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Abstract

Based on the expectations that the lowest-lying double-bottom tetraquark Tbbūd̄ (JP = 1+) and the bottom-
charm tetraquark Tbcūd̄ (JP = 0+) are stable against strong and electromagnetic decays, we work out a number
of semileptonic and non-leptonic weak decays of these hadrons, making use of the heavy quark symmetry. In doing
this, we concentrate on the exclusive decays involving also tetraquarks in the final states, i.e., transitions such as
Tbbūd̄ → Tbcūd̄(ℓ

−νℓ, h
−) and Tbcūd̄ → Tccūd̄(ℓ

−νℓ, h
−), where h− = π−, ρ−, a−1 . So far, only the JP = 1+ tetraquark

Tccūd̄ has been discovered, which we identify with the I = 0 T+
cc object, compatible with JP = 1+ and having the mass

and decay widths δm = M(T+
cc)− (M(D∗+)−M(D0)) = −360± 40+4

−0 keV and Γ(T+
cc) = 48+2

−14 keV. Experimental
discoveries of the transitions worked out here will go a long way in establishing the nature of these tetraquarks as
(mainly) compact four-quark objects.

I. INTRODUCTION

The physics of the multiquark hadrons has emerged as a recurrent theme in high-energy physics, in particular,
at the LHC. Prominent among these hadrons is the double-charm tetraquark T+

ccūd̄
, called T+

cc(3875), discovered by

LHCb [1] in prompt proton-proton collisions as a very narrow state (FWHM = 48 keV) in the final state D0D0π+.
It is found just below the D∗+D0 threshold, has a mass m(T+

ccūd̄
) ≃ 3, 875 GeV, and is compatible with being

an isoscalar (I = 0) with the spin-parity JP = 1+. Its characteristic size, calculated from the binding energy
∆E = −360± 40+4

−0 keV, yields R∆E = 7.49± 0.42 fm, too large for a compact hadron, nevertheless having a sizeable

cross-section, estimated as σ(pp → Tccūd̄ + X) = (45 ± 20) nb at
√
s = 13 TeV for the typical LHCb acceptance

(2 < pT < 20 GeV; 2 < y < 4.5) [2]. Its nature (hadron molecule or a compact tetraquark) is still being debated.
With this discovery, as well as that of the double-charm (C = 2) baryon Ξ++

cc , having the quark content (ucc) [3],
the focus of the experimental and theoretical research is now on their heavier counterparts, the bottom-charm
hadrons (C = 1, B = 1), Ξbcq and Tbcūd̄, and eventually on the double-bottom (B = 2) baryons Ξbbq, (q = u, d, s),
and the double-bottom tetraquarks Tbbūd̄ and Tbbūs̄. Theoretically, stable (w.r.t. strong decays) heavy multiquark
states were predicted a long time ago [4–6]. Their phenomenology has been studied in several competing theoretical
approaches. Among other frameworks, the ones based on diquarks [7, 8] have been extensively used to model compact
multiquark states [9]. More recently, heavy quark-heavy diquark symmetry has been invoked to relate singly heavy
mesons, anti-baryons, and double-heavy baryons and tetraquarks [10, 11]. Lately, the role of the local diquark-
antidiquark operators in the spectroscopy of tetraquark hadrons has also been investigated using the Lattice-QCD
framework [12–15]. In particular, the masses of the ground-state doubly-heavy tetraquarks have been calculated using
both the meson-meson and the diquark-antidiquark operators. In one such study, carried out for the Tbbūd̄ and Tbbūs̄

tetraquarks, an approximately even mix of meson-meson and diquark-antidiquark component are found [12]. Further
studies are needed to quantify this prediction, and experimental proofs of the compact nature of the multiquark
states unambiguously are required. We argue here that the weak transitions of doubly-heavy tetraquarks may also
reveal the existence of heavy diquarks (and antidiquarks), and we work out some characteristic decays reflecting the
underlying compact structures.
We note that the lowest-mass double-bottom tetraquarks Tbbūd̄ and Tbbūs̄ are estimated lie below their respective

strong-decay thresholds. A recent Lattice-QCD simulation [15], puts their masses (measured w.r.t. their respective
thresholds) as δm = −100 ± 10+36

−43 MeV for the Tbbūd̄ and δm = −30 ± 3+11
−31 MeV for the Tbbūs̄, similar to earlier

estimates [16]. Some weak decays of these tetraquarks have been worked out in a number of papers [17–20], providing
estimates for the lifetimes and branching ratios. Of particular interest are the inclusive decays of doubly-bottom

tetraquarks Tbbūd̄ → B
(∗)
c + X , as well as of the corresponding baryons [21, 22] Ξbbq → B

(∗)
c + X , with detached
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Bc-vertex [23] due to the predicted long lifetimes of these hadrons, estimated to lie in the range 0.4 − 0.8 ps
[17, 22, 24, 25].
Until recently, there was no consensus on the issue of whether the lowest-mass (C = 1, B = 1) tetraquark state

is stable against strong and electromagnetic decays, as well as on the assignment of the quantum numbers [26].
However, two recent Lattice-based estimates [13, 14] have posted the mass of the lowest-lying state, with spin-parity
JP = 0+, below the DB-threshold. If confirmed by further theoretical developments, this would make a strong case
for the Tbcūd̄ tetraquark as the first multiquark state to decay weakly. The corresponding JP = 1+ tetraquark is also
found in these studies [13, 14] to be below the DB∗-threshold, though it would decay via electromagnetic transition
to DBγ or radiatively to the lower-mass JP = 0+ state. This information is helpful for the experimental searches of
Tbcūd̄ tetraquark in focusing on the final states, which can only be reached by charged current weak interactions.
With this hindsight, we shall concentrate here on the weak decays of the double-bottom Tbbūd̄ and the bottom-charm

Tbcūd̄ tetraquarks in which the meson-meson and the diquark-antidiquark components are established on the Lattice.
Weak decays from the meson-meson components (such as BB(∗), DB(∗)) follow the known patterns, well documented
in the Particle data Group tables [27] and are included in the current experimental search strategies [28, 29]. The
ones, following from the diquark-antidiquark component discussed in this Letter are new, or at least have not been
studied so far quantitatively. In particular, they lead to weak decays involving tetraquarks both in the initial and final
states, i.e., they induce transitions, such as Tbbūd̄ → Tbcūd̄ +X and Tbcūd̄ → Tccūd̄ +X . We work out some exclusive
decays, Tbbūd̄ → Tbcūd̄(ℓ

−νℓ, h
−) and Tbcūd̄ → Tccūd̄(ℓ

−νℓ, h
−), where ℓ−νℓ = e−νe, µ

−νµ, τ
−ντ and h− = π−, ρ−, a−1 .

