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Abstract

Clustering methods must be tailored to the dataset
it operates on, as there is no objective or universal
definition of “cluster,” but nevertheless arbitrariness
in the clustering method must be minimized. This
paper develops a quantitative “stability” method of
determining clusters, where stable or persistent clus-
tering signals are used to indicate real structures
have been identified in the underlying dataset. This
method is based on modulating clustering methods
by controlling a parameter—through a thermody-
namic analogy, the modulation parameter is consid-
ered “time” and the evolving clustering methodolo-
gies can be considered a “heat flow.” When the in-
formation entropy of the heat flow is stable over a
wide range of times—either globally or in the local
sense which we define—we interpret this stability as
an indication that essential features of the data have
been found, and create clusters on this basis.

1 Introduction

Clustering is essential in many computing an data
analysis applications, but it is long understood that
some apriori characterization of what should count
as a cluster [1] must be made before deciding on
an appropriate method. In many cases, particularly
when noise is serious enough, different clustering al-
gorithms can give widely different results. Some algo-
rithms require initial selections, for example an initial
choice of centers, and even small differences in such
choices can lead to serious divergences in outcomes.
Appropriate choice of methods or initial parameters
often require foreknowledge of what kind of struc-

tures to expect within the dataset, and practitioners
sometimes supply boutique or ad hoc rules based on
such foreknowledge, or just use the researcher’s intu-
ition. In this paper we present a method that sub-
stantially reduces the arbitrariness involved in cluster
searches: information stability in a time-dependent
clustering method that we call heat-flow clustering.
We take a dataset to be a collection of N many

pointsX = {xl}Nl=1 ⊂ Rn, and a clustering ofX to be
a partition {Xi}Mi=1 ofX intoM many subsets, mean-
ing a collection of subsets Xi = {xi,l}Ni

l=1 for which
Xi ∩Xj = ∅ when i ̸= j, and

⋃
i Xi = X. We define

the extropy of the clustering {Xj} to be the par-
tition’s Shannon measure of information (SMI) [2],
which is

S({Xi}) = −
M∑
i=1

Ni

N
log

Ni

N
(1)

where Ni is the cardinality of Xi and N =
∑

i Ni is
the cardinality of the dataset X.
We use potential-theoretic methods to exemplify

the heat-flow technique. Potential methods have the
notable advantage of not needing to know the num-
ber of clusters ahead of time, but a serious disad-
vantage in the question of how to choose a kernel.
The potential or data-field clustering that appeared
in [6] begins with choosing a kernel k : Rn → R+ with∫
k(x)dV oln = 1, and convolving with the datapoints

of X to obtain a potential or “data-field”

P (x) =
1

N

N∑
i=1

k (x− xi) . (2)

The local maxima of P are taken to be cluster cen-
ters. Clustering can then be performed using meth-
ods native to potential-theoretic methods, such as
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the level-set clustering of [7] or differencing-potential
(DP) method of [9], or else using a secondary cluster-
ing method such as K-means. In Sections 3 and 4 we
create our own easy-to-use potential-based clustering
method. We emphasize that the clustering technique
itself is actually not so important; what is needed is
a way of modulating the clustering method and mea-
suring stability. Potential-based methods make this
easy because a kernel, a Gaussian kernel in particu-
lar, is easily adjusted in a one-dimensional fashion by
altering its variance.
Indeed a serious problem in potential methods is

choosing the variance of the kernel: too small and
every datapoint becomes a cluster, too large and es-
sential features of the data are blended together, even
to the point of reducing everything to just a single
cluster. Arranging these kernels in order of increas-
ing variance is (up to possible reparameterization)
the same thing as performing a heat flow. See Fig. 1
for a depiction. To be more specific we parabolically
rescale the kernel by setting

K(x, t) =
1

tn
k (x/t) (3)

so we retain
∫
K(x, t) dV oln ≡ 1 but encounter the

spreading of the kernel’s standard deviation. When
k(x) = e−

1
4∥x∥

2

is the Gaussian then K = K(x, t)
solves the parabolic equation 2 1

tKt = △K. After the

reparemterization t =
√
2s, K solves the standard

heat equation Ks = △K. The reason for choosing
the parameterization of (3) rather than the standard
heat-flow parameterization, is to obtain a spreading
of the kernel’s standard deviation linearly with time,
rather than by the square root of time, which would
distort our stability analysis.
Creating an ordered selection t0 < t1 < · · · < tT of

“time” values, for each tk we obtain a potential

P (x, tk) =
1

N

N∑
l=1

K(x− xl, tk) (4)

and from this potential a clustering {Xk,i}Mk
i=1 of X

at time tk. At each time tk we record two pieces of
information: the number of clusters Mk, and the SMI

Sk = S({Xk,i}Mk
i=1) = −

∑
i

Nk,i

N
log

Nk,i

N
(5)

where Nk,i is the cardinality Nk,i = #Xk,i. Below,
we create a way of measuring the stability over time of
these measures, and create a clustering that optimizes
this stability.

