheres of identical radius p̃F , centered

at p = ±q, which is

∫

d3p θ(p̃F − |p+ q|) θ(p̃F − |p− q|) =
4π

3
(p̃F +

q

2
) (p̃F − q)2 θ(p̃F − q) , (34)

as found from elementary calculus [15]. The remaining integration in Eq. (25) gives

pX =
3

16

e2

ε0

n4/3

(3π2)2/3
, (35)

a barotropic equation of state. Remarkably, the contributions from the exchange pressure

from Eq. (35) and from the Dirac exchange potential are entirely equivalent, namely

∇VX =
∇pX
n

, (36)

as shown from elementary algebra. This is the main result of this work. Finally, for ultra-cold

ions obviously one has Pi = 0.

VI. CONCLUSIONS

A complete derivation of the Dirac exchange potential has been made, from newly in-

troduced quantum plasma models taking into account the antisymmetry of the two-particle

Wigner distribution function. The derivation from the exchange kinetic theory is quite dif-

ferent from the original derivation by Dirac, which is based on the Thomas-Fermi atomic

model [13].

The simpler kinetic equation (2) is more amenable to nonlinear and numerical analysis,

in comparison with Eq. (1), considered in the literature. Even more simplicity appears in

the hydrodynamic modeling, which however needs an equation of state for closure. A local

completely degenerate Fermi equilibrium shows a pressure term entirely equivalent to Dirac’s
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exchange potential. Although evident from the start, it worth to mention that a classical,

locally maxwellian equilibrium would gives something else [14] than the Dirac expression.

The approximations made, restrict the results to collisionless, semiclassical and com-

pletely degenerate plasmas. The domain of validity include real, dense fully degenerate

and cold plasma systems, as identified in Fig. 1. Nevertheless, the procedure can be in

principle extended to cover a finite-temperature electron gas, or a systematic derivation of

correlation interaction potentials. The later would need a first principle kinetic equation

including correlation besides exchange effects. However, at least in terms of the usual DFT

parametrization of the exchange-correlation potential, the correlation contribution is shown

to be a small correction in comparison with the exchange contribution, in the case of ideal

plasmas. Finally, relativistic effects would be a further ingredient, in even more general

theories.

Appendix A: Derivation of the semiclassical exchange kinetic equation

Denoting the right-hand side of Eq. (1) by I and expanding in a formal power series of

~, it becomes

I = −
e2~

8πε0

∂

∂pi

∫

d3ρ d3q
ρi
ρ3

e−iρ·q f(+)f(−)

+
e2~2

16πε0

∂

∂pi

∂

∂xj

∫

d3ρ d3q
ρiρj
ρ3

e−iρ·q f(+)f(−)

+
e2~3

64πε0

∂

∂pi

∂

∂pj

∫

d3ρ d3q
ρiρk
ρ3

e−iρ·q ×
[

f(+)
∂2f(−)

∂xj∂xk

− f(−)
∂2f(+)

∂xj∂xk

−
∂f(+)

∂xj

∂f(−)

∂xk
+

∂f(−)

∂xj

∂f(+)

∂xk

]

+ O(~4) , (A1)

summation convention implied, where for simplicity the time-dependence was omitted since

it is not relevant for this discussion and where now the shorthand

f(±) = f
(

x,p±
q

2

)

. (A2)

is used.

It happens that the terms proportional to ~ and ~
3 vanishes in Eq. (A1) due to parity

properties, as can be verified by means of the simultaneous change of variables q→ −q,ρ→

−ρ. For the surviving term proportional to ~
2 we use

∫

d3ρ
ρiρj
ρ3

e−iρ·q = i
∂

∂qi

∫

d3ρ
ρj
ρ3

e−iρ·q =
4π

q2

(

δij −
2qiqj
q2

)

, (A3)
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as can be verified using a partial integration and the Fourier transform of the Coulomb

potential,
∫

d3ρ

ρ
e−iρ·q =

4π

q2
. (A4)

Equation (A1) becomes

I =
e2~2

4 ε0

∂

∂pi

∂

∂xj

∫

d3q

q2

(

δij −
2qiqj
q2

)

f(+)f(−) + O(~4) . (A5)

A few more simple calculations finally give Eq. (2). It is worth mentioning that expanding

to higher orders the terms proportional to ~
ν where ν is an odd integer vanishes due to

parity properties. Hence, actually one has a power series on ~
2, as expected from quantum

perturbation theory in general.
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