They represent signature decay modes of compact tetraquarks, reflecting the heavy diquark configurations in their
wave-functions, which dominate over the mesonic configurations at short inter-heavy quark distances [12]. We hope
that these weak decay modes of the doubly-heavy hadrons reflecting their diquark components will be included in
the experimental search strategies.
Since there is no annihilation or W -exchange diagrams allowed in these transitions, these decays take place via

the so-called color-allowed tree diagrams, shown in Figs. 1, 2. Here, b-quark acts as the active (or valence) quark.
There are two of them in the double-bottom tetraquarks Tbbūd̄ and one in Tbcūd̄. Weak interaction induces the
(dominant) b → c transition, but the crucial difference is that the bb-diquark emerges in the weak decays as an intact
bc diquark. Invoking the heavy diquark - heavy quark symmetry, we relate the weak decays of these tetraquarks
to the corresponding B → (D,D∗) weak decays of the B-mesons. The decay rates are worked out in the heavy
quark symmetry limit, using the HQET (heavy quark effective theory) framework. The reported branching ratios
are encouraging to be measured. We note that the High-luminosity LHC (HL-LHC) at CERN [30, 31], and the
planned Tera-Z factories [32, 33] are estimated to have large enough data samples [17, 34] to carry out the required
measurements.
In Section II, we calculate the semileptonic decays Tbbūd̄

(

JP = 1+
)

→ Tbcūd̄

(

JP = 0+
)

ℓ−νℓ. The decay

Tbbūd̄

(

JP = 1+
)

→ Tbcūd̄

(

JP = 1+
)

ℓ−νℓ are presented in Section III. Non-Leptonic decays Tbbūd̄ → Tbcūd̄h
−

(h− = π−, ρ−, a−1 ) are discussed in Section IV. The semileptonic and non-leptonic decays Tbcūd̄

(

JP = 0+
)

→
Tccūd̄

(

JP = 1+
)

(ℓ−νℓ, h
−) are discussed in Section V. We conclude with a summary in Section VI.

II. SEMILEPTONIC DECAYS Tbbūd̄

(

JP = 1+
)

→ Tbcūd̄

(

JP = 0+
)

ℓ−νℓ

The decay Tbbūd̄ → Tbcūd̄ℓ
−νℓ is governed by the following effective Hamiltonian

Heff = 4
GF√
2
Vcb (c̄γ

µPLb)
(

ℓ̄γµPLνℓ
)

, (1)

where PL = 1−γ5

2 , and the corresponding Feynman diagram is shown in Fig. 1 (a).
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FIG. 1: Feynman diagram for (a) Tbbūd̄ → Tbcūd̄(ℓ
−νℓ),and (b) Tbcūd̄ → Tccūd̄(ℓ

−νℓ) where ℓ, e, µ, τ .
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As discussed in the introduction, we assume that the initial state tetraquark Tbbūd̄ has the spin-parity JP = 1+

(axial-vector) and the final state Tbcud has JP = 0+ (scalar).
We shall use the heavy quark effective theory (HQET) [35, 36] to calculate the matrix elements

〈Tbcūd̄ (p
′) |c̄γµb|Tbbūd̄ (p, ε)〉 and 〈Tbcūd̄ (p

′) |c̄γµγ5b|Tbbūd̄ (p, ε)〉. To that end, we recall that the superfield combining
the pseudo-scalar and vector mesons in HQET can be written as

H(Q)
v =

1 + /v

2

[

P ∗µ(Q)
v γµ − P (Q)

v γ5

]

, (2)

where Q = b, c and for the vector field v · P (Q)
v = 0. Similarly, for the axial-vector and the scalar, we just have to

multiply it with γ5 from the right, i.e.,

H(Q)
v =

1 + /v

2

[

P ∗µ(Q)
v γµγ5 − P (Q)

v

]

, (3)

where the axial vector part is

H(Q)
A =

1 + /v

2

[

P ∗µ(Q)
v γµγ5

]

. (4)

The corresponding conjugate field can be obtained as

H̄(Q)
A = γ0H†(Q)

A γ0 =
[

P ∗µ†(Q)
v γ0γ5γ

†
µ

] 1 + /v
†

2
γ0 = −

[

P ∗µ†(Q)
v γ5γ

0γµ

]

γ0γ0 1 + /v
†

2
γ0,

=
[

P ∗µ†(Q)
v γµγ5

] 1 + /v

2
(5)

since γ0γ†
µγ

0 = γµ and {γ0,µ, γ5} = 0. The important properties are

/vH(Q)
A = H(Q)

A , H(Q)
A /v = H(Q)

A . (6)

The conjugate of the scalar part can be written as

H̄(Q)
S = γ0 1 + /v†

2
P

†(Q)
v γ0 =

1 + /v

2
P

†(Q)
v . (7)

In the HQET, the matrix elements can be parameterized as

〈Tbcūd̄ (v
′) |c̄γµb|Tbbūd̄ (v, ε)〉√

mTmT ′

= h1 (w) iε
µναβενvαv

′
β ,

〈Tbcūd̄ (v
′) |c̄γµγ5b|Tbbūd̄ (v, ε)〉√

mTmT ′

= (h2 (w) (w + 1) εµ − h3 (w) (ε · v′) vµ − h4 (w) (ε · v) v′µ) . (8)

where mT and mT ′ denote the masses of initial (Tbbūd̄) and final state (Tbcūd̄) tetraquarks, respectively. The corre-
sponding form factors for the transitions B → (D,D∗)ℓ−νℓ have been investigated at length, but the ones for the
tetraquarks are yet to be studied.
Using the spin symmetry to relate the various form factors, at the leading order (LO) in heavy quark mass, we

can write
〈

H(Q′)
S

∣

∣Q̄′ΓQ
∣

∣H(Q)
A

〉

= −ξ (w) Tr

{

H̄(Q′)
S ΓH(Q)

A

}

, (9)

where Γ is a particular combination of γ−matrices and Q′, Q are the c, b quarks with velocities v′, v, respectively. It
involves a single non-perturbative function ξ (w ≡ v · v′), i.e., the Isgur-Wise function. We note that there are two
b quarks present in Tbbūd̄, and in the weak transition only one active b-quark is involved at a time, with the other
treated as a spectator. There are no annihilation or W±-exchange diagrams involving the two b quarks. However,
due to the multiplicity of the b-quarks in the initial hadron, the decay rate is to be multiplied by 2.
Using Eqs. (4) and (7) in Eq. (9), for vector and axial-vector currents, we have