Intuitively, we interpret stability as an indication
that real, underlying features of the dataset have
been detected. Incidental features and noise, by con-
trast, would be expected to produce ephemeral effects
that might affect the clustering for certain values of
t, but disappear for most others.

Referring to the modulation parameter as “time”
is largely for convenience, but there is an analogy
with physical processes. In aggregate processes such
as heat dissipation, the fact that the system’s en-
tropy increases with time coincides with a loss of in-
formation as the aggregate system moves from more
“surprising” or improbable states to more “expected”
or probable states. Whether it models a physical
process or not, the entropy of the potential function
P (x, t) increases with time, even if non-Gaussian ker-
nels are used or the time steps are disuniform; see for
example [3], [4], or [5] for interpretations of entropy
for continuous flows. The point is that even though P
might or might not not solve an actual heat equation,
its behavior through time is qualitatively similar to
a heat flow.

To stretch the thermodynamic analogy a bit fur-
ther, we are interested in a certain state function:
the cluster partition, which through (1) carries its
own entropy. The increasing of the entropy of the
heat potential P coincides with the decreasing of the
entropy in the clustering. If the potential and the
clustering are taken together as a whole system, as
time progresses the internal information in the poten-
tial comes to dominate, washing out the information
carried by the cluster partition. This observation, on
the time-dependence of the information entropy, is
the basic rationale behind calling this the heat-flow
clustering.
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2 The chronodendrogram and
information stability

The parameter t, responsible for modulating the clus-
tering method, allows creation of a hierarchical clus-
tering with layers that depend on time. After creat-
ing linkages between clusters at adjacent time slices,
the result is a graph we call the chronodendrogram,
or time-dependent tree, associated to the dataset.
Let X = {xi}Ni=1 ⊂ Rn be a dataset, choose time

values t0 < t1 < · · · < tT , and let {Xk,i}Nk
i=1 be the

clustering at time tk. To each cluster Xk,i we asso-
ciate a node, and to create linkages between nodes we
join the cluster Xk,i at time tk to the cluster Xk−1,i′

at time tk−1 with weight wk,i,i′ = #(Xk,i ∩Xk−1,i′).
This is the inheritance linkage: the weight on the
edge connecting two clusters is the number of points
inherited from the earlier cluster to the later cluster.
For examples see Figs. 2, 4, and 6.
To measure stability, at each time tk we assign two

global variables: the number of clusters Mk, and the
entropy Sk. Each Mk is a positive integer, and to
each n ∈ N we define the stability score

B(n) =
#{k | Mk = n}

T + 1
. (6)

B(n) is simply the proportion of times tk ∈
{t0, . . . , tT } for which the number of clusters is n.

The score B(n) alone is insufficient to identify sta-
ble clusters, because although the number of clus-
ters might be stable over time, the clusters might
be exchanging datapoints. This phenomenon is cap-
tured by the entropy (5). If the number of clusters
is constant, the entropy is constant if and only if the
number of datapoints in each cluster is also constant.
(This still leaves the possibility of clusters exchang-
ing points while keeping the totals constant, but in
practice this is uncommon.) Given a number of clus-
ters n and an entropy range from s1 to s2, we define
the associated entropy stability score to be

Bs2
s1 (n) =

#{k | Mk = n and s1 < Sk ≤ s2}
T + 1

. (7)

This measures the time-range for which the dataset
is divided stably into n many clusters within a speci-
fied entropy range. However, a dataset will often have

very stable individual clusters even if the dataset as
a whole is less stable. To capture this phenomenon
we create the notion of local stability. Let X ′ ⊆ X be
any subset; normally this will be a cluster at some in-
termediate time tk, although this is not strictly neces-
sarily. We define the backtrack of X ′ from some time
tk to be the following clustering at all times earlier
that tk:

X ′
k′,i = X ′ ∩Xk′,i. (8)

Simply put, the backtrack {Xk′,i}
M ′

k′
i=1 is a clustering

of X ′ created by intersecting X ′ with the already-
existing clustering of the larger set X. Similar to the
global numbers Mk and Sk associated to X, we have
local numbers M ′

k′ and S′
k′ where M ′

k′ is the number
of non-empty sets X ′

k′ in the partition of X ′ at time

tk′ and the entropy at time tk′ , S′
k′ = S({X ′

k′,i}
M ′

k
i=1).