〈

H(Q′)
S |c̄v′γµbv| H(Q)

A

〉

= −ξ (w) Tr

{

P
†(Q)
v′

1 + /v
′

2
γµ 1 + /v

2

[

P ∗α(Q)
v γαγ5

]

}

= iξ (w) εµναβενvαv
′
β ,

〈

H(Q′)
S |c̄v′γµγ5bv| H(Q)

A

〉

= −ξ (w) Tr

{

P
†(Q)
v′

1 + /v
′

2
γµγ5

1 + /v

2

[

P ∗α(Q)
v γαγ5

]

}

= ξ (w) [(w + 1) εµ − (ε · v′) vµ] . (10)
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Comparing Eq. (8) and Eq. (10), one gets

h1 = h2 = h3 = ξ (w) (11)

and h4 = 0.
Therefore, the hadronic part of the transition amplitude becomes

Mµ = −GF√
2
Vcbξ (w)

√
mTmT ′

[

(w + 1) εµ − (ε · v′) vµ − iεµναβενvαv
′
β

]

. (12)

In B → (D,D∗) ℓ−νℓ decays, one has

〈D (v′) |c̄γµb|B (v)〉√
mBmD

= h+ (w) (v + v′)
µ
+ h− (w) (v − v′)

µ
,

〈D∗ (v′, ε′) |c̄γµb|B (v)〉√
mBmD∗

= ihV (w) εµναβε∗′νv′αvβ ,

〈D∗ (v′, ε′) |c̄γµγ5b|B (v)〉√
mBmD∗

= hA1 (w) (w + 1) ε∗′µ − hA2 (w) ε
∗′ · vvµ − hA3 (w) ε

∗′ · vv′µ. (13)

Using the procedure adopted in Eq. (10), with the field defined in Eq. (2), one gets the well-known Isgur-Wise
function for the weak transitions in B-meson decays [37, 38], i.e.,

h+ (w) = h1 (w) = h2 (w) = h3 (w) = ξB→D(∗)

(w) . (14)

In the symmetry limit, there is a single Isgur-Wise function, for both the B → D and B → D∗ transitions,

which is normalised at the symmetry-point: ξB→D(∗)

(w = 1) = 1. Symmetry-breaking corrections of O(αs(mb)
and power corrections of O(ΛQCD/mb) have been calculated [39]. They yield ξB→D(w = 1) = 0.98 ± 0.07 [40].
For the B → D∗ℓ−νℓ, Luke’s theorem protects the leading order corrections [41], with the second-order yielding
ξB→D∗

(w = 1) = 0.91± 0.03 [42–44]. They have been used in the precise determination of the CKM matrix element
|Vcb| from the exclusive B-meson decays [45].
Thus, in the symmetry limit, HQET relates the two form factors appearing in the semileptonic decays of the

double-bottom tetraquark and B mesons

ξT→T ′ (w) =

√
mBmD(∗)

√
mTmT ′

ξB→D(∗)

(w) . (15)

This relation will be modified including the process-dependent symmetry-breaking effects. They pertain to the
interactions involving the spectators, which differ for the B-mesons and the double-heavy tetraquarks. We expect
them to be subdominant and the relation in Eq. (15) a good approximation. Given a model for the double-heavy
tetraquark wave-functions, they can be calculated, in principle, but are beyond the scope of this Letter.
We now discuss the overall normalization related to the Fock-space composition of the tetraquarks in question. This

is also related to the tetraquark wave-function. In this, we follow the formulation used in the study of the creation
operators for the Tbbūd̄ tetraquark, whose ground state has the quantum numbers JP = 1+ [12], as also assumed
here. The wave-function |Φb,d〉 of this tetraquark is spanned by the two components in question, meson-meson
|ΦBB,(1+γ0)γ5

〉, and diquark-antidiquark |ΦDd,(1+γ0)γ5
〉. Writing the wave-function

|Φb,d〉 = b|Φb,d〉+ d|ΦDd,(1+γ0)γ5
〉, (16)

allows to define the ratios

ωBB(r) =
|b|2

|b|2 + |d|2 ; ωDd(r) =
|d|2

|b|2 + |d|2 , (17)

with ωDd(r) = 1−ωBB(r), which can be interpreted as the relative weights of a meson-meson and diquark-antidiquark
at the bb-separation r in the ground state with JP = 1+. Lattice studies yield that the diquark-antidiquark component
ωDd(r) dominates over the meson-meson component for r < 0.20 fm.
For the general case in which both the diquarkonic and mesonic components are present in the Fock-space of

the tetraquarks, one has to project out the diquark component to determine the normalization of the decay rates
discussed here. It is related to the fraction ωDd(r), being its integral obtained by integrating ωDd(r) over the size
of the tetraquarks. This is a priori not known, but the general expectations are that the compact double-bottom
tetrahadrons should have a similar hadronic size as a B meson, and the diquarkonic fraction could even be dominant.
We call this quantity fDd(bb)

2, where we admit the possibility that this fraction may depend on the heavy quark
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flavor, and take that into account as the compact-hadronic fraction of the tetraquark in estimating the transition
rates. Thus, for the Tbbūd̄ → Tbcūd̄ transition, Eq. (12) takes the form

Mµ
Tbb→Tbc

= −GF√
2
Vcb

√
mTmT ′ξT→T ′ (w) (fDd(bb))

[

(w + 1) εµ − (ε · v′) vµ − iεµναβενvαv
′
β

]

. (18)

The corresponding leptonic part is

Lµ = ū (p1,mℓ) γµ (1− γ5) v (p2,mνℓ) . (19)

The decay rate is determined by the expression

dΓ

dw
=

1

(2π)3
1

32m3
T

∣

∣ĀT→T ′

∣

∣

2
, (20)

where
∣

∣ĀT→T ′

∣

∣

2
can be calculated from the square of the amplitude (18) after summing over the polarizations

of initial state tetraquark, i.e.,
∑

λ εµ (v, λ) ε
∗
ν (v, λ) = −gµν + vµvν/v

2, and contracting it with the square of the
spin-summed leptonic amplitude.
Using this, along with the decay kinematics in Eq. (20), the differential decay rate is expressed as

dΓ

dw
= Nb

GF
2 |Vbc|2 mT ′

384π3m2
T

|ξT→T ′ (w)|2 (fDd(bb))
2
√

w2 − 1

√

1− m2
ℓ

s

[

3m4
ℓ

(

(mT +mT ′)2 + 4mTmT ′w
)

−4m2
ℓ

s
mTmT ′ (w + 1)

(

6m4
T +m3

TmT ′ (5− 11w)− 2m2
Tm

2
T ′

(

2w2 + 5w − 1
)

+mTm
3
T ′ (13w + 5)− 6m4

T ′

)

+8m2
Tm

2
T ′ (w + 1)

((

m2
T +m2

T ′

)

(5w + 1)− 2mTmT ′

(

4w2 + w + 1
))

]

, (21)

where s = q2 = m2
T +m2

T ′ − 2mTmT ′w is the square of momentum transfer, and Nb = 2 for Tbbūd̄ state.
In the massless lepton case, Eq. (21) simplifies to

dΓ

dw
= Nb

G2
F

48π3
V 2
cbm

3
T ′ |ξT→T ′ (w)|2 (w + 1)

3
2
√
w − 1 (fDd(bb))

2 [(
m2

T +m2
T ′

)

(5w + 1)− 2mTmT ′

(

4w2 + w + 1
)]

.

(22)
Using the form factors relation defined in Eq. (15), Eq. (22) yields

dΓ

dw
= Nb

G2
F

48π3
V 2
cb

mBmD

mT
m2

T ′

∣

∣ξB→D (w)
∣

∣

2
(w + 1)

3
2
√
w − 1 (fDd(bb))

2

×
[(

m2
T +m2

T ′

)

(5w + 1)− 2mTmT ′

(

4w2 + w + 1
)]

. (23)

To calculate the lepton energy spectrum, and the semileptonic decay rate, we need to parametrize the Isgur-Wise
function for the weak decays of the heavy-to-heavy tetraquarks. We use the corresponding form for the B → (D,D∗)
form factors in the zero recoil expansion (c.f. Eq. (41) [46]):

ξB→D (w) = ξB→D (1)
[

1− 8ρ21z +
(

51ρ21 − 10
)

z2 −
(

252ρ21 − 84
)

z3
]

, (24)

where z =
(√

w + 1−
√
2
)

/
(√

w + 1 +
√
2
)

, and ρ21 is a slope parameter at zero-recoil, bounded between −0.14 <

ρ21 < 1.54. We anticipate that the slope of the Isgur-Wise functions in the two cases, namely B → (D,D∗) and
Tbbūd̄ → Tbcūd̄, are expected to differ from each other, but for the sake of definiteness, we shall use the same range
for the two cases. The rationale behind this assumption is that in both cases, the recoil momenta of the spectators
are similar and small.
Using the numerical values for the various input parameters given in Table I, and with (fDd(bb))

2
= 1, yields the

following decay rates:

Γ
(

Tbbūd̄(J
P = 1+) → Tbcūd̄(J

P = 0+)ℓ−νℓ
)

= (1.94, 0.68)× 10−11MeV. (25)

The first number corresponds to the e−νe and µ−νµ cases, and the second for the τ−ντ case. In a more realistic

case, (fDd(bb))
2 < 1, and the decay rates will be decreased by this amount. Further studies are needed to quantify

this quantity. However, this can also be determined by the branching ratios discussed here, once they are measured.
Using the total width Γtotal(Tbbūd̄) = 8.2 × 10−10 MeV, which is derived from the lifetime τ(Tbbūd̄) = 0.8ps [17],

we get the following branching ratios:

B
(

Tbbūd̄(J
P = 1+) → Tbcūd̄(J

P = 0+)ℓ−νℓ
)

= 2.4% (for ℓ−νℓ = e−νe, µ
−νµ),

B
(

Tbbūd̄(J
P = 1+) → Tbcūd̄(J

P = 0+)τ−ντ
)

= 8.2× 10−3. (26)
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III. SEMILEPTONIC DECAYS Tbbūd̄

(

JP = 1+
)

→ Tbcūd̄

(

JP = 1+
)

ℓ−νℓ

In this section, we will consider the final state tetraquark Tbcūd̄ with JP = 1+, therefore, Tbbūd̄ → Tbcūd̄ correspond
to an axial-vector to axial-vector transition. With the effective Hamiltonian describing the b → cℓ−νℓ transition
given in Eq. (1), the matrix elements in HQET can be parameterized as

〈Tbcūd̄ (v
′, ε′) |c̄γµb|Tbbūd̄ (v, ε)〉√

mTmT ′

= −ε∗′ · ε
[

h1 (w) (v + v′)
µ
+ h2 (w) (v − v′)

µ]

+ h3 (w) ε
∗′ · vεµ + h4 (w) ε · v′ε∗′µ − ε · v′ε∗′ · v [h5 (w) v

µ + h6 (w) v
′µ] ,

〈Tbcūd̄ (v
′, ε′) |c̄γµγ5b|Tbbūd̄ (v, ε)〉√

mTmT ′

= iεµναβ
{

εαε
∗′
β [h7 (w) (v + v′)ν + h8 (w) (v − v′)ν ]

+ v′αvβ [h9 (w) ε
∗′ · vεν + h10 (w) ε · v′ε∗ν ] , (27)

where mT and mT ′ denote the masses of the initial and final state tetraquarks, Tbbud and Tbcud, respectively.
For 1+ → 1+ transitions, the heavy quark spin symmetry implies

〈

H(Q′)
A

∣

∣Q̄′ΓQ
∣

∣H(Q)
A

〉

= −ξ (w) Tr

{

H̄(Q′)
A ΓH(Q)

A

}

, (28)

which on using Eqs. (4) and (5) gives
〈

H(Q′)
A |c̄v′γµbv| H(Q)

A

〉

= −ξ (w)Tr

{[

P
∗ν†(Q′)
v′ γνγ5

]

1 + /v

2
γµ 1 + /v

2

[

P ∗α(Q)
v γαγ5

]

}

= ξ (w)
{

ε∗′ · ε (v + v′)
µ − ε∗′ · vεµ − ε · v′ε∗′µ

}

〈

H(Q′)
A |c̄v′γµγ5bv| H(Q)

A

〉

= −ξ (w)Tr

{[

P
∗ν†(Q′)
v′ γνγ5

]

1 + /v

2
γµγ5

1 + /v

2

[

P ∗α(Q)
v γαγ5

]

}

,

= iξ (w) εµναβεαε
∗′
β (v + v′)ν . (29)

Here, we have written P
∗ν†(Q′)
v′ and P

∗α(Q)
v as the polarization vectors ε∗′ and ε and used ε∗′ · v′ = ε · v = 0.