We define the local entropy stability score of X ′ at
time tk to be

Bs2
s1 (X

′, tk)

=
#{k′

∣∣ k′ ≤ k, s1 < S′
k′ ≤ s2}

T + 1
.

(9)

In Sections 3 and 4 we work through examples that
use this local score to identify highly stable clusters
within datasets that display lower stability overall.

A useful, but certainly not the only, algorithm for
identifying stable clusters is the following. Find the
diameter of the dataset; the time at which the ker-
nel k has standard deviation about half this diameter
is when the potential P should no longer be able to
identify any internal clusters, but is expected to find
only a single cluster in the dataset. Let this be the
upper bound time tT (larger standard deviations will
only give the same result, that everything is in one
cluster). Choose a lower bound t0 be the time value
that gives the standard deviation of k twice the pixel
dimension (smaller standard deviations will only cre-
ate one-pixel clusters, which is useless). Depending
on the datset, this consolidation into one cluster may
occur sooner and it is useful to let tT be the earliest
time this occurs; we call this the consolidation time.
After creating a uniform partition of the interval from
t0 to tT , t0 < t1 < · · · < tT−1 < tT , measure B(n) for
all n between 1 and N and find the value of n = n′
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that maximizes B(n). Choose T ′ to be the largest
integer so the number of clusters MT ′ at time tT ′ is
B(n′). Then at tT ′ create a local analysis by letting
X ′ be any of the clusters observed at time tT ′ , and
determining the stability of each. Clusters that meet
an appropriate threshold can be removed from the
dataset, and the process repeated for the remaining
clusters, until all points are clustered.

3 One dimensional clustering

We give two examples of our heat-flow stability clus-
tering on one-dimensional datasets. The first uses a
simple dataset of just the five elements

X = {−0.8, 0.0, 0.2, 0.5, 0.6}. (10)

See Figs. 1 and 2. We start with such a simple exam-
ple because it is easily tractable but still shows most
of the essential features of the method. We choose

Figure 1: Three time slices for the heat flow clus-
tering of the dataset (10). Datapoints (circles along
the lower axis) are depicted with maxima (triangles)
and minima (squares) of the potentials. Cluster se-
lections are indicated by dashed lines. Inset is the
kernel choice. In the first subfigure we find five clus-
ters, in the second three, and in the third two.

50 evenly spaced time values between t0 = 0.01 and
t20 = 0.4. For each time value we create the potential
P , and perform the minimum-partition clustering, as
follows. Let µ0, . . . , µK be the list of local minima
of P at time tk. Then R1 partitions into segments
Li = [µi−1, µi), 1 ≤ i ≤ K and L0 = (−∞, µ0) and
LK+1 = [µK ,∞). For each tk we create the partition
{Lk,i}Kk

i=1 using the minima of P (x, tk), and then par-
tition X by setting

Xk,i = X ∩ Lk,i. (11)

Figure 2: Above: The chronodendrogram for the
dataset with five elements; linkage weights are indi-
cated by thickness. Below: The two informational
measures, Mk and Sk, as a function of time.

With this clustering method we obtain the chron-
odendrogram for the dataset (10) depicted in Fig. 2.

In the selected time range we have the following
persistence scores: B(5) = B(4) ≈ 0.117, B(3) ≈
0.333, B(2) ≈ 0.157, and B(1) ≈ 0.27. The most
stable case is therefore the case of three clusters,
which are X1 = {0.6, 0.5}, X2 = {0.1,−0.1}, and
X3 = {−0.8}. The clusters consolidate into one at
time t = 0.3. If we take the consolidation time t = 0.3
to be the terminal time tT , as indicated in the algo-
rithm of Section 2, we find an even clearer signal:

B(5) = B(4) ≈ 0.161,

B(3) ≈ 0.460, B(2) ≈ 0.217.
(12)

For our second example we create a larger dataset
with three clusters of different diameters and densi-
ties, and a large amount of noise. To create the clus-
ters we picked 30 random points between −0.9 and
−0.7, 30 random points between −0.3 and 0.2, and
10 random points between 0.7 and 0.8. In addition to
these 70 intentionally clustered points, we choose 70
random points between −1 and 1 to simulate noise.
See Figs. 3 and 4. The global stability numbers are
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Figure 3: (a) displays the three clusters with varying
densities and numbers of points, (b) displays the full
dataset with random noise added, and (c) shows the
potential at t = 0.158, the time indicated in Fig. 4.