Comparing Eq. (27) and Eq. (29), we get

h1 = h3 = h4 = h7 = ξ (w) ,

and the others vanish in this limit. Hence, the relation given in Eq. (15) holds in this case too.
The corresponding hadronic part of transition amplitude can be written as

Mµ
Tbb→T ′

bc

=
GF√
2
Vcb 〈Tbcūd̄ (v

′, ε′) |c̄v′γµ (1− γ5) bv|Tbbūd̄ (v, ε)〉

= −GF√
2
VcbξT→T ′ (w)

[

ε∗′ · ε (v + v′)
µ − ε∗′ · vεµ − ε · v′ε∗′µ + iεµναβεαε

∗′
β (v + v′)ν

]

fDd(bb). (30)

Contracting the above hadronic amplitude with the leptonic part (19) and summing over the polarization, i.e.,
∑

λ εµ
(

v(′), λ
)

ε∗ν
(

v(′), λ
)

= −gµν + v
(′)
µ v

(′)
ν /v(′)2 and spins of the leptons, the differential decay rate becomes

dΓ1+→1+

dw
= Nb

GF
2 |Vbc|2 mT ′

384π3m2
T

|ξT→T ′ (w)|2
√

w2 − 1

√

1− m2
ℓ

s

[

− 3m4
ℓ

(

m2
T +m2

T ′ + 2mTmT ′ (4w + 5)
)

−4m2
ℓ

s
mTmT ′ (w + 1)

(

12m4
T +mTmT ′

(

m2
T +m2

T ′

)

(1− 49w) + 2m2
Tm

2
T ′

(

20w2 − w + 17
)

+ 12m4
T ′

)

+8m2
Tm

2
T ′ (w + 1)

((

m2
T +m2

T ′

)

(13w − 1)− 2mTmT ′

(

8w2 − w + 5
))

]

(fDd(bb))
2
, (31)

which in the massless lepton case reduces to

dΓ1+→1+

dw
= Nb

GF
2 |Vbc|2
48π3

|ξT→T ′ (w)|2 m3
T ′(1 + w)3/2

√
w − 1×

[(

m2
T ′ +m2

T

)

(13w − 1)− 2mTmT ′

(

8w2 − w + 5
)]

(fDd(bb))
2
. (32)

Using the numerical values of the input parameters from Table I, and integrating over w in the allowed kinematic
range gives

Γ
(

Tbbūd̄

(

JP = 1+
)

→ Tbcūd̄

(

JP = 1+
)

ℓ−νℓ
)

= 5.77× 10−11 MeV; (for ℓ−νℓ = e−νe, µ
−νµ)

Γ
(

Tbbūd̄

(

JP = 1+
)

→ Tbcūd̄

(

JP = 1+
)

τ−ντ
)

= 2.64× 10−11 MeV. (33)
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mTbbud

(

1+
)

= 10, 504.4+37.36
−44.15 MeV , mTbcud

(

0+
)

= 7155+9

−19 MeV , mTbcud

(

1+
)

= 7152+9

−19 MeV , mTccud

(

1+
)

= 3875 MeV

mπ = (139.57 ± 0.00018) MeV, mρ = (775.26 ± 0.23) MeV , ma1 = (1230 ± 40) MeV , mD = (1869.61 ± 0.10) MeV

mB = (5279.66 ± 0.12) MeV , mB∗ = (5324.71 ± 0.21) MeV , fπ = (130.41 ± 0.03 ± 0.20) MeV , fρ = (210± 4) MeV

fa1 = 234 MeV , ρ21 = 1.3 , C1 (mb) [C2 (mb)] = 1.117 [−0.257] , GF = 1.16637 × 10−11 MeV−2, me = 0.511 MeV

mµ = 105.7 MeV, mτ = 1777 MeV, Vud = 0.97420 ± 0.3021, Vcb = (39.5 ± 0.08) × 10−3

TABLE I: Numerical values of the input parameters. The decay rates are calculated for the central values in this
table.

They yield the following branching ratios:

B(Tbbūd̄(J
P = 1+) → Tbcūd̄(J

P = 1+)ℓ−νℓ) = 7.0% (for ℓ−νℓ = e−νe, µ
−νµ),

B(Tbbūd̄(J
P = 1+) → Tbcūd̄(J

P = 1+)τ−ντ ) = 3.2%. (34)

Thus, B
(

Tbbūd̄

(

JP = 0+
)

→ Tbcūd̄

(

JP = 1+
)

ℓ−νℓ
)

and B
(

Tbbūd̄

(

JP = 1+
)

→ Tbcūd̄

(

JP = 1+
)

ℓ−νℓ
)

almost satu-
rate the inclusive semileptonic branching ratios for the double-bottom tetraquarks. As anticipated, this is not too
dissimilar to the corresponding B-meson decays B → D(∗)ℓνℓ [27]. However, these transitions are not foreseen for
the hadron molecular picture, as in this case, the BB∗ mesons will decay essentially independently.

IV. NON-LEPTONIC DECAYS Tbbūd̄ → Tbcūd̄ h−

The simplest non-leptonic decay of the double-bottom tetraquark is Tbbūd̄ → Tbcūd̄h
−, where h− is a light meson,

such as h− = π−, ρ−, a−1 . At the quark level, these decays take place via the weak transition b → cW−(→ ūd). This

is similar to the B-meson decays, such as B → D(∗)π, which were calculated in the so-called ”naive factorization
approach [47]. Subsequent improvements have provided a QCD basis for this class of factorized amplitudes, and the
resulting corrections are found to be small [48]. We assume that this factorization approach can also be used to
study the non-leptonic decays of the tetraquarks, though a formal proof is lacking.
The effective Hamiltonian for this decay at the tree level is given by

Heff =
GF√
2
VcbV

∗
ud [C1 (µ)O1 + C2 (µ)O2] , (35)

where C1,2 (µ) are the Wilson coefficients, calculated at the factorization scale µ. The operators are:

O1 =
(

d̄iγµPLui

)

(c̄jγ
µPLbj)

O2, =
(

d̄iγµPLuj

)

(c̄jγ
µPLbi) , (36)

with i, j representing the color indices. The current in each bracket for O1 and O2 is a color singlet and octet,
respectively. The corresponding Feynman diagrams are shown in Figure 2(a). For the color-allowed tree amplitudes,

b c

b

u
_ Tbcud

__Tbbud
__

d
_

d u
_

_ _ _

1

W

_

b c

c

u
_

d
_

d u
_

_ _ _

1

W

_

Tbcud
__ Tccud

__

(a) (b)

FIG. 2: Feynman diagrams for (a) Tbbūd̄ → Tbcūd̄h
−, and (b) Tbcūd̄ → Tccūd̄h

−, where h− = π−, ρ−, a−1 .

factorization of the decay amplitude is expected to be a good approximation, and the decay amplitude for Tbb (1
+) →
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Tbc (0
+; 1+)π− can be written in the form:

M = 4
GF√
2
VcbV

∗
uda1 (µ)

〈

π− (q)
∣

∣

(

d̄iγµPLui

)
∣

∣ 0
〉

〈Tbcūd̄ (p
′) |(c̄jγµPLbj)|Tbbūd̄ (p)〉 .

= −2
GF√
2
VcbV

∗
uda1 (µ)

〈

π− (q)
∣

∣

(

d̄iγµγ5ui

)∣

∣ 0
〉

〈Tbcūd̄ (p
′) |(c̄jγµPLbj)|Tbbūd̄ (p)〉

= −2i
GF√
2
VcbV

∗
uda1 (µ) fπqµ 〈Tbcūd̄ (p

′) |(c̄jγµPLbj)|Tbbūd̄ (p)〉 , (37)

where fπ is the decay constant of π−, q = p − p′, and a1 (µ) = C1 (µ) + C2 (µ) /3. Using the result of the matrix
element from Eq. (18), which holds in the heavy quark symmetry limit, and noting that the tetraquark in the final
state has JP = 0+, the HQET version of the amplitude given in Eq. (37) takes the form

M1+→0+ = −i
GF√
2
VcbV

∗
uda1 (µ) fπξT→T ′ (w) qµ (fDd(bb))

[

(w + 1) εµ − (ε · v′) vµ − iεµναβενvαv
′
β

]

. (38)

Along the same lines, for the final state Tbcud having JP = 1+, we use Eq. (30) in Eq. (37), which gives

M1+→1+ = i
GF√
2
VcbV

∗
uda1 (µ) fπξT→T ′ (w) qµ (fDd (bb))

[

ε∗′ · ε (v + v′)
µ − ε∗′ · vεµ − ε · v′ε∗′µ + iεµναβεαε

∗′
β (v + v′)ν

]

.

(39)
For h− = ρ− and h− = a1, which are light vector and axial-vector mesons, respectively, the relevant matrix

elements are

〈

ρ (q)
∣

∣

(

d̄iγµui

)
∣

∣ 0
〉

= fρmρε
∗
1 µ (q) ,

〈

a1 (q)
∣

∣

(

d̄iγµγ5ui

)∣

∣ 0
〉

= fa1ma1ε
∗
1 µ (q) , (40)

where fρ and fa1 are their respective decay constants and ε∗1 µ (q) denote their polarization vector. The corresponding
amplitudes involving spin-1 particles in the final state can be obtained by replacing fπ with fρ and fa1 for ρ and a1
mesons in Eqs. (38) and (39), respectively. Also, the momentum vector qµ is to be replaced with their mass times
the polarization vector ε∗1 µ (q).
The decay rate of a two-body process has the standard form:

dΓ =
1

8π

∣

∣M̄
∣

∣

2 |p1|
M2

, (41)

with the three-momenta of the final state particle in the rest frame of the parent hadron given by

|p1| = |p2| =

[(

M2 − (m1 +m2)
2
)(

M2 − (m1 −m2)
2
)]

1
2

2M
, (42)

where m1 and m2 are the masses of final state particles and M is the mass of the decaying particle. Using Eq. (38),
we get the decay rate for Tbbūd̄ → Tbcūd̄π

−

Γ1+→0+ = Nb
G2

F |VcbV
∗
ud|

2
a1(µ)

2f2
π (fDd(bb))

2

512πm6
TmT ′

|ξT→T ′ (w)|2 λ
(

m2
T ,m

2
T ′ ,m2

π−

)
3
2
(

m2
T + 2mTmT ′ (w + 1)−m2

T ′ +m2
π−

)2
,

(43)

where λ
(

m2
T ,m

2
T ′ ,m2

π−

)

=
(

m2
T − (mT ′ +mπ−)

2
)(

m2
T − (mT ′ −mπ−)

2
)

, and w is evaluated at the final state

hadron (π−) mass, i.e.,

w =
m2

T +m2
T ′ −m2

π−

2mTmT ′

. (44)

For the 1+ → 1+ decay, we use Eq. (39) to get

Γ1+→1+ = Nb
G2

F |VcbV
∗
ud|

2
a1(µ)

2f2
π (fDd(bb))

2

128πm4
TmT ′

|ξT→T ′ (w)|2 ×

λ
(

m2
T ,m

2
T ′ ,m2

π−

)
1
2

(

(mT +mT ′)
2 −m2

π−

)(

m2
π−

(

2mTmT ′ − 5
(

m2
T +m2

T ′

))

+ 5
(

m2
T −m2

T ′

)2
)

.(45)

Using the values of decay constant fπ and the other input parameters from Table I, setting Nb = 2 and (fDd(bb))
2
= 1,

we get

8



Decay Process Tbbūd̄ → Tbcūd̄ ℓ−νℓ Tbbūd̄ → Tbcūd̄ τ−ντ Tbbūd̄ → Tbcūd̄ π− Tbbūd̄ → Tbcūd̄ ρ− Tbbūd̄ → Tbcūd̄ a−

1

B
(

1+ → 0+
)

2.4× 10−2 8.2× 10−3 1.7× 10−3 4.8× 10−3 6.6× 10−3

Decay Process Tbbūd̄ → Tbcūd̄ ℓ−νℓ Tbbūd̄ → Tbcūd̄ τ−ντ Tbbūd̄ → Tbcūd̄ π− Tbbūd̄ → Tbcūd̄ ρ− Tbbūd̄ → Tbcūd̄ a−

1

B
(

1+ → 1+
)

7.0× 10−2 3.2× 10−2 8.5× 10−3 2.2× 10−2 2.7× 10−2

Decay Process Tbcūd̄ → Tccūd̄ ℓ−νℓ Tbcūd̄ → Tccūd̄ τ−ντ Tbcūd̄ → Tccūd̄ π− Tbcūd̄ → Tccūd̄ ρ− Tbcūd̄ → Tccūd̄ a−

1

B
(

0+ → 1+
)

7.1× 10−3 2.2× 10−3 5.0× 10−4 1.4× 10−3 2.0× 10−3

TABLE II: Semileptonic and Non-leptonic branching ratios of the double-bottom Tbbūd̄ and bottom-charm Tbcūd̄

tetraquarks with the indicated spin-parity.