B(4) ≈ 0.078, B(3) ≈ 0.353,

B(2) ≈ 0.059, B(1) ≈ 0.392,
(13)

and B(n) for n ≥ 5 is uniformly less than 0.04. This
gives a very strong stability measure of 35% for 3
clusters. The consolidation time is somewhat earlier
than in the previous example, at about t = 0.26.
Using tT = 0.26 rather than tT = 0.4,

B(4) ≈ 0.108, B(3) ≈ 0.487, B(2) ≈ 0.0813. (14)

Despite the very strong signal of 0.487 for three clus-
ters, the global analysis hides an even stronger signal
within the dataset. Time tk = 0.2206 at k = 28 is
the largest time-value for which we have three clus-
ters, Xk,1, Xk,2, Xk,3. Localizing to the first cluster
X ′ = Xk,1 and using the consolidation time tT = 0.26
as the terminal time,

B0.1
0.0(X

′, 0.2206) = 0.86 (15)

indicating the entropy of this cluster measured at
t = 0.2206 remains extremely small, between 0.0 and
0.10, for 86% of the entire time interval from t = 0
to t = 0.26. See Fig. 4. Therefore cluster 3, as mea-
sured at time t = 0.2206, shows greater stability than
any of the other clusters measured in the dataset. As
shown in Fig.4, clusters 1 and 2 at time t = 0.2206 are
also reasonably stable, but over shorter time intervals
and with larger entropy variations.

Figure 4: Top: Chronodendrogram for the noisy
dataset. Middle: The entropy and cluster number,
showing stability at 3 clusters. Bottom: The local
entropy scores for each of the three clusters observed
at time t = 0.2206.

4 Higher dimensions

Higher dimensional data can displays wider patterns
of behavior. First we create a means of clustering
high dimensional data.

Let X = {xi}Ni=1 ⊂ Rn be a dataset. With

K(x, t) = 1
πt2 e

−|x|/t2 , create the potential P (x, t) =
1
N

∑N
i=1 K(x−xi, t). Choosing times {t0, . . . , tT } we

find a list of local maxima {mk,j}j , which we consider
to be the cluster centers at time tk. The assignment
of points to cluster centers must proceed differently
than in the one-dimensional case, because in higher
dimensions the minima of a function do not parti-
tion the configuration space. Given any datapoint
x ∈ X and any local maximum m = mk,j , we define

5



a cost function Cost(x,m) in the following way. Let
γ : [0, 1] → R2 be the segment

γ(s) = (1− s)x + sm (16)

from the datapoint x to the maximum m. Letting
P : Rn → R be the potential function (suppressing its
time-dependency for the moment), we define the cost
to be the normalized total variation of the potential
along this path:

Cost(x,m)

=
1

|P (x)− P (m)|

∫ 1

0

∣∣∣∣ ddsP ◦ γ
∣∣∣∣ ds. (17)

This cost is bounded from below by 1, and reaches
this theoretical minimum if and only if P is mono-
tonic along γ (and therefore monotonically increas-
ing; it cannot be monotonically decreasing because
the endpoint m is a local maximum). It is possible
the cost reaches this minimum for several choices of
m; in that case we select among these the nearest to
x. (In the unlikely case that both cost and distance
are equal among several choices of local maxima, we
assign x to one of these maxima at random.)

Figure 5: Left: The data points, distributed ran-
domly within three circles. Right: Clustering actu-
ally obtained at time tk = 0.1833.

As in the introduction, we remark that many other
forms of clustering are available, for example a K-
means with the local maxima mk,j as initial cluster
centers, or the DP method of [9].
We consider the heat-flow clustering analysis on

the dataset in Fig. 5. This dataset X ⊂ R2 is cre-
ated by selecting random points within three different

Figure 6: The chronodendrogram for the dataset of
Fig. 5. Slices at tk = 0.277 and tk = 0.377 indicated.

circles. In each of the two smaller circles are 25 ran-
domly placed points, and in the larger circle is 150
randomly placed points. For the heat flow we use
a Gaussian kernel with 31 evenly spaced time slices
tk between t0 = 0.05 and t30 = 0.45, and perform
the clustering, with the method above based on the
cost function (17). The resulting chronodendrogram
is shown in Fig. 6 and the global entropy measure,
along with the cluster number and entropy measures,
is shown in Fig. 7. We find

B(3) = 0.355, B(2) = 0.236, B(1) = 0.194, (18)

and B(n) is uniformly smaller than 0.04 for n > 3.
At B(3) ≈ 0.36 the case of 3 clusters is most proba-
ble; however global entropy measure fluctuates within
1.214 ± 0.059, a range of about 10.0% around the
median, indicating non-trivial instabilities. This ap-
pears in Fig. 6 as substantial interchange between two
of the branches.

We take two local measures of stability, one at time
tk = 0.277 and one at time tk = 0.37, as indicated
by the slices in Fig. 6. The entropy measures for
tk = 0.18 is indicated in Fig.7. At tk = 0.277, which
is k = 18, we observe three clusters X18,1, X18,2,
X18,3. The first two clusters are unstable, but letting
X ′

1 = X18,1, X
′
2 = X18,2, X

′
3 = X18,3 we find we the

local entropy

B0.0
0.0(X

′
3, 0.277) = 0.415. (19)
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Figure 7: Top: Number of clusters and entropy.
Middle: Local entropy analysis for the three clusters
observed at t18 ≈ 0.28, showing notable stability in
Clusters 1 and 2, but substantial instability in Cluster
3. Bottom: Local entropy scores for the two clusters
observed at t25 ≈ 0.37 showing a very long period of
zero entropy for Cluster 1.

Cluster 3 then has high persistence with zero en-
tropy. The persistence measure (19) is based on
the maximum time value tT = 0.45, but selecting
instead tT = 0.383, the point at which all clus-
ters accumulate into one, we find the stronger signal
B0.0

0.0(X
′
3, 0.277) = 0.487.

In fact this cluster is even more stable than the
local analysis at t18 ≈ 0.277 indicates. Doing local
analysis at the larger value tk = 0.377, the second
slice in Fig. 6, we find two clusters. The local entropy
at 0.377 is depicted in Fig. 7. The smaller of them
has zero entropy over a very long time; we have

B0.0
0.0(X

′, 0.377) = 0.687 (20)

indicating this cluster persists, completely un-
changed, for 67.7% of the time interval from t0 = 0.05
to tT = 0.45, lending a high degree of confidence to
this cluster. Using the consolidation time tT = 0.383
as the largest time value, we find the even larger sta-
bility score of B0.0

0.0(X
′, 0.377) = 0.795 for this cluster.

5 Discussion

The heat-flow clustering method described here was
developed to solve a specific problem in the label-
ing of raw datasets coming out of laboratory scans of
electron configurations in semiconductor-based quan-
tum computing devices [10]. There, it was found that
the usual clustering methods such as K-means and
nearest-neighbor were unstable enough that end re-
sults needed to be checked by human experts, negat-
ing the purpose of automating the process in the first
place. Investigating sources of this instability, it was
found in apriori choices were at the root and mak-
ing “good” apriori choices depended on information
that varied widely among datasets such as how many
clusters exist, how diffuse or concentrated individual
clusters might be, and how near or far cluster centers
might be from one another. All of this was compli-
cated by high levels of obscuring noise which caused
too much blending of clusters in many methods.

Potential-based methods, for the right choice of
kernel, created a low-pass filtering that eliminated
most of the noise, but if chosen badly could also blend
together clusters. While it was difficult to make spe-
cific rules for an apriori choice of kernel, stability was
observed over wide ranges of choices, albeit over dif-
ferent ranges in different datasets. Choosing the clus-
ters on the basis of observed stability lead to a fully
automatic clustering method that succeeded on every
dataset it was tested on.

Before closing we mention that the work [7] pro-
posed a potential-based clustering method with an
automated way of choosing a specific kernel. That
proposal was to choose a kernel whose variance min-
imizes the entropy measure

SWGLL = −
∑
i

P (xi)

Z
log

P (xi)

Z
(21)
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where Z =
∑

i P (xi) (see Eq. (8) of [7], or Chapter
3.2 of [8] for a similar notion). Lacking another name,
we call this the Wang-Gan-Li-Li entropy. However in
practice this minimum is often unsuitable. For ex-
ample in many reasonable datsets there are multiple
local minima of SWGLL, in others the minimum is
unusably close to t = 0. This minimum is unstable
with respect to even modest variations in the underly-
ing dataset; it is most stable when clusters are about
the same size and similar distances apart, but is in-
capable of detecting clusters that occur at different
scales from one another, something our local analysis
is well suited for.
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