Γ
(

Tbbūd̄

(

1+
)

→ Tbcūd̄

(

0+
)

π−
)

= 1.40× 10−12 MeV. (46)

Similarly for the 1+ → 1+ case, the result from Eq. (45) is:

Γ
(

Tbbūd̄

(

1+
)

→ Tbcūd̄

(

1+
)

π−
)

= 6.94× 10−12 MeV. (47)

In the case of a vector or an axial-vector meson in the final state, the expressions for the decay rates are:

Γ1+→0+ =
G2

F |VcbV
∗
ud|

2
a1(µ)

2f2
V (fDd(bb))

2

64πm4
TmT ′

|ξT→T ′ (w)|2 λ
(

m2
T ,m

2
T ′ ,m2

V

)
1
2

(

(mT +mT ′)
2 −m2

V

)

(

(

m2
T +m2

T ′

)2 − 4m4
V +m2

V

(

3m2
T + 2mTmT ′ + 3m2

T ′

)

)

, (48)

Γ1+→1+ =
G2

F |VcbV
∗
ud|

2
a1(µ)

2f2
V (fDd(bb))

2

64πm4
TmT ′

|ξT→T ′ (w)|2 λ
(

m2
T ,m

2
T ′ ,m2

V

)
1
2

(

(mT +mT ′)
2 −m2

V

)

(

5
(

m2
T +m2

T ′

)2 − 8m4
V +m2

V

(

3m2
T − 2mTmT ′ + 3m2

T ′

)

)

. (49)

where the subscript V defines ρ−, a−1 . Using the numerical values from Table I, we get the partial decay rates for
the 1+ → 0+ transitions

Γ
(

Tbbūd̄

(

1+
)

→ Tbcūd̄

(

0+
)

ρ−
)

= 3.94× 10−12 MeV

Γ
(

Tbbūd̄

(

1+
)

→ Tbcūd̄

(

0+
)

a−1
)

= 5.43× 10−12 MeV (50)

The numerical values of the decay rates for the 1+ → 1+ transitions are:

Γ
(

Tbbūd̄

(

1+
)

→ Tbcūd̄

(

1+
)

ρ−
)

= 1.80× 10−11 MeV,

Γ
(

Tbbūd̄

(

1+
)

→ Tbcūd̄

(

1+
)

a−1
)

= 2.20× 10−11 MeV. (51)

The resulting branching ratios for the decays Tbbūd̄ (1
+) → Tbcūd̄ (0

+) (π−, ρ−, a−1 ) and Tbbūd̄ (1
+) →

Tbcūd̄ (1
+) (π−, ρ−, a−1 ) are given in Table II. As for the semileptonic branching ratios, we use the total width

Γtotal(Tbbūd̄) = 8.2 × 10−10 MeV, derived from the lifetime τ(Tbbūd̄) = 0.8ps [17], Since the JP = 1+ tetraquark
Tbcūd̄ (0

+) is expected to decay radiatively to the JP = 0+ state, the branching ratios for Tbbūd̄ (1
+) →

Tbcūd̄ (0
+) (π−, ρ−, a−1 ) + (γ) are in the range of (1− 3)%.

V. SEMILEPTONIC AND NON-LEPTONIC DECAYS Tbcūd̄

(

JP = 0+
)

→ Tccūd̄

(

JP = 1+
)

(ℓ−νℓ, h
−)

The decay Tbcūd̄ → Tccūd̄ℓ
−νℓ is governed by the effective Hamiltonian given in Eq. (1), and the corresponding

Feynman diagram is drawn in Fig. 1(b). We identify the tetraquark Tccūd̄ with the double-charm hadron T+
cc(3875),

discovered by the LHCb, having JP = 1+ [1], which implies that we have a scalar to axial-vector transition. The
HQET matrix element in this case is parameterized as

〈Tccūd̄ (v
′, ε′) |c̄γµb|Tbcūd̄ (v)〉√

mTmT ′

= h1 (w) iε
µναβε′νvαv

′
β

〈Tccūd̄ (v
′, ε′) |c̄γµγ5b|Tbbūd̄ (v)〉√

mTmT ′

= (h2 (w) (w + 1) ε′µ − h3 (w) (ε
′ · v) v′µ − h4 (w) (ε

′ · v′) vµ) . (52)
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The spin symmetry relating the form factors in this case becomes

〈

H(Q′)
A

∣

∣Q̄′ΓQ
∣

∣H(Q)
S

〉

= −ξ (w) Tr

{

H̄(Q′)
A ΓH(Q)

S

}

, (53)

and by using Eqs. (5) and (8) in Eq. (53), the matrix elements for vector and axial-vector currents become

〈

H(Q′)
A |c̄v′γµbv| H(Q)

S

〉

= −ξ (w) Tr

{

P
∗α†(Q′)
v′ γαγ5

1 + /v
′

2
γµ 1 + /v

2
P ∗(Q)
v

}

= iξ (w) εµναβε′νvαv
′
β

〈

H(Q′)
A |c̄v′γµbv| H(Q)

S

〉

= −ξ (w) Tr

{

P
∗α†(Q′)
v′ γαγ5

1 + /v
′

2
γµγ5

1 + /v

2
P ∗(Q)
v

}

= ξ (w) [(w + 1) ε′µ − (ε′ · v) v′µ] , (54)

Comparing Eq. (53) and Eq. (54), one gets

h1 = h2 = h3 = ξ (w) (55)

and h4 = 0.
Therefore, the hadronic transition amplitude in this case becomes

Mµ = −GF√
2
Vcbξ (w)

√
mTmT ′

[

(w + 1) ε′µ − (ε′ · v) v′µ − iεµναβε′νvαv
′
β

]

. (56)

As discussed earlier, the wave-function of the tetraquark Tbcūd̄ may involve both the compact and hadron molecular
component. Including the compact fraction fDd(bc), the above equation takes the form

Mµ
Tbc→Tcc

= −GF√
2
VcbξT→T ′ (w) (fDd(bc))

√
mTmT ′

[

(w + 1) ε′µ − (ε′ · v) v′µ − iεµναβε′νvαv
′
β

]

. (57)

The relation between the form factors given in Eq. (15) holds in this case as well. Contracting the hadronic part with
the leptonic part given in Eq. (19), and summing over the polarization, i.e.,

∑

λ ε
′
µ (v

′, λ) ε′∗ν (v′, λ) = −gµν+v′µv
′
ν/v

′2,
it is easy to see that the expression for the decay rate is again given by Eq. (21), but one has to replace (fDd(bb))
with (fDd(bc)).
Using the numerical values of the various input parameters from Table I, the total width Γtotal(Tbcūd̄) = 2.2×10−9

MeV, which is derived from the lifetime τ(Tbcūd̄) = 0.3ps, based on the assumption that it is expected to be similar
to the one calculated for the bottom-charm baryon τ(Ξ(cbu) = (0.28±0.33)ps [22], together with Nb = 1, and setting
(fDd(bc)) = 1, we get the following branching ratios:

B
(

Tbcūd̄(J
P = 0+) → Tccūd̄(J

P = 1+)ℓ−νℓ
)

= 7.1× 10−3 (for ℓ−νℓ = e−νe, µ
−νµ)

B
(

Tbbūd̄(J
P = 0+) → Tbcūd̄(J

P = 1+)τ−ντ
)

= 2.2× 10−3 (58)

In the case of the non-leptonic decays, following the same procedure as adopted for the Tbbūd̄ → Tbcūd̄ case, the
amplitude for h− = π− becomes

M0+→1+ = −i
GF√
2
VcbV

∗
uda1 (µ) fπξT→T ′ (w) qµ (fDd(bc))

[

(w + 1) ε′µ − (ε′ · v) v′µ − iεµναβε′νvαv
′
β

]

. (59)

From Eq. (41), after performing the polarization sum, one gets the expression for the decay rate given in Eq. (43)
with the obvious replacements: (fDd(bb)) with (fDd(bc)), and Nb = 1. Using the values of the input parameters from
Table I, we get

Γ
(

Tbcūd̄

(

0+
)

→ Tccūd̄

(

1+
)

π−
)

= 1.10× 10−12 MeV, (60)

where we have set (fDd(bc)) = 1. Similarly, for the cases h− = ρ−, a−1 , from Eq. (48), the numerical values of the
decay rates are:

Γ
(

Tbcūd̄

(

0+
)

→ Tccūd̄

(

1+
)

ρ−
)

= 3.11× 10−12 MeV

Γ
(

Tbcūd̄

(

0+
)

→ Tccūd̄

(

1+
)

a−1
)

= 4.37× 10−12 MeV. (61)

This completes the numerical part of this Letter.
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VI. SUMMARY AND PROSPECTS OF EXPERIMENTAL MEASUREMENTS

Spectroscopic calculations based on Lattice QCD support a substantial diquark-antidiquark component in the Fock
space of the tetraquarks Tbbūd̄ and Tbbūs̄. Motivated by this input and the theoretical consensus that the double-
bottom tetraquarks Tbbūd̄ and Tbbūs̄ are stable against strong and electromagnetic interactions, we have worked out
some signature decays, reflecting the diquark-antidiquark component of the Tbbūd̄ tetraquark wave-function. They
are characterised by the semi-inclusive transitions Tbbūd̄ → Tbcūd̄ +X , where X = ℓ−νℓ, hadrons. We work out the
branching ratios for the semileptonic decays for the assumed JP quantum numbers of the initial and the final state
tetraquarks. This requires the knowledge of the weak current matrix elements (form factors) for the tetraquarks,
which are not at hand. We use heavy quark symmetry to relate the corresponding form factors at the symmetry
point and have argued that this should be a good approximation, as the underlying weak Hamiltonian for the
B → (D,D∗)ℓνℓ and Tbbūd̄ → Tbcūd̄ℓνℓ is the same, resulting from the b → cW− transition, involving heavy quarks
in the initial and final states. This implies that the momentum-transfer to the spectators is small in both cases.
A relation between the Isgur-Wise form factors of the double-bottom tetraquarks and the B-mesons follows in the
symmetry limit.
For the non-leptonic decays, we have concentrated for the cases where X is a single light hadron X = π−, ρ−, a−1 ,

which represent the so-called color-allowed tree diagrams, and have used factorization to write the hadronic matrix
elements - a method well-known from the decays B → (D,D∗)π. Of course, it remains to be seen if the QCD
corrections are small in this case as well. The largest uncertainty in the decay rates presented here, however, lies in
the composition of the tetraquark wave-function. Following a Lattice-QCD study [12], this is composed of diquarkonic

and mesonic components. In the present context, we parametrize it by the diquarkonic fraction (fDd(bb))
2
, with the

mesonic fraction given by 1− (fDd(bb))
2. Further studies using the Lattice-QCD techniques are needed to quantify

this fraction. We argue that experimental measurements of some of the branching ratios presented here may also
determine this fraction. Assuming the dominance of the diquarkonic component, i.e., setting (fDd(bb))

2 = 1, the
decay rates are shown in Table II. They are large enough to be measured at the HL-LHC, and in the long run at
the proposed Tera-Z factories. Since these measurements involve the bottom-charm tetraquarks in the final state,
they have to be measured first in sufficient numbers. Detailed studies at the LHCb are encouraging [28, 29]. There
are good prospects at the two large experiments (ATLAS and CMS) at the LHC due to their larger acceptance and
much higher integrated luminosity. The extension to the non-leptonic decays of the tetraquarks resulting from the
weak decay b → cc̄s are obvious. Of course, many more decay modes of the tetraquarks following from the b-quark
decays b → c(ūd, c̄s) can be calculated.
We have also worked out the weak decays of the JP = 0+ bottom-charm tetraquark Tbcūd̄ → Tccūd̄ + X , where

X = ℓ−νℓ, hadrons, with the final-state tetraquark identified with the observed double-charm narrow state T+
cc(3875),

having JP = 1+, decaying to DD∗ [1]. Their branching ratios are also shown in Table 2. Compared to the
corresponding decays of the double-bottom tetraquarks, they are smaller due to the anticipated larger decay width
of the Tbcūd̄ tetraquark. We recall that there are three branches of the weak decays of Tbcūd̄. Their relative fractions,
based on the anticipated similarities with the bottom-charm baryon Ξbcu decays [22] are estimated as b → c; fb =
0.22±0.04, c → s; fc = 0.72±0.04, and W±-exchange, fW = 0.06±0.04 [29]. Of these, only the b → c transition will
yield the observed tetraquark T+

cc(3875). Other branches will lead to different final states, of which we expect that the
c → s transition may also lead to a tetraquark with the quark content Tbsūd̄ from the decays Tbcūd̄ → Tbsūd̄+(ℓ+ν̄ℓ, X).
Due to the larger fraction of the c → s decay, fc, this might be a promising place to discover a tetraquark with four
different quark flavors.
In summary, weak decays of the double-heavy tetraquarks, some of which are discussed here, are anticipated to

induce tetraquark → tetraquark transitions. This is due to the presence of a doubly-heavy diquark component in
the Fock-space of these hadrons. These signature decays of the compact tetraquarks may be observed at the high-
luminosity LHC experiments (LHCb, ATLAS and CMS) [30, 31, 49], and eventually at the Tera-Z factories, being
considered at the future circular e+e− machines at CERN [32] and China [33]. Establishing these decays will provide
a proof of the existence of double-heavy diquarks, long anticipated in the context of the heavy tetraquarks [5], which
have now received additional support from the Lattice-QCD studies.
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